
ATINER CONFERENCE PRESENTATION SERIES No: MAT2020-0186

1

ATINER’s Conference Paper Proceedings Series

MAT2020-0186

Athens, 8 July 2020

New and Efficient Combined Hard Fault and Algebraic Attack

on Full Trivium

Patrice Parraud

Athens Institute for Education and Research

8 Valaoritou Street, Kolonaki, 10683 Athens, Greece

ATINER’s conference paper proceedings series are circulated to

promote dialogue among academic scholars. All papers of this

series have been blind reviewed and accepted for presentation at

one of ATINER’s annual conferences according to its acceptance

policies (http://www.atiner.gr/acceptance).

© All rights reserved by authors.

http://www.atiner.gr/
http://www.atiner.gr/acceptance

ATINER CONFERENCE PRESENTATION SERIES No: MAT2020-0186

2

ATINER’s Conference Paper Proceedings Series

MAT2020-0186

Athens, 8 July 2020

ISSN: 2529-167X

Patrice Parraud, Assistant Professor, Ecoles de Saint-Cyr Coëtquidan, France

New and Efficient Combined Hard Fault and Algebraic Attack

on Full Trivium

ABSTRACT

Hard fault attack is a powerful kind of attack to stream cipher. The major idea

is to simplify the stream cipher equations by injecting or creating some faults

to reveal the hidden secret key of the encryption machine. In this paper we

present a new and efficient hard fault attack on the Full version of the

hardware-oriented synchronous stream cipher Trivium of the European project

eSTREAM. This hard fault reset based attack has a complexity less than

 and can be made whenever during the cipher stream generation by

finding both the the 80-bit secret key and the 80-bit Initial Values. The main

idea of this transient fault attack is to stick to a constant a particular register by

targeting its reset wire and to make a cryptanalysis in order to recover the

secret. This attack is actually better in terms of complexity, than the best

known attacks.

Keywords: Full trivium, cryptanalysis, fault attack, algebraic attack,

complexity.

ATINER CONFERENCE PRESENTATION SERIES No: MAT2020-0186

3

Introduction

A stream cipher is a symmetric encryption algorithm which takes a stream of

plaintext, a secret key and initial values as input and then generate a keystream

used to encrypt the the plaintext. The secret key and initial values are of fixed

length and used to initialize the inner state of keystream generator. In a

synchronous stream cipher the keystream and the plaintext are independent.

Trivium is a hardware-oriented synchronous stream cipher designed by C. De

Cannière and B. Preneel [2, 3] in 2005 for the ECRYPT Stream Cipher Project,

abbreviated eSTREAM [1] which is a multi-year effort to identify new stream

ciphers potentially suitable for widespread adoption. Since 2004, no less than 34

different stream cipher proposals were submitted in two kind of profile, software

oriented and hardware oriented. Trivium has been accepted for the final portfolio

of promising new stream ciphers with other candidates among which Grain-v1

and MICKEY-v2 in the same performance profile. Trivium has a simple and

elegant structure composed of 3 non-linear feedback shift registers (NFSRs) and a

linear output function. Its internal state is initialized with an 80-bit secret key and

an 80-bit initial value then rotated over 1,152 clock cycles (called Full Trivium).

Trivium has attracted a lot of interest ([4, 5, 10, 11, 12, 13, 16]) with several

cryptanalysis on Full Trivium or on reduced version (number of initialization

rounds, number of registers) and also with design improvements in terms of

security ([20, 21]). Here we only briefly mention some particular classes of

attacks. In [6] authors developed statistical tests to show statistical weaknesses of

Trivium with up to 736 initialization rounds. In [7] combined statistical tests are

used to built an attack on 672-initialization- rounds Trivium with complexity .

In [8, 9] A related key differential attack is developed on Full Trivium with

complexity . In [22] (then [23, 27]) an algebraic attack called Cube attack is

applied on -initialization-rounds Trivium with complexity . An another

powerful kind of attacks is the hard fault attack which is efficient to stream cipher

to reveal the hidden secret key of the encryption machine. The idea is to inject or

creat some soft faults (changing the values of some positions at some moment) or

hard faults (setting the values of some positions permanently) to simplify the

cipher system. The goal is to obtain a large number of low-degree equations of its

initial state from a generated keystream vector. In [17] a soft fault analysis of

Trivium is presented as a known-differential attack in which it makes use of the

fault injection to obtain the state differential. In [18] same authors present a

floating fault analysis of Trivium in which it makes use of the floating fault under

two strong assumptions : the fault injection can be made for the state at a fixed

time (especially at the initial time) and after it exactly one random bit is changed.

