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ABSTRACT 
 

Hard fault attack is a powerful kind of attack to stream cipher. The major idea 

is to simplify the stream cipher equations by injecting or creating some faults 

to reveal the hidden secret key of the encryption machine. In this paper we 

present a new and efficient hard fault attack on the Full version of the 

hardware-oriented synchronous stream cipher Trivium of the European project 

eSTREAM. This hard fault reset based attack has a complexity less than 

 and can be made whenever during the cipher stream generation by 

finding both the the 80-bit secret key and the 80-bit Initial Values. The main 

idea of this transient fault attack is to stick to a constant a particular register by 

targeting its reset wire and to make a cryptanalysis in order to recover the 

secret. This attack is actually better in terms of complexity, than the best 

known attacks. 

 

Keywords: Full trivium, cryptanalysis, fault attack, algebraic attack, 

complexity.  
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Introduction  

 

A stream cipher is a symmetric encryption algorithm which takes a stream of 

plaintext, a secret key and initial values as input and then generate a keystream 

used to encrypt the the plaintext. The secret key and initial values are of fixed 

length and used to initialize the inner state of keystream generator. In a 

synchronous stream cipher the keystream and the plaintext are independent. 

Trivium is a hardware-oriented synchronous stream cipher designed by C. De 

Cannière and B. Preneel [2, 3] in 2005 for the ECRYPT Stream Cipher Project, 

abbreviated eSTREAM [1] which is a multi-year effort to identify new stream 

ciphers potentially suitable for widespread adoption. Since 2004, no less than 34 

different stream cipher proposals were submitted in two kind of profile, software 

oriented and hardware oriented. Trivium has been accepted for the final portfolio 

of promising new stream ciphers with  other candidates among which Grain-v1 

and MICKEY-v2 in the same performance profile. Trivium has a simple and 

elegant structure composed of 3 non-linear feedback shift registers (NFSRs) and a 

linear output function. Its internal state is initialized with an 80-bit secret key and 

an 80-bit initial value then rotated over 1,152 clock cycles (called Full Trivium). 

Trivium has attracted a lot of interest ([4, 5, 10, 11, 12, 13, 16]) with several 

cryptanalysis on Full Trivium or on reduced version (number of initialization 

rounds, number of registers) and also with design improvements in terms of 

security ([20, 21]). Here we only briefly mention some particular classes of 

attacks. In [6] authors developed statistical tests to show statistical weaknesses of 

Trivium with up to 736 initialization rounds. In [7] combined statistical tests are 

used to built an attack on 672-initialization- rounds Trivium with complexity . 

In [8, 9] A related key differential attack is developed on Full Trivium with 

complexity . In [22] (then [23, 27]) an algebraic attack called Cube attack is 

applied on -initialization-rounds Trivium with complexity . An another 

powerful kind of attacks is the hard fault attack which is efficient to stream cipher 

to reveal the hidden secret key of the encryption machine. The idea is to inject or 

creat some soft faults (changing the values of some positions at some moment) or 

hard faults (setting the values of some positions permanently) to simplify the 

cipher system. The goal is to obtain a large number of low-degree equations of its 

initial state from a generated keystream vector. In [17] a soft fault analysis of 

Trivium is presented as a known-differential attack in which it makes use of the 

fault injection to obtain the state differential. In [18] same authors present a 

floating fault analysis of Trivium in which it makes use of the floating fault under 

two strong assumptions : the fault injection can be made for the state at a fixed 

time (especially at the initial time) and after it exactly one random bit is changed. 

