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ABSTRACT 
 

This paper compares the accuracy of the power series approach with that of the 

modified Lindstedt-Poincare method for strongly nonlinear vibration. The free 

vibration of an undamped Duffing oscillator is considered because it has an 

exact solution. In the power series approach, the time variable is transformed 

into an ‘oscillating time’ which reduces the governing equation to a form well-

conditioned by the power series method. The results show that the power series 

approach provides extremely accurate vibration frequencies, even at large 

values of the nonlinear parameter, compared with errors of up to nine percent 

for the modified Lindstedt-Poincare method.  
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Introduction 

 

The Lindstedt-Poincare method is a well-known perturbation technique 

which provides uniformly valid asymptotic expansions for weakly non-linear 

vibrations [1-3]. Several authors have attempted to modify the standard 

Lindstedt-Poincare method to extend its validity to strongly nonlinear 

vibrations [4-6]. In 2002, JiHuan He [7], proposed a modified L-P method by 

expanding a constant in powers of the expanding parameter to avoid secular 

terms in the perturbation series. The proposed method was applied to some 

examples and the results showed that the solutions for strongly non-linear 

problems were uniformly valid on the whole solution domain.  

In 1996, a power series approach for the study of periodic motion [8] was 

proposed. This approach is based on transforming the time variable into an 

‘oscillating time variable’ which transforms the governing equation into a form 

well-conditioned for a solution by the power series method.      

In this paper, a comparison is made between the accuracies of the modified 

Lindstedt-Poincare method and the power series approach for strongly 

nonlinear vibration. The undamped Duffing oscillator is considered for which 

an exact solution is available. It is worth mentioning that both techniques apply 

to undamped vibrations only.   

Duffing Equation  

 
For the purpose of comparison, consider the free vibration of an undamped 

Duffing oscillator governed by the equation  

 

  +                                     (1)  

 

Subject to the initial conditions (0) = 0. The constant  is 

the nonlinear parameter.  

This problem has an exact solution [9] expressible in the form of elliptic 

functions which represent periodic motions whose periods are given by elliptic 

integrals.  

The power series technique can be used to capture periodic motions by 

transforming *8+ the time variable into a new independent variable τ as  

 

                                       (2)  

 

Which oscillates between the values of -1 and +1 at a frequency of ω as time t 

is increased indefinitely. The infinite time domain (0 ≤ t ≤ ∞) is thereby 

reduced to a finite time scale (-1 ≤ τ ≤ 1).  When this transformation is carried 

out on equation (1), the transformed differential equation and initial conditions 

become  
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Where the prime denotes differentiation with respect to τ. The oscillating time 

frequency ω is to be determined.   

It is now assumed that a convergent power series expansion about τ = 0 

exists for  

 

 , as  

            (4)  

 

Where  are constant coefficients to be determined. Using equation (4), the 

different terms in equation (3) can be written as  

 

  

                 (6)  

                                            (7)  

                                                                       (8)  

 

A shift of index has been made in equation (5) so that all the terms 

involved have the same form. The constant  in the nonlinear term, equation 

(8), can be determined once all the coefficients   have been 

computed.  

Substituting equations (4-8) into equation (3) and equating coefficients of 

each power to zero, gives the recurrence relation  

 

  ,    n=1, 2,…….     (9)  

 

between the series coefficients. The fundamental coefficients a1 and a2 are 

determined by imposing the initial conditions giving   

 

               (10)    

 

It follows from equations (9, 10) that all the even coefficients associated 

with odd powers vanish and as a result, the expansion, equation (4) captures 

the periodic motion every half cycle of the oscillating time. Consequently, the 

oscillating time frequency ω is one half of the vibration frequency Ω  

 

                                       (11)  

 

Since the odd power coefficients turned out to be zero, equation (4) can be 

written in compact form as  

 

             (12)  
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and the recurrence equation (9) becomes  

 

,       n=1, 2,….   (13)  

 

The frequency ω can be computed from Rayleighs energy principle for 

conservative systems which equates the maximum potential and kinetic 

energies.  