In [14] an improvement of the floating fault attack is presented with two practical

assumptions : the fault injection can be made for the state at a random time and the

positions of the fault bits are from random one of 3 NFSRs, and from a random

area within neighboring bits. In [19] a hard fault analysis is presented for

breaking block ciphers. In [15] the same kind of attack is applied to Trivium with

different result cases. In the best case attacker can obtain all of the 80-bit secret

ATINER CONFERENCE PRESENTATION SERIES No: MAT2020-0186

4

key with a probability not smaller than 0.2291 or 69 bits of the 80-bit secret key

with a probability not smaller than 0.2396. Whereas most of these attacks are

black box attacks and work under (weak, strong or practical) assumptions, the

purpose of this paper is to present a new and efficient attack on the Full version of

Trivium based on a particular kind of hard fault attack. This attack is a two-stage

attack with an operational side where Trivium is initialized then used to generate

keystream bits during which the reset is made at any time and an offensive side

where the effect of the reset is exploited to obtain the secret key bits.This attack

allows to find both the secret key bits and the Initial Values bits of the initial

internal state of the Full Trivium. It’s complexity is less than . The contents

of this paper are organized as follow. In the next Section, we give a complete

description of Full Trivium. In Section Hard Fault Model, we describe the hard

fault model used for this attack. In Section The Attack, we present this new and

efficient attack emphasizing its different phases and its computational aspect. In

Section The Complexity, we explain the calculation of its complexity and its

improvement using a wise internal bit structure. In Section Proposed

Countermeasures, we propose some countermeasures to face this kind of attack.

Description of Trivium

The hardware-oriented synchronous stream cipher Trivium has a simple

and elegant structure composed by combined shift registers with and and or

logic gates shown in Figure 1. Trivium is designed to generate up to bits of

keystream from an internal state of 288 bits loaded with an 80-bit secret key

and an 80-bit initial value (IV) with 1,152 clock cycles for the Full version sum

up in Table 1.

Table 1. Trivium Parameters

Figure 1. Internal Structure of Trivium

ATINER CONFERENCE PRESENTATION SERIES No: MAT2020-0186

5

It consists of an iterative process, that after been initialized, extracts the

values of 15 specific state bits and uses them both to update 3 bits of the state

and to compute 1 bit of the keystream. The state bits are then rotated, and the

process is repeated. The process consists of two phases: an initialization phase

and a generation phase. We have chosen to present Trivium in a chronological

operational way while it is usually presented in the counter way.

The initialization internal state phase load the 80-bit secret key denoted by

, the 80-bit IV denoted by and 3 bits to 1 into the

288-bit internal state denoted by according to Table 2.

Table 2. Secret Key and IV Loading of Trivium

Then the state is rotated over 4 Full cycles that is clock

cycles relatively to the Initialization pseudo-code of Table 3. The generation

keystream phase operates exactly the same as the previous phase except that it

generates keystream bits denoted by () relatively to the

Generation pseudo-code of Table 4.

Table 3. Initialization Pseudo-Code Equations

Table 4. Generation Pseudo-Code Equations

ATINER CONFERENCE PRESENTATION SERIES No: MAT2020-0186

6

Hard Fault Model

The fault effect on a circuit has to be clearly modeled for it to be useful for

cryptanalysis. Two criteria can be exhibited in order to classify a fault: the

introduction difficulty and the repetitively. The easiest fault is to perturb the

circuit on several clock cycles. A more powerful fault is to choose a cryptographic

object such as a register and to randomly modify it or to stick it to a constant

value (resetting it for example). The register size depends on the technology

targeted but also the capability of the attacker to localize in the space the

sensitive logic. The attack presented in this paper lies within the scope of this

kind of powerful fault. The main idea is to stick to a constant a register by

targeting its reset wire but not the register itself (Figure 2). In this paper, we