In [14] an improvement of the floating fault attack is presented with two practical 

assumptions : the fault injection can be made for the state at a random time and the 

positions of the fault bits are from random one of 3 NFSRs, and from a random 

area within  neighboring bits. In [19] a hard fault analysis is presented for 

breaking block ciphers. In [15] the same kind of attack is applied to Trivium with 

different result cases. In the best case attacker can obtain all of the 80-bit secret 
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key with a probability not smaller than 0.2291 or 69 bits of the 80-bit secret key 

with a probability not smaller than 0.2396. Whereas most of these attacks are 

black box attacks and work under (weak, strong or practical) assumptions, the 

purpose of this paper is to present a new and efficient attack on the Full version of 

Trivium based on a particular kind of hard fault attack. This attack is a two-stage 

attack with an operational side where Trivium is initialized then used to generate 

keystream bits during which the reset is made at any time and an offensive side 

where the effect of the reset is exploited to obtain the secret key bits.This attack 

allows to find both the secret key bits and the Initial Values bits of the initial 

internal state of the Full Trivium. It’s complexity is less than . The contents 

of this paper are organized as follow. In the next Section, we give a complete 

description of Full Trivium. In Section Hard Fault Model, we describe the hard 

fault model used for this attack. In Section The Attack, we present this new and 

efficient attack emphasizing its different phases and its computational aspect. In 

Section The Complexity, we explain the calculation of its complexity and its 

improvement using a wise internal bit structure. In Section Proposed 

Countermeasures, we propose some countermeasures to face this kind of attack. 

 

 

Description of Trivium 

 

The hardware-oriented synchronous stream cipher Trivium has a simple 

and elegant structure composed by combined shift registers with and and or 

logic gates shown in Figure 1. Trivium is designed to generate up to  bits of 

keystream from an internal state of 288 bits loaded with an 80-bit secret key 

and an 80-bit initial value (IV) with 1,152 clock cycles for the Full version sum 

up in Table 1. 

 

Table 1. Trivium Parameters 

 
 

Figure 1. Internal Structure of Trivium 
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It consists of an iterative process, that after been initialized, extracts the 

values of 15 specific state bits and uses them both to update 3 bits of the state 

and to compute 1 bit of the keystream. The state bits are then rotated, and the 

process is repeated. The process consists of two phases: an initialization phase 

and a generation phase. We have chosen to present Trivium in a chronological 

operational way while it is usually presented in the counter way. 

The initialization internal state phase load the 80-bit secret key denoted by 

, the 80-bit IV denoted by  and 3 bits to 1 into the 

288-bit internal state denoted by  according to Table 2. 

 

Table 2. Secret Key and IV Loading of Trivium 

 
 

Then the state is rotated over 4 Full cycles that is  clock 

cycles relatively to the Initialization pseudo-code of Table 3. The generation 

keystream phase operates exactly the same as the previous phase except that it 

generates keystream bits denoted by  ( ) relatively to the 

Generation pseudo-code of Table 4. 

 

Table 3. Initialization Pseudo-Code Equations 

 
 

Table 4. Generation Pseudo-Code Equations  
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Hard Fault Model 

 

The fault effect on a circuit has to be clearly modeled for it to be useful for 

cryptanalysis. Two criteria can be exhibited in order to classify a fault: the 

introduction difficulty and the repetitively. The easiest fault is to perturb the 

circuit on several clock cycles. A more powerful fault is to choose a cryptographic 

object such as a register and to randomly modify it or to stick it to a constant 

value (resetting it for example). The register size depends on the technology 

targeted but also the capability of the attacker to localize in the space the 

sensitive logic. The attack presented in this paper lies within the scope of this 

kind of powerful fault. The main idea is to stick to a constant a register by 

targeting its reset wire but not the register itself (Figure 2). In this paper, we 

interest in the case of transient fault which need a cryptanalysis in order to 

recover a secret. This attack is a hard fault reset based attack in which the reset 

action can be made whenever during the cipher stream generation. This attack 

exploits the 80-bit initial value (IV) which is used to load freely the internal 

state of Trivium. The attack consists in resetting these IV bits register after the 

initialization phase of Trivium and whenever during the generation phase of 

the cipher stream. This hard fault attack does not rest on any particular 

assumption, excepted to have an encryption machine equipped with Trivium, 

and it works on a public (e.g., free, accessible) area of the internal state of 

Trivium and it does not give to the opponent the control of the reset time. This 

is a realistic attack which can be built using laser for example. 

