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ABSTRACT 
 

The aim of this paper is to solve integro partial differential equations (IPDEs) 

using artificial neural network through designing multi-layer feed forward Neural 

Network. A multi-layers design in the proposed method consists of a hidden layer 

having five hidden units with tanh (tansig) Transfer function used as each unit and 

one output unit with linear (purelin) transfer function in this design using 

Levenberg-Marquardt algorithm training. Moreover, examples on partial integro-

differential equations carried out to demonstrate the efficiency and accuracy of the 

introduced technique. 
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Introduction  

 

Finding the exact solutions of functional equations has attracted consideration 

of mathematician's interest in current years. Many issues in theoretical physics 

and different sciences lead to (IPDE). The solutions of this form of equations are 

regularly very complicated. For this cause in many cases, it is required to attain the 

approximate solutions. For instance, some integro-differential equations solution 

by  techniques such as Jacobi polynomials [1],  variation iteration [2], homotopy 

perturbation [3], Taylor [4], Legendre [5], Taylor-Lucas [6, 7], Laguerre 

Polynomial  [8,9], Dickson polynomial [10-11], Chelyshkov collection [12],  

Bessel method [13], Bernoulli [14], and also, B-Splines [15], backward 

substitution [16]. Technique of this approach uses an answer in the shape of an 

array that includes the fee of the answer at a chosen group of point, different use 

groundwork characteristic to represent the answer in analytic shape and seriously 

change the original problem commonly to a system of algebraic equation. 

These days there is a better approach of computing named Artificial 

Intelligence, which through distinctive strategies, is competent of managing the 

imprecisions and instabilities that show up when attempting to unravel issues  

related to the actual world presenting correct answer and are of simple  implement-

tation.  One of these strategies is recognized as Artificial Neural Networks (ANN).  

The goal is to learn about a new numerical approach primarily based on a 

neural network to resolve (IPDE) of the shape   

 

          

 
 

where,  is the unknown characteristic to be found,  is kernel and 

the characteristic  given smooth function.  

This paper is prepared as follows: the subsequent part defines and describes 

the shape of neural network; in part “Levenberg-Marquardt-Algorithm-Training 

(trainlm) [18]”, the Levenberg Algorithm derivation; description of important end 

result in part “Main Result”; in area “Illustrative Example”  is reported the 

numerical. 

 

 

Artificial Neural Network (Neuron Model) 

 

To begin with endeavors of building counterfeit neural systems (ANN) 

were spurred by the want to form models for common brains. The fundamental 

building piece of an (artificial) neural organization (ANN) is the neuron. A 

neuron may be a preparing unit which has a few (more often no more than one) 

inputs and as it were one yield. The shape or topology of neural network capability 

is the way of law of neuronal computational cell in the network. That is, how the 

nodes are linked and how the records are transmitted via the network. The 
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structure can be classified in phrases of three elements (Number of stages or 

layers, Connection sample and Information flow). 

In [17], (ANN) was characterized by:  

 

1- Strategy of associations between the neurons (named its design). 

2- Activation–function. 

3- Methods of determining the weights (named its training or algorithm).  

 

Figure 1. Neural Network Structure  

 
                          
 

Levenberg-Marquardt-Algorithm-Training (trainlm) [18] 

 

Training neural network is basically a nonlinear squares problem; so it can be 

the solution by using a several nonlinear least squares algorithms. One of them is 

Levenberg-Marquardt-Algorithm (LMA). We can consider (LMA) a mixture of 

the Gauss–Newton technique and steepest descent. 

In order to optimize LMA performance index, we assume that F(w) is a sum 

of squares function and we define it as, 

 

                 (2) 

 

where    includes  network's weight,    the desired value of 

the  output and the  design,   the exact value of the  output and the 

 design, K  the value of the network output, P the number of design and  N the 

Num. of the weights, respectively. Equation (2) may be has form: 

 

                           (3) 

 

where , is the learning error at output k 

when applied design  p and denoted by  
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  is the total error vector (for all design). From equation (3) the 

weights are calculated utilizing the taking after equation           
                     

(4) 

 

where  identification unit matrix,   is learning parameter and   Jacobin  

  of  out- put error of the neural network with   appreciate to  weights, 

respectively 

 

