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ABSTRACT 
 

Teaching and learning in mathematics as well as research and construction of 

mathematical knowledge, has been the object of interest not only by educators and 

mathematicians but also, and especially, for philosophers. The present work is an 

investigation of the geometric notion of 'Riemann curvature tensor' analyzed from 

the theoretical-philosophical perspective of the Paradigm of Complexity, which 

offers us relevant epistemological principles that support our hypothesis that this 

notion should be conceived as a complex system and that its learning is achieved 

when you understand how it is generated and how it is built. This implies, in turn, 

that the teaching-learning processes must aim to learn to think complexly 

contextualizing knowledge. We will place emphasis on the transformative 

practical dimension of teaching that arises as a result of reflections on the teaching 

task itself in teacher training. We will begin with the presentation of some of the 

central notions of Complexity that will help us think about mathematical problems 

from this approach, a task that we will combine with an in-depth study of the 

Riemann curvature tensor; finally, we will culminate with a proposal whose 

objective is to adapt the ideas addressed to the field of teaching and learning 

geometry. 
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Introduction 

 

The Paradigm of Complexity or Complex Thought (CT) can be characterized 

as a theoretical-philosophical-epistemological approach committed to a vision of 

the world supported by the principles or macro-ideas that tries to overcome 

fragmentation between disciplines, generated by mechanistic conceptions and 

Positivists present in the tradition of Western thought. Its main representatives - 

which we will address in this text - are the French philosopher Edgar Morin, the 

Nobel Prize for Belgian nationalized Russian chemistry Ilya Prigogine and the 

Argentine epistemologist and meteorologist Rolando García (among other leading 

scientists and philosophers). 

From the etymological point of view the word complexity is of Latin origin, it 

comes from complectere whose plectere root means 'braid, link'; and so, 

complexus is „what is woven together‟. This implies conceiving the phenomena to 

be studied as complex entities, that is, formed by multiple and heterogeneous 

aspects - the threads of the tissue - related to each other. For example, if we 

analyze the human being in any of his behaviors, the hybridity of the aspects will 

be that he is a being constituted by physical, social, cultural, biological nature, etc., 

that is, its plot includes all the dimensions that defines it. 

These phenomena are technically called 'complex systems' (CS) and are 

considered as a complete organization of heterogeneous elements (natural, social, 

chemical, cultural, etc.) linked to each other by some relationship that defines the 

problem or object of study. In this dynamic process structure, its elements interact 

with each other and also with the elements that surround the problem-system, they 

are constituted as "open" systems, that is, permeable to changes in their 

environment. This emphasis placed on the link - and not on the elements - leads us 

to conceive that the rupture of this link is interpreted as mutilation, producing 

blindness in knowledge, as the main cause of the misunderstanding of phenomena. 

As García affirms “A CS is a representation of a cut of that reality, conceptualized 

as a complete organization, in which the elements are not 'separable' and, 

therefore, cannot be studied in isolation” (2006, p. 21) 

As we said, the CT includes several logical principles that are also principles 

of knowledge, of which, in the present analysis, we will be limited to two general 

and fundamental ideas to later incorporate other concepts implied by them since 

they will be necessary in our approach of the tensor of curvature. 

The first of these ideas can be synthesized as "the unity of the natural and the 

cultural." According to this approach there is a need for an articulation between 

knowledge and concepts that historically were separated and that now it is urgent 

to put them in dialogue, such as: science and philosophy, nature and spirit, reason 

and myth, necessity and chance, order and disorder, theory and practice, etc. Both 

in physical nature and in human beings, these aspects are linked in a fruitful bond. 

There is unity in diversity. 

The resistance to these dichotomous separations is explained by another 

fundamental idea where it is clearly appreciated that the antagonistic is not 

exclusive but complementary, where it is also appreciated that opposites are 

needed in that incessant game typical of both natural and social or cultural 
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processes. That second inclusive idea is the notion of „self-organization‟. It is the 

recursive process that is represented very well with the image of a whirlwind 

which is formed with the contest of opposite flows and where each moment of the 

whirlwind is product and producer, is effect and cause (as for example the process 

of human reproduction) in a continuous process becoming. 