interest in the case of transient fault which need a cryptanalysis in order to

recover a secret. This attack is a hard fault reset based attack in which the reset

action can be made whenever during the cipher stream generation. This attack

exploits the 80-bit initial value (IV) which is used to load freely the internal

state of Trivium. The attack consists in resetting these IV bits register after the

initialization phase of Trivium and whenever during the generation phase of

the cipher stream. This hard fault attack does not rest on any particular

assumption, excepted to have an encryption machine equipped with Trivium,

and it works on a public (e.g., free, accessible) area of the internal state of

Trivium and it does not give to the opponent the control of the reset time. This

is a realistic attack which can be built using laser for example.

Figure 2. Fault Effect on a Register by Targeting the Reset Wire

The Attack

This attack focus on Full Trivium and manage to obtain both the -bit

secret key and the 80-bit IV. Equations of Table 4 show that generated

keystream bits can be expressed in terms of polynomial functions of internal

state bits. Unfortunately their lengths increase exponentially according to the

number of rounds and their degrees become very high. The main idea of this

attack is to reset the IV-bit register by targetting its reset wire whenever during

the cipher stream generation and keep the generated keystream bits. The

interest of this reset action is that the degree of these polynomial functions is

kept low.

Description of the Attack

In order to avoid any possible confusion, the notations used in this section

ATINER CONFERENCE PRESENTATION SERIES No: MAT2020-0186

7

are the following. The Internal State of Full Trivium at time is noted and

its 288 internal bits while the first one are simply noted .

This attack has three distinct phases counter numbered to distinguish the

operational aspect (dashed way in Figure 2) of the attack to the offensive one

(continuous way in Figure 2). The first phase denoted by Phase 3 with two

steps, Step 1 and Step 2, is a preparation part. The second phase denoted by

Phase 2 is typically the reset part. The last phase denoted by Phase 1 is a

particular iteration part. The general description of the attack is shown in

Figure 3.

The operational aspect of the attack is the following. In Step 1 of Phase 3

we start with the initial internal state filled with the 80-bit secret key, the

-bit IV according to the initial load of Table 2. After 1,152 initialization

rounds we obtain the first internal state used to generate the keystream. In

Step 2 of Phase 3 we generate bits of keystream from this state .

The parameter is a natural integer uncontrolled by the attacker (pointing out

the fact that this attack can be made whenever during the cipher stream

generation). We obtain the second internal state . The last 84 bits of the

keystream are noted . In Phase 2 we apply the reset action to the 80-

bit IV positions of the internal state and obtain the third internal

state to generate one keystream bit. In Phase 1 we repeat this procedure 436

times with the new obtained internal state . That is, one keystream bit is

generated from the internal state then the 80-bit IV positions of the internal

state are reseted and so on. We finish with the last internal state and note

 the 436 bits of the obtained keystream.

The offensive aspect of the attack is the following. We start with Phase 1

and find all the 288-bit internal state from the last 436-bit generated

keystream . We go on with Phase 2 and determine all the 288-bit

internal state from the last 84-bit generated keystream . We achieve

the attack with Phase 3 by counter round Trivium from the 288-bit internal

state to the entire initial internal state . In this way, we have managed to

guess both the -bit secret key and the 80-bit Initial Values of the Full

Trivium.

We now describe in detail each phase of this attack relatively to the

offensive way.

ATINER CONFERENCE PRESENTATION SERIES No: MAT2020-0186

8

Figure 3. Complete Scheme Attack on Full Trivium

Phase 1

In this first phase, the goal is to find all the 288 bits of the

internal state from the last 436 bits of generated keystream.

The Linear System

The last 436-bit generated keystream could be expressed in

terms of polynomial functions of the 288 bits of the internal state . The

main interest of the reset action made during Phase 2 is that the degree of these

polynomials will be kept low. In a first time, we keep only polynomials for

which their degree is less or equal to two. Then we consider all binomial of

type like variables similarly as the . We obtain an linear system in

which we add the condition that all equations have to be linearly independent

in . After deleting all unused variables we obtain an linear system of 257

equations with 319 unknowns.

