Athens Institute

Working Paper No. 2025-2783-28
3 November 2025

Instructional Material Improvement
Through Software-Driven Standardization

Tom Wanyama Sr & Tom Wanyama Jr

Working papers are published by the Athens Institute to stimulate discussion
on various issues. These papers are primarily based on presentations made
by the authors at various academic events organized by the Athens Institute.
All published working papers undergo an initial peer review aimed at
disseminating and improving the ideas expressed in each work. Authors
welcome comments.

This paper should be cited as follows:

Wanyama Sr, Tom, Wanyama Jr, Tom (2025) Instructional Material Improvement
Through Software-Driven Standardization. Published by the Athens Institute:
Working Paper No. 2025-2783-28, 3 November 2025. Pages 1-10

No.: 2025-2783-28
Date: 3 November 2025
DOI:

ISSN: 2241-2891

Previous Working Papers available at: www.atiner.gr/papers.htm

This series began in 2012 and was known as the Conference Paper Series until
2024. In 2025, the series was renamed and is now called the Working Paper Series.

Athens Institute (www.atiner.gr)
2025

http://www.atiner.gr/papers.htm
http://www.atiner.gr/

Instructional Material Improvement Through
Software-Driven Standardization

By Tom Wanyama Sr* & Tom Wanyama Jr*

Instructional materials are essential tools that ensure student engagement within
an active learning environment. However, the complexity of producing
instructional materials is a labor and time consuming process requiring
continuous creative effort from content developers. Categorizing instructional
materials as quizzes, lecture presentations, and supplementary content such as
notes, and worksheets; we present a software-driven standardization solution to
assist during the creative process. We believe that this technological adaptation
within the educational ecosystem will not only improve the content creation
process but also improve the teaching and learning experience. By leveraging
templates and automation processes, we hope to streamline the creation,
distribution, and accessibility of instructional materials. With an emphasis on
improving the creation of effective and cohesive learning resources in both online
and hybrid teaching models. To evaluate the feasibility and impact of our
approach, we have developed a working python-based prototype that uses
templates to generate educational content based on institutional guidelines,
instructor requirements, and student preferences. By documenting the volume of
unique and personalized content we have produce across various platforms such
as video and file sharing sites; and media types including MP4, PDFs, and other
document types,; within a given timeframe. We've seen how well software can
support institutions in creating standardized materials, how easily instructors
assigned with course material development can use templates and automation
during the design process, and how the content meets the diverse needs of
students. We aim to highlight the potential advantages of template-based
automation and its role in the future of course material development. While
incorporating some of the principles and concepts used as design benchmarks
from Clean Code by Robert Cecil Martin and The Pragmatic Programmer by
Andy Hunt and Dave Thomas. These principles and concepts prioritizing three
main shareholders that make up both lower and higher education: institutional
direction, instructor needs, and student consumption of educational material.

Keywords: software-driven standardization, educational materials, hybrid/
online teaching models, student engagement, content design and development,
software automation

Introduction
This paper highlights and demonstrates how software-driven standardization

can improve the design, development, and distribution of high-quality educational
resources. Our goal is to encourage further adoption of technological automation

*Associate Professor, McMaster University, Canada.
*McMaster University, Canada.

and templating during the content creation process to improve the efficiency of
course material development and in turn the teaching and learning experience. The
paper and subsequent investigations focus on three aspects that are often found in
successful educational systems including institutional direction, instructor
resources, and student consumption of educational material. Each of these elements
will be referenced while demonstrating the possible benefits of our software
solution:

e Institutional Direction: The impact on resource design and development
processes.

e Instructor Resources: The usability of templating and functionality of
software automation.

e Student Consumption of Educational Material: The quality, quantity, and
accessibility of generated content (e.g., presentation slides, quizzes, worksheets,
etc.).

We’ve developed an automated process centered around templating to
demonstrate some advantages our solution could have during the course material
design and development process. Using principles and concepts such as
Standardization, Distribution, and Automation from Clean Code by Robert Cecil
Martin as our design benchmarks. With additional inspiration from The Pragmatic
Programmer by Andy Hunt and Dave Thomas; we were able to create a system that
generates content across various platforms & file types including MP4, PDFs, and
other document types within a given timeframe.

Additionally, we demonstrate the flexibility and creative range of the prototype
solution by integrating emerging and trending innovations, namely generative Al
and short-form content.

We hope to address the challenges of producing high-quality educational
resources by demonstrating how the prototype supports content developers.
Specifically, shifting effort away from production tasks such as animating, styling,
and content presentation; through the use of templating and automation. Allowing
creators to focus more on the substance and quality of the material itself.