 

Figure 2. Fault Effect on a Register by Targeting the Reset Wire 

 
 

 

The Attack 
 

This attack focus on Full Trivium and manage to obtain both the -bit 

secret key and the 80-bit IV. Equations of Table 4 show that generated 

keystream bits can be expressed in terms of polynomial functions of internal 

state bits. Unfortunately their lengths increase exponentially according to the 

number of rounds and their degrees become very high. The main idea of this 

attack is to reset the IV-bit register by targetting its reset wire whenever during 

the cipher stream generation and keep the generated keystream bits. The 

interest of this reset action is that the degree of these polynomial functions is 

kept low. 

 

Description of the Attack 

 

In order to avoid any possible confusion, the notations used in this section 
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are the following. The Internal State of Full Trivium at time  is noted  and 

its 288 internal bits  while the first one are simply noted . 

This attack has three distinct phases counter numbered to distinguish the 

operational aspect (dashed way in Figure 2) of the attack to the offensive one 

(continuous way in Figure 2). The first phase denoted by Phase 3 with two 

steps, Step 1 and Step 2, is a preparation part. The second phase denoted by 

Phase 2 is typically the reset part. The last phase denoted by Phase 1 is a 

particular iteration part. The general description of the attack is shown in 

Figure 3. 

The operational aspect of the attack is the following. In Step 1 of Phase 3 

we start with the initial internal state  filled with the 80-bit secret key, the 

-bit IV according to the initial load of Table 2. After 1,152 initialization 

rounds we obtain the first internal state  used to generate the keystream. In 

Step 2 of Phase 3 we generate  bits of keystream from this state . 

The parameter  is a natural integer uncontrolled by the attacker (pointing out 

the fact that this attack can be made whenever during the cipher stream 

generation). We obtain the second internal state . The last 84 bits of the 

keystream are noted . In Phase 2 we apply the reset action to the 80-

bit IV positions  of the internal state  and obtain the third internal 

state  to generate one keystream bit. In Phase 1 we repeat this procedure 436 

times with the new obtained internal state . That is, one keystream bit is 

generated from the internal state  then the 80-bit IV positions of the internal 

state  are reseted and so on. We finish with the last internal state  and note 

 the 436 bits of the obtained keystream. 

The offensive aspect of the attack is the following. We start with Phase 1 

and find all the 288-bit internal state  from the last 436-bit generated 

keystream . We go on with Phase 2 and determine all the 288-bit 

internal state  from the last 84-bit generated keystream . We achieve 

the attack with Phase 3 by counter round Trivium from the 288-bit internal 

state  to the entire initial internal state . In this way, we have managed to 

guess both the -bit secret key and the 80-bit Initial Values of the Full 

Trivium. 

We now describe in detail each phase of this attack relatively to the 

offensive way.  
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Figure 3. Complete Scheme Attack on Full Trivium  

 
Phase 1 

 

In this first phase, the goal is to find all the 288 bits  of the 

internal state  from the last 436 bits  of generated keystream. 

 

The Linear System 

 

The last 436-bit generated keystream  could be expressed in 

terms of polynomial functions of the 288 bits  of the internal state . The 

main interest of the reset action made during Phase 2 is that the degree of these 

polynomials will be kept low. In a first time, we keep only polynomials for 

which their degree is less or equal to two. Then we consider all binomial of 

type  like variables similarly as the . We obtain an linear system in 

which we add the condition that all equations have to be linearly independent 

in . After deleting all unused variables we obtain an linear system of 257 

equations with 319 unknowns.  
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 (1) 

 

 Where  and  are the column vectors  

 

 

 

 ] 

 

 

 

 and  (binary  matrix).  

 

The Reorganization of the Matrix  

 

There are 111 variables in  that can be expressed as the product of two 

other variables. 

We reorganize the matrix  into two parts. We choose in  the bits 

 from which we obtain directly the bits . 

Then we have to calculate the bits  and the other products. We 

reorganize the columns of  and therefore the vector  in order to have the 

assumption bits and their products on the right part of  and the unknown bits 

on the left part of . We note  and  the 

obtained arranged matrix and vector.  