ATINER CONFERENCE PRESENTATION SERIES No: MAT2020-0186

9

 (1)

 Where and are the column vectors

]

 and (binary matrix).

The Reorganization of the Matrix

There are 111 variables in that can be expressed as the product of two

other variables.

We reorganize the matrix into two parts. We choose in the bits

 from which we obtain directly the bits .

Then we have to calculate the bits and the other products. We

reorganize the columns of and therefore the vector in order to have the

assumption bits and their products on the right part of and the unknown bits

on the left part of . We note and the

obtained arranged matrix and vector.

 (2)

Where is the column vector

and (binary matrix).

The Triangulation of the Matrix

Similarly to the Gaussian elimination method we find a square and

invertible binary matrix such that

 (3)

ATINER CONFERENCE PRESENTATION SERIES No: MAT2020-0186

10

Where with an upper triangular matrix of

rank .

As there are many on the diagonal we find almost unknown left bits

.

The Final Linear System

We calculate with a binary vector of length 258

() and write obtained equations from (3) beginning with the

last lines. We consider the line . If there is an on the diagonal (which

is always true excepted for the three bits and some other variables

like) we get out the variable and obtain a linear equation of type

 (4)

where is a linear function. In the counter case, we can always either

exploit the equation to get out an unknown variable or use this equation as a

test. If the test is true we go on solving the system else we stop the calculus as

there is no solution for these taken on hypothesis. Therefore, we can

express bits in term of bits which allows us to

reduce the number of hypothesis variables to . We have added

two more conditions by taking some which are polynomial of degree greater

than two in order to obtain at least the same number of conditions than

assumption bits.

Particular Case of

There is no equation from (3) that allow to determine the bits .

But these bits are used only after all tests in the system from (3). Therefore, it’s

possible to not consider them as the bits taking on hypothesis

and fix them if we are sure that bits are good and that only bits

 remain to determine. The system is shown on Table 5.

ATINER CONFERENCE PRESENTATION SERIES No: MAT2020-0186

11

Table 5. Phase 2 - Particular Case of

The test condition of the second part of the system are derived from the

polynomial of degree greater than two which have not been satisfied during

the construction of the matrix and the tests on which are common

with the Phase 2 of the attack.

Solving the System

All we have to do is to solve the system for all the possible binary 54-tuple

. If all test have been verified during the solution of the system

then assumption bits are right. We have found the entire internal

state . Else, the solution of the system stops at the first false test condition.

Phase 2

We have determined all the 288 bits of the internal state . In

this second phase, the goal is to find all the 288 bits of the internal

state from the last 84 bits of generated keystream.

The Bits

Finding the 288 bits of the internal state is equivalent to

determine the 80 bits of IV which have been reseted at the beginning of Phase

2. We use the 84 bits of the obtained keystream before the reset.

We counter write Trivium generation equations and write the in terms of

internal state bits of . But as the size of these obtained equations increase

exponentially and their degree goes up linearly it is hard full to write them or

ATINER CONFERENCE PRESENTATION SERIES No: MAT2020-0186

12

simplify them after 20 counter rounds. Fortunately the last have the following

form.

Where is a polynomial function . If we know bits and (it

means bits) we can solve the system. For to

 we can determine with counter

rounds iteration of Trivium from the internal state in which we add the bits

 and of the internal state . Therefore we can

evaluate the bits of the internal state . We repeat 69 times this procedure

and obtain all bits of the internal state from the internal

state and the bits .

The Internal State

To find the bits we proceed as the following.

We assume the bits .

We calculate the bits from the bits by the

previous method. We will have the internal state if the previous

assume bits are good.

We verify that we obtain the bits by counter round the

previous state from 70 to 84 rounds. If it’s the case we have find the

internal state else we have to change the assume bits of the first step

and replay the procedure.

To verify the 11 assume bits with the 15 bits of

keystream is typically an empirical result. Some experimental tests have shown

us that if we take less than 11 bits we could find several states from bits

ATINER CONFERENCE PRESENTATION SERIES No: MAT2020-0186

13

and from . We don’t prove this result as bits are polynomial

functions of bits of for which the degree is around 70.