For the system considered, the kinetic and potential energies T and V are 

respectively given by  

 

                                  (14)  

                                                  (15) 

  

The maximum potential energy occurs at τ = 0 when the displacement is 

maximum u(0) = A, and the maximum kinetic energy occurs at the equilibrium 

position when τ = .  By using equations (12, 14, 15), Raylieghs energy 

principle can be written as  

 

                       (16)  

 

Equation (16) is the characteristic equation of the system since all the 

series coefficients involved are functions of frequency ω, as given by equation 

(13). It is found that equation (16) has two roots, the first simply changes sign 

of the error function (E = Vmax – Tmax), and the second root which is the correct 

one makes the magnitude of the error   a minimum. Once the frequency ω is 

obtained, the vibration frequency is then twice that value and the corresponding 

series coefficients uniquely determine the periodic motion, which can be 

written as  

 

                       (17)  

 

 

Results and Discussion  

 

Power series solutions were obtained for equation (1) by using the 

recursive equation (13) with the amplitude A = 1. Before comparing the results 

with the exact solution and those of the modified L-P technique, a convergence 

test was carried out for large nonlinearity (  = 50). Figure 1 shows the 

convergence of the oscillating time frequency ω as the number of terms in 

equation (12) is increased.  
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Figure 1. Convergence of the Oscillating Time Frequency (A = 1,   = 50)  
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Table 1 compares the vibration frequency obtained using different 

methods for various values of the nonlinear parameter ϵ. The results show that 

the power series method provides extremely accurate frequencies even at large 

nonlinearity. The error of the modified L-P technique [7] exceeds the 7% limit 

predicted by the author but remains within 9% of the exact values for the range 

of ϵ considered.  

 
Table 1. Comparison of Vibration Frequency  

Nonlinear 

Parameter  

        ϵ  

Modified L-P  Power series  Exact  solution  

1  1.2553  1.3178  1.3178  

10  2.6253  2.8666  2.8666  

20  3.5799  3.9240  3.9240  

30  4.3291  4.7516  4.7516  

40  4.9665  5.4548  5.4547  

50  5.5309  6.0762  6.0771  
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The time response of the oscillator given by the power series method, was 

compared with a numerical solution based a fourth order Runge-kutta 

algorithm for A = 1,   = 2. Figures 2 and 3 compare respectively the 

displacement and velocity responses. Excellent agreement is seen in each 

response.   

 

Figure 2. Displacement Response (A = 1,   = 2)  
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Figure 3. Velocity Response (A =1,  = 2)  

  
-1.5 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 
Time 

  
The first thirty series coefficients are shown in Table 2.  

  

Table 2. Power Series Coefficients (A = 1, ϵ = 2)   

i  𝑎𝑖  𝑎𝑖+5  𝑎𝑖+10  𝑎𝑖+15  𝑎𝑖+20  𝑎𝑖+25  

1  1.000  -1.3047  0.7538  -0.4456  0.2632  -0.1554  

2  -2.4367  1.1369  -0.6794  0.4011  -0.2369  0.1399  

3  1.4967  -1.0409  0.6110  -0.3610  0.2132  -0.1259  

4  -1.6980  0.9285  -0.5502  0.3249  -0.1919  0.1133  

5  1.3620  -0.8397  0.4951  -0.2924  0.1727  -0.1020  

  
   

Conclusions  

  

A comparison has been presented between the power series approach and 

the modified Lindstedt-Poincare method when applied to a strongly nonlinear 

Duffing oscillator. The results show that the present approach provides 

extremely accurate vibration frequencies over a wide range of the nonlinear 

parameter, compared with errors of up to nine percent for the modified L-P 
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method. The time response of the present approach is in excellent agreement 

with the numerical solution.  
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