Prototype

We designed and developed a working prototype to showcase the benefits of a
software-driven standardization solution in an academic environment. During the
design process, we prioritized templating to relieve course material designers of
repetitive tasks such as animating, styling, and content presentation. Diverting that
focus to the quality of learning materials. In addition, we used automation to
streamline the production process. Maximizing the quantity of learning materials a
team can produce.

The prototype uses design templates, a collection of resources, and an
instructional document to generate content. With the design templates establishing
the rules for organizing and styling information. The resource collection includes

images, videos, and other presentable documents. While the instructional document
structures the content produced. Details on each of these processes are provided in
the sections below. In addition, you can find examples of the content generated at
FreeKidsContent.com.

Usability of Templating and Functionality of Automation

Below is an example of three templates that are used to generate a lecture
presentation on Topology; the study of shapes and spaces that stay the same under
continuous change. These templates include text and resource placeholders that are
animated and styled to fit the needs of the user.

Figure 1. Examples of Templates

The templates in the figure above were also used to generate a video on the
sights and sceneries of Greece. This video combined animations, music, and
narration to present the country, its cities, seals, flags, landmarks, and historic sites
with short explanations. This exercise was meant to display the tool’s flexibility
when producing content for different topics, its text-to-speech capabilities, and
finally, its consistency in structure across generated content.

Figure 2. Resource Folder

aH [

Figure 2 is an illustration of the resource folder and its possible contents.
Consisting of images, videos, and other presentable documents used by the
prototype’s automation protocol.

The prototype has a graphic user interface (GUI) that enables users to interact
with the content produced and trigger the automation protocol. In addition to the
customizations found in the templates, users can customize styles, colors, and fonts,
while also inserting the template placeholders with presentable content, such as text,
images, and videos. Flexibility was a key consideration during the development

process. Using the prototype, we generated presentation slides, quizzes, worksheets
covering a wide range of subjects and topics. Find these at FreeKidsContent.com.

In the first figure below, you’ll find an example of the prototype’s GUI with all
the available specification options. In the second figure you’ll find these
specifications filled for the Topology lecture presentation export.

Figure 1. Prototype Graphic User Interface

|__ssteer Fae

Destination | SotectForow |

Pacsnoises -

T |

Once all the required inputs are available the automation protocol can be
executed. (Note. The template file, content text, and export directory are mandatory
inputs.) Our prototype is reliant on the content text. With each line representing a
view and the line text separated by a unique character representing placeholders.
The program generates views based off a specific template and its associated
formatting. Replacing placeholders with text and or presentable file specified in the
content text. Once complete, the generated views will be exported to video, image,
or simple document formats for consumption.

Figure 2. Export Formats

A

Below is the exported lecture presentation on Topology. Notice how the
presentation has characteristics of both the template and the provided content text.

Figure 3. Lecture Presentation Export

iy

Topology Bus Tree

o ot | O A R

Our solution fosters both standardization, distribution, and automation. It does
not fact-check or measure the quality of the content; that responsibility remains with
the content design and development team. The prototype ensures that the generated

learning materials can be distributed across multiple platforms in a clean, structured,
and repeatable manner. We strongly believe that the advantages from the improved
content development process will greatly satisfy the needs of our three stakeholders.
Institutions: procedural process improvement, instructors: efficiency during content
production, and students: accessibility to quality content.

Integration of Trending Innovations

Generative Al and short-form content have been two of the fastest growing
trends of the early 2020s. Generative Al is artificial intelligence that creates new
content such as: text, images, or music by learning patterns from existing data.
While short-form content is concise, engaging material designed for quick
consumption. This includes videos under 60 seconds, blog posts under 1,000 words,
and quick-hit podcasts. Using the prototype and current generative Al models. We
were able to create a short-form video; formatted and styled for platforms such as
TikTok, Instagram Reels, and YouTube Shorts.

Figure 4. Short-form Content

Presentable

RBoor T nl=]
Hesource

Suddenly Tilly spotted a
trail of glittering shells
leading to a glowing
cave fillad with sparkly
sea glass and a pearl as
big as her head!

We started by creating a storyline template that included text and image
placeholders each with styles and appearance animations. Then using OpenAl’s
GPT-40 model, we generated a short story about a cartoon character that would
appeal to children. Finally, we created the required imagery with 40 Image
Generation also by OpenAl. With the content text and image resources obtained.
We were able to generate multiple short-from videos each with unique characters,
scenic backgrounds, and personalized stories. Refer to the Short-form Content
figure above for an example and other generated material at FreeKidsContent.com.

This section highlights how standardization does not have to be rigid; it can
integrate current practices in the pursuit of unique and informative content.