Open complex systems are constantly exchanging energy, matter or 

information with the external environment; This exchange impacts its internal 

structure, which is sensitive to the environment, but does not lose its autonomy. 

While there is internal variability, as a whole it maintains a certain order, that is, 

that fluctuation and stability coexist. An example of such a system is the human 

body that as a structured totality is formed by cells, tissues, organs and systems, 

which interact with each other and at the same time absorb and dissipate the 

energy and matter of the context, which keep it alive to perform its functions. Both 

the external environment and the internal fluctuation behave with each other as 

antagonistic forces tending to generate ruptures so that if any disturbance extends 

the threshold of fluctuation then the system is unstructured and a new internal 

organization of its elements is generated with new relationships between they. 

These two processes of destructuring and restructuring - both synthesized in the 

notion of self-organization - show the non-linear evolution of certain structures. 

Rolando García points out in this regard that 

 
The evolution of such [complex] systems is not carried out through processes that are 

modified gradually and continuously, but proceeds by a succession of imbalances and 

reorganizations. Each restructuring leads to a period of relative dynamic equilibrium 

during which the system maintains its previous structures with fluctuations within 

certain limits (2000, p. 77). 

 

These restructuring are the result of transformations where chance and 

necessity are the two elements that cooperatively intervene - not exclusively - and 

which, in turn, make it possible to introduce the notion of probability. It was 

Prigogine who demonstrated that in natural systems "instability can only be 

incorporated at a statistical level" (1995); therefore, the evolution towards a new 

structure in complex systems does not occur either deterministically or randomly 

since there are always various possibilities as candidate structures to adapt to their 

environment, their environment, their context. There may be many structures 

adaptable to the environment, and this shows that flexibility is associated with 

novelty and the creation of new configurations. Given the possibilities present in 

the fluctuations, in the bifurcations, there is also the possibility of choice, the 

emergence of the novelty, of a new structure; novelty is possible in conditions of 

instability and conflict of forces. And this movement of self-organization is 

present in natural phenomena - like the classic phenomenon of thermal convection 

of „instability of Bénard‟ - and in social and cultural ones - like the process of 

knowledge construction. 

We are now able to think about our object of study, the Riemann curvature 

tensor, as a complex system. 
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The Complex Construction of the Curvature Tensor 

 

The idea of curvature contains in itself the multiplicity and diversity that 

knowledge presents at its different levels, and the tensor is a clear example of a 

complex system that has been constructed with successive structuring at its levels 

since its most remote beginnings in Euclid‟s time until today where this system 

acquires its most abstract formulation. In this sense, the notions of curvature and 

metrics are intertwined to produce a conception that transcends the precursor ideas 

but which in turn are contained in this emergent (the tensor). 

In the historical evolution, the concept of curvature is presented explicitly 

with the theory of curves and surfaces, whose development is largely due to 

Monge and Gauss. It is Riemann who defines in an abstract way curvature tensor 

based on Gauss‟s geometric work. The curvature is already tacitly present in 

Euclid's fifth postulate. This postulate was a cornerstone for the further 

development of geometry, so towards the end of the eighteenth century, it was 

believed that the fifth postulate could be deduced from the previous four, perhaps 

adding some additional condition. The search for such a demonstration, at the 

beginning of the nineteenth century, generated the appearance of works such as 

those of Lobachevsky and Bolyai who, independently, develop the hyperbolic 

geometry. Gauss argued that other geometries could exist satisfying the first four 

postulates, but not the fifth, although he published nothing about it. 

The concept of curvature, as we shall see, projects light on the question of the 

existence of non-Euclidean geometries. In the second half of the nineteenth 

century, the development of multilinear algebra made it possible to understand and 

formalize the curvature tensor. The curvature is present in the Riemann varieties, 

in the theory of relativity and in geometric structures such as symmetric and 

homogeneous spaces. To obtain a reasonable modeling of the world in which we 

live, it is not enough with linear models, it is necessary to introduce objects formed 

with higher order terms. The concept of curvature is precisely a second order 

entity, which arises naturally in the study of curves, surfaces and their 

generalizations. 