We have guessed the internal state during Phase 1 then the internal

state in Phase 2, we now have all the necessary information to determine

for example the keystream bits generated before the reset by counter rounding

Trivium. As the main goal of this paper is to attack Trivium, it means guess

both the secret key bits and the IV bits, we go on with the last phase.

1. Phase 3

We have guessed all the 288 bits of the internal state . In

this last phase, it remains to find all the bits of the first

internal state .

We counter round Trivium (Table 6) from the 288-bit internal state

until all the bits are equal to and the three bits

 are equal to (counter rounds in total). At

the end we obtain both the 80-bit secret key and the 80-bit Initial Values of the

Full Trivium.

Table 6. Phase 3 - Pseudo-Code

The Complexity

In Phase 1 we have to test all the possible binary 54-tuple

of the system done by (4). With an optimized implementation using 64-bit type

structure in which we fix the values of relatively to Table 7 in

order to obtain all the possible 6-tuple bitwise these 6 variables. Therefore,

testing all the 54-tuple is equivalent to test all the possible -

tuple . Finally, Phase 1 has a maximal

complexity equal to (with a complexity mean equal to). We have to try

ATINER CONFERENCE PRESENTATION SERIES No: MAT2020-0186

14

out all the possible 48-tuple in the worst case.

Table 7. Choices of

Phase 2 has a maximal complexity equal to (with a complexity mean

equal to). We have to try out all the possible -tuple in

the worst case which represents only 2,048 cases to test.

Phase 3 has a complexity equal to which could appear very high if we

build our attack with a large number of generated keystream bits. But as the

maximal keystream length of Trivium is then the maximal complexity of

this phase is in the worst case.

The three phases of our attack are totally independent and are executed

sequentially and only once. Therefore the complexity of the entire attack is

the sum of the complexity of each of its phases: . We

assume that which means that we build our attack after generating

bits of keystream. This assumption is highly credible relatively to this quantity

of generated bits (terabytes). Therefore we can establish the complexity of

the complete attack.

Proposed Countermeasures

We have shown that Trivium is weak under hard fault attack. A hardware

countermeasure could help the encryption machine equipped with Trivium to

avoid and/or detect faults. This attack targets the reset wire of the 80-bit initial

value (IV) register in order to stick it to a constant. A suitable countermeasure

should be an efficient protection with light detectors, all over the reset wire

(high cost) or around the targeted register (low cost) in order to increase the

introduction difficulty and to make impossible the repetitively. This protection

could be active and react to the reset fault by sticking the secret key bits

register to a constant, loosing definitively its original value (Figure 4).

ATINER CONFERENCE PRESENTATION SERIES No: MAT2020-0186

15

Figure 4. Countermeasure on the Reset Wire

Conclusion

This paper presents a new and efficient attack on the hardware-oriented

synchronous stream cipher Full Trivium. This original hard fault reset based

attack allows to recover both the 80-bit secret key and the 80-bit IV with a

complexity less than . The main idea of this attack is to exploit the 80-

bit initial value (IV) register by targeting its reset wire in order to stick it to a

constant whenever during the cipher stream generation. Although this attack

does not rest on any particular assumption, it needs to have a full version of

Trivium implemented on an encryption machine. This is a realistic two-stage

attack with an operational side and an offensive side which can be made in a

hardware context. We have proposed a suitable countermeasure using an

efficient active protection with light detectors to face this attack. An other

effective idea of this attack is the particular bits structure which considers the

product of two consecutive variables like a simple variable and the

implementation improvement with a 64-bit type structure. As Trivium allows

for highly parallelized implementations, this attack should succeed rapidly with

a fast and powerful clustered computers architecture. A further research

investigation could be to implement this attack on the escargot ASIC design

[28] developed at the University of sheffield where development and

performance assessment of suitable hardware designs which implement the

candidate cipher primitives have been made. This attack seems to offer great

investments opportunities and reinforce our motivation to go on with this new

kind of approach.

References

[1] eSTREAM Project, http://www.ecrypt.eu.org/stream/

[2] C. De Cannière, B. Preneel, A stream cipher construction inspired by block cipher

design principles, http://www.ecrypt.eu.org/stream/triviump3.html, (2006).

[3] C. De Cannière, B. Preneel, Trivium Specs., http://www.ecrypt.eu.org/stream/triviu

mp3.html, (2005).

