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ABSTRACT 
 

There are examples of non-convex polyhedra that show that it is not 

possible to decompose them into tetrahedra. Opposite, it is known that 

convex polyhedra can always be divided into tetrahedra. Such process is 

known as 3-triangulation. Polyhedra topologically equivalent to sphere 

with p handles, shortly p-toroids, could not be convex. So, here it is 

investigated possibilities of their 3-triangulations and if some exists, its 

properties. It is of interest the minimal necessary number of tetrahedra for 

the 3-triangulation of a 3-triangulable p-toroid. For that purpose we shall 

develop the concepts of piecewise convex polyhedra and of graph of 

connection. Also, some interesting examples will be shown. 
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Introduction 

 

By generalizing the term polygon, in higher dimensions we get a polyhedron 

and a d-dimensional polytope. As it is known, always is possible to triangulate 

a polygon with n vertices. That is the process of dividing it by n − 3 diagonals 

into n − 2 triangles. We can consider generalization of this process into higher 

dimensions and call it also triangulation, or more specific 3-triangulation, d-

triangulation. Than, using only the original vertices, for 3-triangulation we 

divide a polyhedron into tetrahedra and for d-triangulation a d-polytope into d-

simplices. 

Already in the case of 3-dimensional space, two problems arise. As it 

shows e.g. the example of Schönhardt‟s polyhedron (Schönhardt 1928), there is 

no possibility to triangulate certain non-convex polyhedra. Also, triangulations 

of same polyhedron may have different numbers of tetrahedra (Edelsbrunner et 

al. 1990, Sleator et al. 1988, Stojanović 2005, Stojanović 2008). Considering 

the smallest and the largest number of tetrahedra in triangulation (the minimal 

and the maximal triangulation), it is shown that such values, linearly, resp. 

squarely, depend on the number of vertices.  

We shall consider here 3-triangulation of the special class of polyhedra, p-

toroids. Namely, by the term “polyhedron” we usually mean a simple polyhedron, 

topologically equivalent to a sphere. On the other hand, there are classes of 

polyhedra topologically equivalent to torus or p-torus (sphere with p handles). 

We shall call such polyhedra 1-toroids and p-toroids ( p N is a given natural 

number), inspired by Szilassi definition (Szilassi 2005) of torus-like polyhedra. 

He called them toroids. Here term “toroid” will be used as a common name for 

p-toroids for any p N . 

Although toroids are not convex, under certain conditions it is possible to 

3-triangulate them. An example of such 1-toroid is the Császár‟s polyhedron 

(Bokowski 2005, Császár 1949, Szilassi 2005, Szilassi 2012). It has 7 vertices 

and it is triangulable with 7 tetrahedra. It was also discussed as a polyhedron 

without diagonals (Császár 1949, Szabó 1984, Szabó 2009). In (Brehm 1987, 

Jungerman et al. 1980, Szilassi 2005) some other examples of p-toroids are given, 

while in (Stojanović 2015, Stojanović 2017, Stojanović 2019) some properties of 

toroids and additional examples are given. 

In the present paper, after defining necessary concepts and a brief overview of 

the previous results, the method for the construction of a p-toroid based on a given 

graph as its graph of connection will be considered. After that, examples of 

toroids obtained in the introduced way will be given. These examples show that 

the minimal number of necessary tetrahedra for 3-triangulation is in accordance 

with the lower limit given in the Theorem formulated in (Stojanović 2019). 

 

 

Preliminaries 

 

In this section necessary terms and statements will be given.  
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3-Triangulations of Convex Polyhedra 

 

It is known that the smallest possible number of tetrahedra in the 3-

triangulation of a polyhedron with n vertices is n − 3. An example of 

polyhedron that allows this is e.g. pyramid Vn-1 with n − 1 vertices in the basis 

and the apex, i.e. n vertices in total. 3-Triangulation is as follows: do any 2-

triangulation of the basis into (n − 1) − 2 = n − 3 triangles. The apex together 

with each of such triangles make one of tetrahedra in 3-triangulation. The 

pyramid V5 and its 3-triangulation are given in Figure 1. 

Another example of polyhedron with the same property is the triangular 

prisms Π. It has 6 vertices and it is 3-triangulable with 3 tetrahedra, as Figure 2 

shows. If fact, we may consider triangular prisms Π as a “pyramid” with a 

space pentagon in the basis. If vertices of Π are 1 1 1, ,A B C  in one of the basis 

and 2 2 2, ,A B C in the other, then we can assume that 2A  is the apex of the prism 

and 1 1 2 2 1A B B C C is its basis. 