Discussion

To successfully integrate technology within any educational ecosystem, we
need to address the needs of an institution, its educators and faculty members, as
well as the students that make up the student body. By addressing each of these
stakeholders, we can mitigate individual challenges, allowing the technology to
flourish and enhance the experience for everybody involved.

After closely examining our stakeholders, we decided to prioritize the
standardization, distribution, and automation of the learning material creation
process. With a focus on the individual or team tasked with developing, maintaining,
and delivering content. These priorities further derived from Clean Code by Robert
Cecil Martin (Martin, 2008). A book about writing software that is easy to read,
maintain, and improve. Supplemented by The Pragmatic Programmer by Andy
Hunt and Dave Thomas (Hunt & Thomas, 2019). Which is about becoming a better
and more adaptable developer. It gives tips and practices to help programmers write
flexible and effective software.

Standardization

In the prototype section of this paper, we introduce templates. These offer a
wide range of customizations, including but not limited to content placement, fonts,
styles, and colors. Allowing content developers to set the standard of instructional
videos, practice worksheets, and other materials used inside and outside of the
classroom. Elements such as an institution’s name, logos, seals, and colors can be
incorporated to solidify an identity within any community and across the internet.

Just as Clean Code (Martin, 2008) and The Pragmatic Programmer (Hunt &
Thomas, 2019) stress the importance of consistent, reusable standards in software for
clarity and longevity, the template-based standardization creates a flexible framework
that ensures identity, usability, and sustainability in instructional materials.

Distribution

Our prototype solution exports to video (MP4), image (JPEG, PNG, GIF, and
SVG), and simple document formats such as PDF. This variety does not only allow
for easier distribution of content but also increases the range of possible platforms
that can host said content.

In the same way that Clean Code and The Pragmatic Programmer highlight
practices that keep software versatile and accessible, the prototype’s multi-format
export capabilities extend the reach of instructional materials, making them easier
to share with students, across a wide range of platforms.

Automation
The automation protocol is also introduced in the prototype section of the paper.

This python-based script gets templates, specifications, and presentable resources
from users, which it uses to generates videos, images, or simple documents.

By aligning with the principles in Clean Code and The Pragmatic Programmer,
this automation solution does not only minimize human error but also reinforces
repeatability and scalability. Ensuring instructors that the content generated
maintains a consistent quality across formats.

By emphasizing standardization, distribution, and automation in the creation of
learning materials, the prototype demonstrates how technology can streamline
content development while ensuring consistency and accessibility. These practices
not only support educators and institutions in maintaining quality but also create
scalable solutions that enhance the overall learning experience for students.

Conclusion

In this paper we looked at how software-driven standardization could enhance
the design, development, and distribution of educational materials. With the goal of
encouraging automation and templating during the content creation process to help
course material developers be more efficient. Ultimately improving the teaching and
learning experience. We hoped to satisfy the following shareholder needs. Improved
resource development processes for institutions, provide a flexible tool for instructors,
and quality learning materials for students. Each of these needs were addressed and
kept in mind during the prototype’s development and within the paper.

Using a python-based prototype we demonstrated how templating can relieve
course material developers of repetitive tasks such as animating, styling, and content
presentation so that they can focus on the quality of the information presented. While
automation streamlined the production of the learning material improving the quantity
and distribution of resources available to students. We combined knowledge from
Clean Code by Robert Cecil Martin and The Pragmatic Programmer by Andy Hunt
and Dave Thomas to develop design benchmarks. These benchmarks currently allow
us to generate content across various platforms & media types within a given
timeframe. In addition, we integrated emerging technologies and trending content
formats into our design process. Namely, generative Al and the short form content
format. This was to demonstrate the importance of staying current with the next
generation of students while displaying the adaptability and range of the prototype.

At the start of this project, we hoped to tackle the challenges of adopting new
technology while producing high-quality educational resources. We strongly
believe that assisting resource designers and developers with a tool that shifts effort
away from production tasks and allows them to focus on the substance of content is
the solution. A solution that tackles the problem of poorly designed educational
resources, which are known to reduce the effectiveness of teaching and learning.

As academic institutions continue to explore the future of educational practices,
we advocate for standardization with software automation and templating. Adopting
software-driven standardization solutions can lead to more consistent, effective, and
engaging learning materials. We encourage further research and implementation of
these technologies to enhance the academic ecosystem and foster a more impactful
educational experience for both instructors and students.

References

Hunt, A., & Thomas, D. (2019). The Pragmatic Programmer. In A. Hunt, & D. Thomas, The
Pragmatic Programmer: From Journeyman to Master. Boston, MA: Addison-Wesley
Professional.

Martin, R. C. (2008). Clean Code. In R. C. Martin, Clean Code: A Handbook of Agile
Software Craftsmanship. Upper Saddle River, NJ: Prentice Hall.

10

	References