 

Main Result 

 

We illustrate how our method can be used to the approximate answer of the 

(IPDE) of the shape  

                

 
 

With initial conditions 

 

 
 

x, yϵ Iϵ R
2
,define the domain and  is the answer  to be computed. If 

 is trial answer with adjustable parameters p the problem is converted to 

discretize from:   

 

       (6) 

 

Within the our proposed approach,  the trial answer   employs a FFNN and 

the parameters p compare  to the bias and weight  of the neural structure, have 

shape 

   

 
 

where  input variable and i=1,2,…,N , N number of  input ,  weight of  

hidden  , output  layer corresponding ,  biases  of hidden  and output layer. 

 Is the output of a FFN with two enters unite for x, y and weights W. the 

error volume to be minimizes given by: 
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Illustrative Example 

 

To demonstrate the effectiveness of the suggested method (ANNM), we think 

about the following examples and we take a look at the accuracy of solutions using 

mean square error MSE. All programing was written in the Mat Lab to compute 

the results.  

 

Example 1 

 

     Consider the integro partial differential equation   

 

                            

  

where   

and 

 
 

 

Its solution is  

by applying suggested method Table 1 shows the exact, neural result, error, and 

men square error. 

 

Table 1. Exact, Neural and Accuracy of Solution Example (1)  
Х↓ Y Exact  Trainlm  Error =  

-1 -1 -5.0000000000000e+000 -4.9999990633737e+000 9.3662627165259e-007 

-0.8 -0.8 -4.8000000000000e+000 -4.7999967917592e+000 3.2082407797063e-006 

-0.6 -0.6 -4.6000000000000e+000 -4.5999985965971e+000 1.4034029245380e-006 

-0.4 -0.4 -4.4000000000000e+000 -4.4000005422921e+000 5.4229205126433e-007 

-0.2 -0.2 -4.2000000000000e+000 -4.2000012502414e+000 1.2502413957449e-006 

0.0 0.0 -4.0000000000000e+000 -4.0000008544533e+000 8.5445327346889e-007 

0.2 0.2 -3.8000000000000e+000 -3.8000002146470e+000 2.1464702992802e-007 

0.4 0.4 -3.6000000000000e+000 -3.6000002454182e+000 2.4541821730395e-007 

0.6 0.6 -3.4000000000000e+000 -3.4000012143223e+000 1.2143223222516e-006 

0.8 0.8 -3.2000000000000e+000 -3.2000018728234e+000 1.8728234487675e-006 

1 1 -3.0000000000000e+000 -2.9999983735407e+000 1.6264592845872e-006 

MSE 1.624801901002671e-011 
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Figure 4. a) Exact Solution                               b) Neural Solution        

 
 

Example 2 

 

Consider the (IPED)  

                                           

     

where   

    

 
  
whose solution is  

by applying suggested method Table 2 shows the exact, neural  result, error, and 

men square error. 

 

Table 2. Exact, Neural and Accuracy of Solution Example (2)  
Х↓ Y Exact  Trainlm  Error =  

-1 -1 0.0000000000000e+000 -6.7996736630160e-006 6.7996736630160e-006 

 -0.8 -0.8 0.0000000000000e+000 1.3898209798580e-006 1.3898209798597e-006 

 -0.6 -0.6 0.0000000000000e+000 4.7626288761649e-006 4.7626288761649e-006 

 -0.4 -0.4 0.0000000000000e+000 1.5584520696166e-006 1.5584520696027e-006 

 -0.2 -0.2 0.0000000000000e+000 -1.3898209798580e-006 1.3898209798597e-006 

 0.0 0.0 0.0000000000000e+000 -1.3825466493866e-006 1.3825466493866e-006 

 0.2 -1 1.9680000000000e+000 1.9680292288707e+000 2.9228870712217e-005 

 0.4 -0.8 1.0560000000000e+000 1.0560226797822e+000 2.2679782238022e-005 

 0.6 -0.6 4.3200000000000e-001 4.3197017676292e-001 2.9823237075899e-005 

0.8 -0.4 9.6000000000000e-002 9.6015058994091e-002 1.5058994091030e-005 

1 -0.2 4.8000000000000e-002 4.8020338870181e-002 2.0338870181005e-005 

MSE 5.652305785123967e-011 
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Figure 5. a) Exact Solution                               b) Neural Solution   
      
 
 
 
 
 
 
 
 
 
  
 
 

 Example 3 

 

     Consider the integro partial differential equation   

 

                                           

 

where  

                                                                              

                                   

 
  

whose solution is  

by applying suggested method Table 3 shows the exact, neural result, error, and 

men square error. 