 

Figure 1. Pyramid V5 and its Triangulation 

 
 

Figure 2. Prism Π and its Triangulation 

 
Source: Stojanović 2015. 

 

On the other hand, any 3-triangulation of octahedron - a polyhedron with 6 

vertices, gives 4 tetrahedra. 3-Triangulations giving small and especially minimal 

number ( minT ) of tetrahedra are examined in (Edelsbrunner et al. 1990, Sleator 

et al. 1988, Stojanović 2005, Stojanović 2008). In these papers are also given 

numerous examples of simple polyhedra with min 3T n  . 
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Toroid 

 

First we have to introduce term p-torus. In the surface theory it is defined 

as a cyclic polygon with paired sides. Any side s and its pair S are oppositely 

directed related to the fixed orientation of the polygon and then glued together. 

By a standard combinatorial procedure - the polygon can be divided and glued 

to a cyclic normal form a1b1A1B1a2b2A2B2...apbpApBp, as a p-torus. This 

combinatorial procedure is independent of the future spatial placement of the 

surface. So from any spatial knot (as a topological circle in the space) we can 

form a torus. Of course, its surface can be 2-triangulated to be a polyhedron. 

Based on Szilassi‟s definition (Szilassi 2005) it is introduced term p-toroid 

(Stojanović 2019). 
 

Definition 1. A polyhedron is called p-toroid, p N , if it is topologically 

equivalent to sphere with p handles (p-torus). 

As it was mentioned earlier, here term toroid will be used as a common 

name for all p-toroids. 

 

Piecewise Convex Polyhedron and its Graph of Connection 

 

For needs of our consideration, we shall introduce the following definitions. 

 

Definition 2. A polyhedron is piecewise convex if it can be divided into finitely 

many convex polyhedra Pi, i = 1, …, m, with disjoint interiors. A pair of 

polyhedra Pi, Pj is said to be neighbouring if they have a common face called 

contact face. 

If the polyhedra Pi and Pj are not neighbouring, they may have a common 

edge e or a common vertex v. That is possible iff there is a sequence of 

neighbouring polyhedra Pi, Pi+1, …, Pi+k  Pj such that the edge e, or the vertex 

v belongs to each contact face fl common to Pl and Pl+1, l  {i, …, i + k − 1}. 

Otherwise, polyhedra Pi and Pj do not have common points. 

Remark 1. Since a convex polyhedron can be 3-triangulated, the same holds 

for piecewise convex one, especially for a piecewise convex toroid. 

Remark 2. Each 3-triangulable polyhedron is a collection of connected 

tetrahedra, so it is piecewise convex. 

Definition 3. 1-toroid is cyclically piecewise convex if it is possible to divide it 

into a cycle of convex polyhedra Pi, i = 1, …, n, such that Pi and Pi+1, i = 1, …, 

n − 1 and Pn and P1 are neighbours.  

The concept of graph of connection is essential for considerations given in 

this paper. 

Definition 4. If a polyhedron P is piecewise convex its graph of connection (or 

its connection graph), is a graph with nodes representing convex polyhedra Pi, 

i = 1, …, m, the pieces of P, and edges representing contact faces between 

them. 

It is obvious that if a 1-toroid is cyclically piecewise convex, then its 

graph of connection is a single cycle. Other piecewise convex 1-toroids have 
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graphs with a cycle and additional branches. Similarly, a piecewise convex p-

toroid form a graph of connection with p cycles, and eventually with additional 

branches.  

It is important to mention that division of a polyhedron to convex pieces is 

not necessarily unique. Since we consider in this paper the minimal number of 

necessary simplices in 3-triangulation of a toroid P, it would be useful to handle 

with divisions and graphs of toroids in which the minimal 3-triangulation of P is 

in accordance with the minimal 3-triangulation of their pieces, namely not to 

care about this accordance. It must not happen that the sum of tetrahedra in 

minimal 3-triangulations of the pieces would be greater than the number of the 

tetrahedra in 3-triangulation of the whole toroid. So, let us define: 

Definition 5. M-division of a polyhedron is a division in which the tetrahedra 

participating in the minimal 3-triangulations of the pieces are at the same time 

participating in the minimal 3-triangulation of the whole polyhedron. A graph 

of connection of a given polyhedron is m-graph if it represents m-division of 

that polyhedron. 

