Imaging Lymphoma: $[^{18}\text{F}]\text{Fludarabine PET/CT from bench to bedside.}$

Narinée Hovhannisyan, Stéphane Guillouet, Martine Dhilly, Louisa Barré
Positron Emission Tomography (PET)

Cyclotron

Radiopharmaceutical

PET camera
Development of a novel PET radiopharmaceutical

the steps..........

Radiochemistry

\[\downarrow \]

Animal models \[\xrightarrow{\text{Proof of Concept}} \]

Clinical trial
Preparation of PET radiopharmaceutical
(for clinical trial)

1. Radiochemistry → Radiolabeling → Purification → Automation
2. Submission/approval dossier for IMPD to ANSM
3. Quality control procedure

Quality control procedure
- **Physicochemical tests**: Radionuclidic purity - Radiochemical purity and identity - Chemical purity - Residual solvents - Specific activity - pH - Stability.
- **Biological tests**: Bacterial endotoxin test - Membrane filter integrity - Sterility.

Toxicity
Radiation dose
Lymphoma: cancers of the lymphatic system

Classification

- non-Hodgkin lymphoma (NHL)
- Hodgkin lymphoma (HL)

B-cell lineage → Indolent lymphoma (low risk)
Aggressive lymphoma (intermediate risk)
Very Aggressive lymphoma (high risk)

T-cell lineage

Diagnosis: 74,340 people in US
12%HL
88%NHL

NHL: 5th most common cancer in the US
Conventional imaging techniques for lymphoma evaluation

CT scanning:
- High sensitivity and specificity in pretreatment staging
- Low specificity in response assessment following therapy

67Gallium scanning:
- Spatial resolution, specificity, sensitivity were low
- Time involved in performing the scans (7-14 days after 67Gallium injection)

18F-FDG-PET
- High sensitivity and specificity in Hodgkin’s Lymphoma (HL)
- and some indolent and aggressive Non-Hodgkin’s Lymphoma (NHL)
Application of PET(/CT) in lymphoma

- Pretreatment staging
- Restaging
- Therapy monitoring
- Post-therapy surveillance
- Assessment of transformation

Current limitations of \(^{18}\text{F}\)FDG PET scans

- Normal physiologic uptake in brain, heart, digestive tract
- Variability of \(^{18}\text{F}\)FDG avidity among histologies of lymphoma
- False positive: inflammation
- False negative: scanner resolution

Needs of more specific radiopharmaceutical
Fludara I.V (fludarabine phosphate)

An adenine nucleoside analogue

Significant antitumor efficacy in:

- Chronic Lymphocytic Leukemia (CLL)

Fludarabine is used in various combinations in

- Indolent non-Hodgkin’s Lymphoma (NHL)
Mechanism of action of Fludara I.V (2F-ara-AMP)

Plasma

- Fludarabine monophosphate
- 2F-ara-AMP

Dephosphorylation

Cell

- Deoxycytidine kinase
- 2F-ara-AMP

Nucleoside transporter

Apoptosis

- 2F-ara-A
- 2F-ara-ATP
- ARN
- ADN
Radiochemistry
Synthesis of labelling precursor 4

\[\text{2} \xrightarrow{i: \text{PhCOCl, Pyr, reflux}} \text{3} \xrightarrow{ii: \text{TBAN/TFAA/CH}_2\text{Cl}_2} \text{4}\]

93% 56%
Radiosynthesis of $[^{18}F]$Fludarabine ($[^{18}F]1$)

i: 4, CH$_3$CN, 55-60°C, 7min
ii: MeOH/NH$_3$H$_2$O, 70°C, 20min

$[^{18}F]1$ $[^{18}F]5$

TLC

HPLC

$[^{18}F]$Fludarabine

$[^{18}F]$Fludarabine

$[^{18}F]5$

$[^{18}F]^{-}$
Animal model

Proof of concept
Materials and Methods

Animal models

a) SWISS mice CD1 (controls),
b) SCID mice CB17/ICR-Prkdc/Crl (displaying lymphoid depletion)
c) SCID mice 6 week old bearing RL7 human xenografted lymphomas.