 

Table 3. Exact, Neural and Accuracy of Solution Example (3)  
Х↓ Y Exact  Trainlm  Error =  

-1 -1 -2.2000000000000e+001 -2.1977824946347e+001 2.2175053652632e-002 

-0.8 -0.8 -1.2108800000000e+001 -1.2112684164983e+001 3.8841649829635e-003 

-0.6 -0.6 -5.7888000000000e+000 -5.7879891353203e+000 8.1086467965452e-004 

-0.4 -0.4 -2.1568000000000e+000 -2.1514644933911e+000 5.3355066088674e-003 

-0.2 -0.2 -4.4480000000000e-001 -4.4194407422071e-001 2.8559257792854e-003 

0.0 0.0 0.0000000000000e+000 -2.3838789132924e-003 2.3838789132924e-003 

0.2 0.2 -2.8480000000000e-001 -2.8935944882744e-001 4.5594488274398e-003 

0.4 0.4 -8.7680000000000e-001 -8.7876025943319e-001 1.9602594331924e-003 

0.6 0.6 -1.4688000000000e+000 -1.4673570619209e+000 1.4429380791070e-003 

0.8 0.8 -1.8688000000000e+000 -1.8699869398412e+000 1.1869398411688e-003 

1 1 -2.0000000000000e+000 -2.0022750055757e+000 2.2750055757020e-003 

MSE 2.1712e-004 
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Figure 6. a) Exact Solution                        b) Neural Solution        

 
 

Example 4 

 

Consider the ( IPDE)   

 

                                  

    where  

             ,   

 

whose solution is  

by applying suggested method Table 4 shows the exact, neural result, error, and 

men square error. 

 

Table 4. Exact, Neural and Accuracy of Solution Example (4)  
Х↓ Y Exact  Trainlm  Error =  

-2π -2 2.0000000000000e+000 1.9999986815427e+000 1.3184572857927e-006 

-3π/2 -1.55 2.2012500000000e+000 2.2012510375950e+000 1.0375949788255e-006 

-π -1.10 2.6050000000000e+000 2.6049936589026e+000 6.3410974000533e-006 

-π/2 -0.65 1.2112500000000e+000 1.2112498622264e+000 1.3777360297063e-007 

0 -0.20 2.0000000000000e-002 2.0005337744973e-002 5.3377449731329e-006 

π/2 0.25 1.0312500000000e+000 1.0312500444931e+000 4.4493079665031e-008 

π 0.70 2.2450000000000e+000 2.2449926060133e+000 7.3939867100137e-006 

3π/2 1.15 1.6612500000000e+000 1.6612549674107e+000 4.9674106916697e-006 

2π 1.60 1.2800000000000e+000 1.2799969496180e+000 3.0503819574701e-006 

2π 2 2.0000000000000e+000 1.9999986815427e+000 1.3184572857927e-006 

MSE 9.577414408279936e-011 
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Figure 7. a) Exact Solution                          b) Neural Solution        

 
 
 

Conclusion 

 

In this study, it is suggested a method based on the artificial neural network 

through design feed forward Neural Network. A design in our proposed method 

consists of a hidden layer with tanh (tansig). Transfer function and using 

Levenberg-Marquardt algorithm learning is used to fix some of nonlinear and 

linear (IPDE). The illustrative examples with the exceptional effects had 

been carried out to reveal the application of this method. The effects point out the 

proposed method that can be considered as the easy method and these are relevant 

to the numerical answer of this kind of equations. It is predicted that the neural 

network approach will be an effective tool for investigating approximate solutions 

and even analytic to nonlinear and linear practical equations depended on absolute 

error. For numerical functions the pc programmers have been written in Mat lap 

10a. 
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