Remark 3. We see that m-division and thus m-graph of a polyhedron is not 

unique. Note that convex pieces of division (m-division) can be either separated 

tetrahedra or their different collections. Besides that, more possibilities can occur 

for minimal 3-triangulation of the same polyhedron. On the other hand, it is 

obvious that there exists at least one m-division of a given 3-triangulable 

polyhedron. That is its partition into tetrahedra participating in the minimal 3-

triangulation. 

 

An Example of 1-Toroid and Preview of Previously Considered Theorems 

 

One of the examples of cyclically piecewise convex polyhedron T9 with n 

= 9 vertices is given in (Szillasi 2005). It is composed of three pieces of convex 

polyhedra which are topologically triangular prisms Π and its property is that 

four edges meet at each vertex and the faces are quadrilaterals. As it was 

mentioned earlier, triangular prisms is 3-triangulable with 3 tetrahedra, so we 

can 3-triangulate T9 with 9 tetrahedra. Figure 3 shows T9 and its graph of 

connection.  

 

Figure 3. 1-Toroid T9 and its Graph of Connection 

   
 

Source: Stojanović 2015. 
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In earlier papers of author (Stojanović 2015, Stojanović 2017) there were 

proved the following theorems for 1-toroids and 2-toroids. 

 

Theorem 1. If a 1-toroid with 7n   vertices can be 3-triangulated, then the 

minimal number of tetrahedra in that 3-triangulation is minT n . 

Theorem 2. If it is possible to 3-triangulate 2-toroid with 10n   vertices, then 

the minimal number of tetrahedra for that 3-triangulation is min 3T n  . 

In (Stojanović 2019) appropriate theorem for the p-toroids was introduced. 

Theorem 3. If a p-toroid with n vertices can be 3-triangulated, then the minimal 

number of tetrahedra necessary for its 3-triangulation is min 3( 1)T n p   . 

 

 

From Graph of Connection to p-Toroid 

 

In the proofs of Theorem 1 and Theorem 2 (Stojanović 2015, Stojanović 

2017) there are discussed different possibilities of connecting pieces in m-graph 

for resp. 1- and 2-toroid. In the proof of Theorem 3 (Stojanović 2019) it was not 

necessary to consider such possibilities for p-toroid. However, for considering the 

smallest number n of vertices in a 3-triangulable p-toroid in (Stojanović 2019) 

it was necessary to take care about possibilities of connecting the pieces in its 

m-graph. There is discussed an example of toroid whose m-graph consists of p-

cycles cyclically arranged, so that form the new, (p+1)
th

 cycle. Although 

geometric realization of the toroid introduced in this example is questionable, 

its combinatorial structure shows us that along with p grows the number of 

possibilities for connecting pieces in m-graph.  

That is the reason to discuss options for m-graphs in this section. Also, the 

consideration of different possibilities of connecting m-graphs for p-toroids as a 

consequence opens new questions. The following examples will give the answers 

to some of them. 

 

Example 1 

 

In accordance with the previous, one of the question is: is it possible to 

make toroid with „cycle of cycles‟ which is geometrically realizable? 

If we start with the graph G given on the left in Figure 4, and assume that 

three triangular parts are three 1-toroids T9 shown in Figure 3, then connections 

between them are such that all of them must have a common edge in the 

middle. That means, there are no holes in the center, which would be expected 

based on the graph G. Of course, that means that here we don‟t have „cycle of 

cycles‟. Instead of the graph G we shall construct new graph Ggiven on the 

right in Figure 4. Such construction is possible for each given graph G in the 

following way. 
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Figure 4. The Graphs G and G  of 4-Toroid  

 
 

To given an arbitrary graph G, corresponding graph Gwill be formed by 

splitting each edge of G and adding a new node between splitted parts. On the 

figures of the given examples, the new nodes will be marked black, while the 

old ones will be marked gray. Each of the graphs G  formed in this way can 

serve as a connecting graph for a certain polyhedron P .  

Each of the black nodes of G  represent polyhedra of type Π in P , while 

each of the gray nodes ν of G  represent polyhedra of type Vk, k  3, where k is 

the number of edges from ν. If for some node holds k = 2, we can take 

tetrahedron in appropriate place, i.e. we shall take V3. If 1 2, , , kA A A are 

vertices in the basis of Vk and V is the apex, then contact faces of Vk, k  3 and 

neighbour polyhedra of type Π would be 1i iA A V , {1, , 1}i k  , 1kA AV . In 

the case k = 2, the contact faces will be 1 2A A V  and 2 3A A V . In doing so, either 

polyheda Π or Vk can be slightly deformated, if would be necessary. 

In this construction inserted prisms Π allow the pyramids Vk to be far 

enough apart to form a handle.  