[4] H. Raddum, Cryptanalytic Results on Trivium, eprint.iacr.org/2006/039, (2006).

[5] S. Babbage, Some thoughts on Trivium, eprint.iacr.org/2007/007, (2007).

[6] H. Englund, T. Johansson, M. S. Turan, A Framework for Chosen IV Statistical

ATINER CONFERENCE PRESENTATION SERIES No: MAT2020-0186

16

Analysis of Stream Ciphers, INDOCRYPT, (2007).

[7] S. Fischer, S. Khazaei, W. Meier, Chosen IV Statistical Analysis for Key Recovery

Attack on Stream ciphers, AFRICACRYPT, (2008).

[8] E. Pasalic, Transforming chosen IV attack into a key differential attack : how to break

Trivium and similar designs, eprint.iacr.org/2008/443, (2008).

[9] E. Pasalic, Key differentiation attacks on stream cipher, eprint.iacr.org/2008/443,

(2008).

[10] A. Maximov, A. Biryukov, Two Trivial Attacks on Trivium, ecrypt.eu.org/stream/

triviump3.html, (2007).

[11] C. McDonald, C. Charnes, J. Pieprzyk, Attacking Bivium with MiniSAT, ecrypt.eu.

org/stream//triviump3.html, (2007).

[12] M. S. Turan, O. Kara, Linear Approximations for 2-round Trivium, ecrypt.eu.org/

stream/triviump3.html, (2007).

[13] M. Vielhaber, Breaking ONE.FIVIUM by AIDA, an Algebraic IV Differential

Attack, eprint.iacr.org/2007/413, (2007).

[14] H. Yupu, G. Juntao, L. Qing, Floating Fault Analysis of Trivium under Weaker

Assumptions, eprint.iacr.org/2009/169, (2009).

[15] Y. Hu, F. Zhang, Y. Zhang, Hard Fault Analysis of Trivium, eprint.iacr.org/2009/

333, (2009).

[16] D. Priemuth-Schmid, A. Biryukov, Slide Pairs in Salsa20 and Trivium, eprint.iacr.

org/2008/405, (2008).

[17] M. Hojsik, B. Rudolf, Differential Fault Analysis of Trivium, LNCS 5086, FSE 2008,

pp. 158-172, Springer/Heidelberg (2008).

[18] M. Hojsik, B. Rudolf, Floating Fault Analysis of Trivium, LNCS 5365, IndoCrypt

2008, pp. 229-250, Springer/Heidelberg (2008).

[19] E. Biham, A. Shamir, Differential Fault Analysis of Secret Key Cryptosystems,

LNCS 1294, Advance in Cryptology-Crypto 97, pp. 513-525, Springer/Heidelberg

(1997).

[20] M. Afzal, A. Masood, Modification in the Design of Trivium to Increase its Security

Level, eprint.iacr.org/2009/250, (2009).

[21] Y. Tian, G. Chen, J. Li, On the Design of Trivium, eprint.iacr.org/2009/431, (2009).

[22] I. Dinur, A. Shamir, Cube Attacks on Tweakable Black Box Polynomials, eprint.iacr.

org/2008/385, (2008).

[23] S.S. Bedi, N.R. Pillai, Cube Attacks on Trivium, eprint.iacr.org/2009/015, (2009).

[24] J.P. Aumasson, I. Dinur, W. Meier, A. Shamir, Cube Testers and Key Recovery

Attacks on Reduced-Round MD6 and Trivium, LNCS 5665, FSE 2009, pp. 1-22,

Springer/Heidelberg (2009).

[25] I. Dinur, A. Shamir, Slide Channel Cube Attacks on Block Ciphers,

eprint.iacr.org/20 09/127, (2009).

[26] A. Zhang, C.W. Lim, K. Khoo, Extensions of the Cube Attack, eprint.iacr.org/20

09/049, (2009).

[27] A. Zhang, C.W. Lim, K. Khoo, W. Lei, J. Pieprzyk, Extensions of the Cube Attack

based on Low Annihilators, eprint.iacr.org/2009/049, (2009).

[28] eSCARGO project : Sheffield University, http://www.sheffield.ac.uk/eee/escargot/.