 

 (2) 

 

Where  is the column vector  

 

 

 
  

 

and  (binary  matrix).  

 

The Triangulation of the Matrix  

 

Similarly to the Gaussian elimination method we find a square and 

invertible binary matrix  such that  

 

 (3) 
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Where  with  an upper triangular matrix of 

rank .  

As there are many  on the diagonal we find almost unknown left bits 

. 

 

The Final Linear System 

 

We calculate  with  a binary vector of length 258 

( ) and write obtained equations from (3) beginning with the 

last lines. We consider the  line . If there is an  on the diagonal ( which 

is always true excepted for the three bits  and some other variables 

like ) we get out the variable and obtain a linear equation of type  

 

 (4) 

 

where  is a linear function. In the counter case, we can always either 

exploit the equation to get out an unknown variable or use this equation as a 

test. If the test is true we go on solving the system else we stop the calculus as 

there is no solution for these taken  on hypothesis. Therefore, we can 

express bits  in term of bits  which allows us to 

reduce the number of hypothesis variables to . We have added 

two more conditions by taking some  which are polynomial of degree greater 

than two in order to obtain at least the same number of conditions than 

assumption bits. 

 

Particular Case of  

 

There is no equation from (3) that allow to determine the bits . 

But these bits are used only after all tests in the system from (3). Therefore, it’s 

possible to not consider them as the bits  taking on hypothesis 

and fix them if we are sure that bits  are good and that only bits 

 remain to determine. The system is shown on Table 5. 
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Table 5. Phase 2 - Particular Case of  

 
 

The test condition of the second part of the system are derived from the 

polynomial  of degree greater than two which have not been satisfied during 

the construction of the matrix  and the tests on  which are common 

with the Phase 2 of the attack. 

 

Solving the System 

 

All we have to do is to solve the system for all the possible binary 54-tuple 

. If all test have been verified during the solution of the system 

then assumption bits  are right. We have found the entire internal 

state . Else, the solution of the system stops at the first false test condition. 

 

Phase 2 

 

We have determined all the 288 bits  of the internal state . In 

this second phase, the goal is to find all the 288 bits  of the internal 

state  from the last 84 bits  of generated keystream. 

 

The  Bits 

 

Finding the 288 bits  of the internal state  is equivalent to 

determine the 80 bits of IV which have been reseted at the beginning of Phase 

2. We use the 84 bits  of the obtained keystream before the reset. 

We counter write Trivium generation equations and write the  in terms of 

internal state bits of . But as the size of these obtained equations increase 

exponentially and their degree goes up linearly it is hard full to write them or 
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simplify them after 20 counter rounds. Fortunately the last  have the following 

form. 

 

  

  

  

  

  

  

 

Where  is a polynomial function . If we know bits  and  ( it 

means bits  ) we can solve the system. For  to 

 we can determine  with  counter 

rounds iteration of Trivium from the internal state  in which we add the bits 

 and  of the internal state . Therefore we can 

evaluate the bits  of the internal state . We repeat 69 times this procedure 

and obtain all  bits  of the internal state  from the internal 

state  and the bits . 

 

  

  

  

  

 

The Internal State  

 

To find the bits  we proceed as the following. 

  

We assume the bits .  

We calculate the bits  from the bits  by the 

previous method. We will have the internal state  if the previous 

assume bits are good.  

We verify that we obtain the bits  by counter round the 

previous state from 70 to 84 rounds. If it’s the case we have find the 

internal state  else we have to change the assume bits of the first step 

and replay the procedure.  

 

To verify the 11 assume bits  with the 15 bits  of 

keystream is typically an empirical result. Some experimental tests have shown 

us that if we take less than 11 bits we could find several states  from bits  
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and from . We don’t prove this result as bits  are polynomial 

functions of bits of  for which the degree is around 70. 