As before, Π has 6 vertices and it is 3-triangulable with 3 tetrahedra, while 

Vk has k+1 vertex and it is 3-triangulable with k − 2 tetrahedra. Counting the 

vertices of P , it is suffices to take into consideration only the vertices of the 

pyramids of type Vk, because all the vertices of prisms Π belong to some of the 

contact faces. 

So, in this example, with graph G  given in the right part of Figure 4, 

appropriate polyhedron Pconsists of 9 tetrahedra V3 and 12 prisms Π. It really 

have hole in the middle, which means that p = 4. Number of the vertices of P  

is 9 4 36  , while the number of tetrahedra in 3-triangulation is 

9 1 12 3 45    . The estimated minimal number of tetrahedra according to the 

Theorem 3 is reached, because there min 3 3 36 9 45T n      . 

 

Example 2 

 

Another question is: if the graph G is the skeleton of some simple polyhedron 

whether is it right to consider G as a “planar” or as a “spherical” one? In the Figure 

5 it is given the graph G  of the graph G which is skeleton of tetrahedron. It is 

also marked how to cut appropriate polyhedron P  to determine how many 

handles it has. As the Figure 5 shows, after 3 cutting of P , the graph G  remains 
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without cycles, i.e. it is tree. This means that P  has 3 handles. Therefore it is 

right to consider the graphs G and G  as a “planar” and not to take into account 

“outer face” which surrounds these graphs. 

 

Figure 5. Tetrahedron as a Graph Gof 3-Toroid  

1 2

3
 

 

As in the graph G  the number of edges from each node is equal to 3, 

particles of P  are 4 tetrahedra V3 and 6 prisms Π. So, P  has 4 4 16   vertices 

and 4 1 6 3 22     tetrahedra in (minimal) 3-triangulation. That is in accordance 

with the statement of Theorem 3 where for a 3-toroid the minimal number of 

tetrahedra is min 3 2T n   , in our case 16 6 22  . 

 

Example 3 

 

It is obvious that a polyhedron P  can be determined in a similar way to 

any graph G which is the skeleton of a simple polyhedron π. Denote resp. with 

f, e and ν the number of faces, edges and vertices (nodes) of π, with n the 

number of vertices of P  and with T the number of tetrahedra in 3-triangulation 

of P . As in the previous case, the “outer face” is not related to some of the 

handles of P , i.e. the number of handles of P is p = f − 1. The number n is 

sum of the vertices of ki
V , {1, , }i  , for all grey nodes of G . That means 

( 1) 2ii
n k e v    , because the sum of the edges from all nodes of π is 

equal to 2e. Similarly ( 2) 3 5 2ii
T k e e v     , as a sum of the tetrahedra 

in 3-triangulations of all ki
V  and of all Π. By the Theorem 3 the minimal 

estimated value of tetrahedra is 2 3( 2)T e f    . Since according to Euler‟s 

theorem holds f − 2 = e − ν the minimal value of T in this way is also equal to 

5e − 2ν.  

If graph G is one of the Platonic bodies, we can also construct appropriate 

polyhedron P  by the described method. After the tetrahedron for which the 

results are given in the previous example, the next Platonic body is cube 

(hexahedron) with ν = 8, e = 12 and f = 6. For the corresponding polyhedron P , p 

= 5, number of vertices is 2 12 8 32n      and 5 12 2 8 44T      . If G is 

octahedron with ν = 6, e = 12, f = 8, then p = 7,  2 12 6 30n      and 

5 12 2 6 48T      . In the case of dodecahedron ν = 20, e = 30, f = 12, and so p 

= 11, 2 30 20 80n      and 5 30 2 20 110T      . Finally, if G is icosahedron, 
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then ν = 12, e = 30, f = 20, so that p = 19, 2 30 12 72n      and 

5 30 2 12 126T      . 

 

 

Conclusions 

 

The properties of 3-triangulations for a p-toroid when they exist are 

investigated. It was of interest the minimal required number of tetrahedra for 3-

triangulation of p-toroid. For these purpose, concepts were developed of 

piecewise convex polyhedra and of graph of connection. Here was considered 

method for constructing a p-toroid on the base of a given graph as its graph of 

connection. Especially, more characteristic examples of graphs and corresponding 

toroids were given. These examples also show that estimated minimal number 

of tetrahedra in 3-triangulation given in the statement can be reached. 

Introduced method of constructing p-toroid on the base of a given graph gives 

us opportunity for easier investigating properties of p-toroids because of 

similarities of starting graph and resulting polyhedron, i.e. toroid. 
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