Anesthetized animals: Isoflurane (2%) in O₂:N₂0 (33:67%)

Injection: 5-11MBq of $[^{18}F]$-Fludarabine
7-11MBq of $[^{18}F]$-FDG

Micro-PET studies

Siemens INVEON
Acquisition 60min $[^{18}F]$-Fludarabine
Acquisition 90min $[^{18}F]$-FDG

Post imaging dissection
Biodistribution - Dosimetry

biodistribution
dosimetry
In murines
Specificity

Robustness during therapy

Evaluation of the specificity of $[^{18}F]$fludarabine PET/CT in a xenograft model of follicular lymphoma: comparison with $[^{18}F]$FDG and impact of rituximab therapy

Narineh Hovhannisyan1,2,3, Stéphane Guillot2,4, Fabien Filissoye1,5, Martine Dhilly1,2,3, Delphine Patin1,2,5, François Galateau1, Michel Leporrier1,2,3 and Louis Barel1,2,3

Promising approach for surveillance (detection of persistent viable lymphoid tissues) during or after treatment
Inflammation

Weaker $[^{18}F]$fludarabine uptake in inflammation

Comparative Analysis between $[^{18}F]$Fludarabine-PET and $[^{18}F]$FDG-PET in a Murine Model of Inflammation

Narine Hovhanessian,1,3 Martine Dhilly,3,4 Stéphane Guillonet,5,6,8 Michel Leporrier,5,6,8 and Louisa Barre5,6,8
Marked contrast between tumour / normal tissue

Considerable specificity
Pilot study • Caen 2014-2015
[¹⁸F]Fludarabine PET/CT
• 10 untreated patients (5 CLL; 5 NHL)
• **Injected Dose:** 4MBq/kg
• **PET/CT** (Discovery RV VCT 64, GEHealthcare)

Protocol

- **1st acquisition:** 0 - 10 min
- **2nd acquisition:** 15 - 25 min
- **3rd acquisition:** 30 - 50 min
- **4th acquisition:** 90 - 100 min
- **5th acquisition:** 180 - 190 min
- **6th acquisition:** 240 - 250 min
Tracer for lymphoma

$[^{18}F]Fludarabine : from bench to bedside$

Radiochemistry

Preclinical studies
Proof of concept

Clinical trial
First pilot study

Chronic Lymphocytic Leukemia

$[^{18}F]Fludarabine$

Cervical bilateral nodes

Axillary bilateral nodes

Spleen

Lumbar aortic bilateral nodes

Iliac bilateral nodes
Decay corrected anterior maximum-intensity projections (MIP) of PET with imaging intervals of 15-25, 30-50, 90-100, 180-190, 240-250 minutes after injection of 18F-Fludarabine in a CLL patient, displayed using the same color scale.
[18F]Fludarabine: from bench to bedside

- **Radiochemistry**
- **Preclinical studies**
 - Proof of concept
- **Clinical trial**
 - First pilot study

Chronic Lymphocytic Leukemia

- Cervical bilateral nodes
- Axillary bilateral nodes
- Spleen
- Lumbar aortic bilateral nodes
- Iliac bilateral nodes

Non-Hodgkin Lymphoma

- Cervical nodes

Before treatment
Tracers for lymphoma

$^{[18F]}$Fludarabine: from bench to bedside

Radiochemistry

Preclinical studies
Proof of concept

Clinical trial
First pilot study

Chronic Lymphocytic Leukemia

Non-Hodgkin Lymphoma

Before treatment
After treatment

ASH, Orlando, USA, 2015
Conclusion and prospects

✓ Marked contrast between tumor / normal tissue

✓ Proof of concept of specific uptake of the 18F-fludarabine within lymph nodes • CLL and NHL

Multicentric clinical trials
Laboratoire de développement méthodologiques en Tomographie par émission de positons
Centre Cyceron – CAEN - France
Cyceron imaging platform

Fusion of public bodies established in 1985
CEA, CNRS, INSERM, Université de Caen, CHU de Caen, GANIL, CLC Baclesse, Région Basse-Normandie
Cyceron imaging platform

Fusion of public bodies established in 1985
CEA, CNRS, INSERM, Université de Caen, CHU de Caen, GANIL, CLC Baclesse, Région Basse-Normandie

Missions

Imaging platform operation
➢ At molecular, cellular and integrative levels.

Research team hosting
➢ Labeled by national research bodies

Provision of services for outside teams
➢ Clinical research / enterprises
Laboratoire de Développements Méthodologiques en TEP