We have guessed the internal state  during Phase 1 then the internal 

state  in Phase 2, we now have all the necessary information to determine 

for example the keystream bits generated before the reset by counter rounding 

Trivium. As the main goal of this paper is to attack Trivium, it means guess 

both the secret key bits and the IV bits, we go on with the last phase. 

 

1. Phase 3 

 

We have guessed all the 288 bits  of the internal state . In 

this last phase, it remains to find all the  bits  of the first 

internal state . 

We counter round Trivium (Table 6) from the 288-bit internal state  

until all the bits  are equal to  and the three bits 

 are equal to  (  counter rounds in total). At 

the end we obtain both the 80-bit secret key and the 80-bit Initial Values of the 

Full Trivium. 

  

Table 6. Phase 3 - Pseudo-Code 

 
  

 

The Complexity 

 

In Phase 1 we have to test all the possible binary 54-tuple  

of the system done by (4). With an optimized implementation using 64-bit type 

structure in which we fix the values of  relatively to Table 7 in 

order to obtain all the possible 6-tuple bitwise these 6 variables. Therefore, 

testing all the 54-tuple  is equivalent to test all the possible -

tuple . Finally, Phase 1 has a maximal 

complexity equal to  (with a complexity mean equal to ). We have to try 
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out all the possible 48-tuple  in the worst case.  

 

Table 7. Choices of   

 
 

Phase 2 has a maximal complexity equal to  (with a complexity mean 

equal to ). We have to try out all the possible -tuple  in 

the worst case which represents only 2,048 cases to test.  

Phase 3 has a complexity equal to  which could appear very high if we 

build our attack with a large number of generated keystream bits. But as the 

maximal keystream length of Trivium is  then the maximal complexity of 

this phase is  in the worst case.  

The three phases of our attack are totally independent and are executed 

sequentially and only once. Therefore the complexity  of the entire attack is 

the sum of the complexity of each of its phases: . We 

assume that  which means that we build our attack after generating  

bits of keystream. This assumption is highly credible relatively to this quantity 

of generated bits (  terabytes). Therefore we can establish the complexity of 

the complete attack.  

 

 
 

 

Proposed Countermeasures 

 

We have shown that Trivium is weak under hard fault attack. A hardware 

countermeasure could help the encryption machine equipped with Trivium to 

avoid and/or detect faults. This attack targets the reset wire of the 80-bit initial 

value (IV) register in order to stick it to a constant. A suitable countermeasure 

should be an efficient protection with light detectors, all over the reset wire 

(high cost) or around the targeted register (low cost) in order to increase the 

introduction difficulty and to make impossible the repetitively. This protection 

could be active and react to the reset fault by sticking the secret key bits 

register to a constant, loosing definitively its original value (Figure 4). 
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Figure 4. Countermeasure on the Reset Wire    

   

 

Conclusion 

 

This paper presents a new and efficient attack on the hardware-oriented 

synchronous stream cipher Full Trivium. This original hard fault reset based 

attack allows to recover both the 80-bit secret key and the 80-bit IV with a 

complexity less than . The main idea of this attack is to exploit the 80-

bit initial value (IV) register by targeting its reset wire in order to stick it to a 

constant whenever during the cipher stream generation. Although this attack 

does not rest on any particular assumption, it needs to have a full version of 

Trivium implemented on an encryption machine. This is a realistic two-stage 

attack with an operational side and an offensive side which can be made in a 

hardware context. We have proposed a suitable countermeasure using an 

efficient active protection with light detectors to face this attack. An other 

effective idea of this attack is the particular bits structure which considers the 

product of two consecutive variables  like a simple variable  and the 

implementation improvement with a 64-bit type structure. As Trivium allows 

for highly parallelized implementations, this attack should succeed rapidly with 

a fast and powerful clustered computers architecture. A further research 

investigation could be to implement this attack on the escargot ASIC design 

[28] developed at the University of sheffield where development and 

performance assessment of suitable hardware designs which implement the 

candidate cipher primitives have been made. This attack seems to offer great 

investments opportunities and reinforce our motivation to go on with this new 

kind of approach. 
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