Curvature also plays a fundamental role, both in physics and in other 

experimental sciences. For example, the magnitude of the force required to move 

an object at constant speed is, according to Newton's laws, a constant multiple of 

the curvature of the trajectory; or the movement of a body in a gravitational field is 

determined, according to Einstein, by the curvature of spacetime. Morin's great 

contribution is to have managed to synthesize various trends in current science at a 

higher level of integration while respecting the specificity and achievements of 

each of them. In this sense we think that the concept of curvature tensor given by 

Riemann in his research plan “On the Hypotheses which lie at the Bases of 

Geometry” of 1854, meets this expectation. 

The CT explains this interdisciplinary integration in terms of the interactions 

that the CS - the tensor - has with its environment, overcoming the 

hyperspecialization that leads to the fragmentation and division of knowledge in 

watertight compartments, and thereby achieving a goal point of view that 

promotes communication, dialogue, the round trip of the productive circle between 
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inside and outside the frontiers of science. We will make an analysis in the sense 

of demonstrating the hypothesis stated above, about Riemann's research plan. 

According to Morin, a reform of thought is necessary whose task is not to 

accumulate knowledge in terms of systems and totality, as has been done, but in 

terms of organization and articulation, which leads not so much to fix the totality 

of knowledge in each discipline, but in crucial knowledge, strategic points, 

communication nodes, organizational articulations between disjoint orbits (1993, 

p. 19). 

Taking into account this premise, which reaffirms the dialogic communication 

and the fruitful and solidary exchange of concepts, we think that Riemann's 

research plan is an enlightening example in this regard because, as we will see 

there is, on the one hand, organizational articulation between disjointed orbits 

when in The Application to Space section of his research plan anticipates the bases 

of the theory of general relativity. In addition, he detected that discrete quantities 

would be required for the domain of small distances, that is, the need for quantum 

mechanics. This last observation that derives from Riemannian geometry puts us 

in the presence of crucial knowledge, a strategic inflection point, and a knot of 

communication between different disciplines such as mathematics and theoretical 

physics. 

 

 

The Concepts of Metric and Curvature 

 

This section is a preamble to the analysis of Riemann's work “On the 

Hypotheses which lie at the Bases of Geometry”. It is intended to provide the 

reader not familiar with the concepts of differential geometry of the elements that 

allow understanding the analysis of the work cited. The concepts of metric, 

curvature and curvature tensor of Riemann are approached intuitively and we 

minimizing technicalities. 

 

The Curvature in Curves and Surfaces 

 

If the movement of a particle (material point) in the plane or in the three-

dimensional space is considered and the position of said point is observed for each 

moment of time, a plane or space curve is obtained. The curves are one-

dimensional entities (manifols). The velocity of this point is the instantaneous 

variation rate with respect to the time of the position and it is described by a vector 

that is tangent to the curve. The curvature (which it is denoted by κ) at a given 

point measures the deviation experienced by the curve with respect to its tangent 

vector. This curvature is measured by a function that depends on the point namely  

the norm of acceleration (second order entity), can be positive or zero. The 

curvature is a geometric invariant of the curve, that is, it will be the same for 

corresponding points of congruent curves. Congruent curves are obtained by 

performing rigid movements (isometries) in the plane or space. 
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Figure 1. Curvature for a Curve
1
 

 
   

A surface is a two-dimensional object such as a sheet of metal (of course, this 

has a thickness, for our study we will assume that this thickness is null). If we 

consider the unfolded sheet, we are in the presence of a portion of the Euclidean 

plane, but when we submit it to non-reversible deformations appear a distortion 

that is measured precisely by the curvature. Now the curvature of the given point 

surface is the product of two numbers called principal curvatures, this product is 

called Gaussian curvature and is designated by . From an intuitive point of view, 

it can be said that the curvature of a surface at one point it measures its deviation 

from the plane tangent to the surface at that point. 

 

Figure 2. Curvature on a Surface 

 
 

The theory of surfaces of the Euclidean space has developed fundamentally 

throughout the eighteenth, nineteenth and first half of the twentieth centuries. It is 

noteworthy the contributions due to Euler, Monge and Dupin. Johann Carl 

Friedrich Gauss‟s article Disquisitiones generales circa superficies curvas 

appeared in 1827, was fundamental to lay the concept of space on a solid basis. It 

also introduces the notion of curvature of a surface at a point, which is an intrinsic 

concept. In this treatise the famous Gaussian Theorem (Egregium Theorem) 

                                                 
1
The graphics included in this work are taken from Do Carmo M. (2010). Differential 

Geometry of Curves and Surfaces. 
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appears that states: At one point on the surface, the curvature of Gauss is an 

isometric invariant. Informally, the theorem says that the Gaussian curvature of a 

surface can be determined entirely by measuring angles and distances on the 

surface itself, without referring to the particular way in which it curves within the 

three-dimensional Euclidean space. The theorem can be used to see that two 

surfaces are not isometric. For example there can be no isometry between the 

plane and the sphere, not even a portion of it. It is known that the Gaussian 

curvature of the sphere of radius r is,   while for the plane it is 

, if an isometry exists, the Gaussian curvature should be preserved. This 

says that any flat representation of the earth is necessarily distorted. 

 

Riemann Geometry 

 

In 1854 George Friedrich Bernhard Riemann generalizes Gauss‟s ideas to 

spaces of a dimension greater than three in the famous report “On the Hypotheses 

which lie at the Bases of Geometry” published posthumously. In this dissertation 

Riemann presents the concept of differentiable manifold as an n-dimensional set 

on which the calculations of the ordinary analysis can be performed; In this 

context, curves and surfaces are one-dimensional and two-dimensional varieties 

respectively. For Riemann, to give a geometry over a variety is to define a positive 

definite quadratic form in each of the tangent spaces. This definition of Riemann 

makes it possible to extend Gauss‟s work to a good extent. Being a generalization, 

the Riemann spaces of variable curvature comprise as particular cases the constant 

curvature spaces, which are those that historically gave rise to non-Euclidean 

geometries and Euclidean geometry. The properties of the curvature tensor are 

quite complicated; however, his main ideas are original and subtle. Riemann 

presents a broad generalization of all known geometries, both Euclidean and non-

Euclidean, in natural language and without  technicalities. This field is known 

today as Rimannian Geometry, and apart from its importance in pure mathematics, 

it proved to be the appropriate mathematical scaffolding for Einstein‟s theory of 

general relativity. The generalization given by Riemann, highlights two nuclear 

concepts that are the metric and the curvature of a manifold. 

 

Metric 

Let‟s see how the concept of metric given by Gauss generalizes. It is known 

that a surface that is in three-dimensional space can be expressed parametrically by 

three functions that depend on certain parameters u and v. A point on the surface is 

determined by three functions (called coordinate functions) , 

 and  the  and  parameters can be interpreted as 

coordinates of the surface points. The distance between two near points  

and  along the surface, is given by a quadratic differential form, 

namely: 

 



ATINER CONFERENCE PRESENTATION SERIES No: EDU2020-0206 

 

9 

where , , and  are certain functions of  and . This differential form allows 

calculating the length of curves on surfaces, finding the geodesic curves (the 

shortest ones) and calculating the Gaussian curvature of the surface at any point, 

all without reference to the ambient space. Riemann, generalized this by 

discarding the notion of ambient space and introducing the notion of continuous n 

- dimensional variety of points . A distance or metric ds between 

close points  and  is a quadratic 

differential formula: 

 

     (1) 

 

where the  are appropriate functions of Different systems of   

define different Riemannian geometries on the manifold. The metric thus defined 

makes it possible to measure the length between two points of a curve that rests on 

the manifold, the angle between curves and other geometric entities. In other 

words, the metric is what allows us to make geometry. 

 

Curvature 

Another concept analyzed by Riemann is the curvature for these manifolds 

and he investigated the special case of constant curvature. He introduced the 

concept of curvature tensor, which is reduced to Gaussian curvature for  and 

whose annulment proved necessary and sufficient for the given quadric metric to 

be equivalent to the Euclidean. From this point of view, the curvature tensor 

measures the deviation of the Riemannian geometry defined by the formula (1) 

with respect to the Euclidean geometry. The concept of Gaussian curvature of a 

surface extends to Riemann manifolds of a dimension greater than two in a natural 

way, since it is possible to consider the germ of the totally geodetic surface tangent 

at a point of manifold to the subspace of dimension two. The Gaussian curvature 

of said surface is defined as the sectional curvature of the plane at said point. In 

general, the curvature tensor of a Riemannian manifold depends on four 

arguments, while the sectional curvature only two. This result may seem strange, 

although it is now well known that in a Riemannian manifold the knowledge of 

sectional curvature at one point determines that of the curvature tensor. 

 

Non-Euclidean Geometries 

 

The historical development of the curvature was influenced by the fifth 

postulate of the Elements of Euclid whose statement is: 

 
"In a plane, given a line and a point not on it, at most one line parallel to the given 

line can be drawn through the point." 

 

Line segments in Euclidean geometry have the property of making the 

minimum distance between two given points. 
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If the case of a sphere is considered, it is known that the shortest distance 

between two points on the sphere is the meridian arcs, which can be considered 

straight in the sphere. When considering a line on the sphere and a point outside it, 

there is no other that passes through that point and does not cut to the first. That is 

to say that in this case, the fifth postulate is not verified. In the spheres the sum of 

the internal angles of a triangle is greater than two right angles (unlike a flat 

triangle whose sum of interior angles is two right), the excess is due to its 

curvature. 

 

Figure 3. Angles in the Sphere 

 
 

It is possible to define Hyperbolic Geometry as one that satisfies all 

trigonometric formulas of a spherical geometry in which the radius is pure 

imaginary. Minding discovered the pseudosphere (surface of revolution of the 

tractrix) that, locally, has the properties of the hyperbolic plane. In the case of the 

pseudosphere the sum of the internal angles of a triangle is less than two right 

angles. Riemann proves how the sphere can be assigned a quadratic form with 

coefficients that are functions of the coordinates and with positive curvature. He 

explicitly states that the geometry that everyone had sought, hyperbolic geometry, 

is defined by the same quadratic shape with negative curvature. The interpretation 

could hardly be simpler. In the case of Euclidean geometry, as already said, the 

curvature is zero.  

 

Figure 4. Angles in the Pseudosphere 
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On the Hypotheses which Lie at the Bases of Geometry 

 

Uber die Hypothesen, welche der Geometrie zu Grunde liegen (On the 

Hypotheses which lie at the Bases of Geometry) is the title of the habilitation 

dissertation presented to the Faculty of Philosophy of the University of Göttingen 

published after the death of its author in 1854. In this conference (Riemann) 

despite not having a detailed definition of n-dimensional manifold  (in the sense 

that we know it today), he introduced the concept of Riemannian metric, explains 

the curvature tensor, sectional curvature, and offers some relations between the 

metric and the curvature. In his presentation, he gives his research plan, which 

consists of the following sections: 

 

I) Notion of an n-ply extended magnitude. 

II) Measure-relations of which a manifoldness of n dimensions is capable on 

the assumption that lines have a length independent of position, and 

consequently that every line may be measured by every other. 

III) Application to Space. 

 

In the section Notion of an n-ply extended magnitude of his work, Riemann 

introduces the concept he calls extended n-dimensional manifold. According to the 

above, an n-dimensional manifold is a set in which, every point is completely 

determined by n numbers, this notion is local, that is, it is valid in the 

neighborhoodof the point in question. The following paragraphs are from the 

section cited and in which the definition of the concept of variety is addressed. 

 
If in the case of a notion whose specialisations form a continuous manifoldness, one 

passes from a certain specialisation in a definite way to another, the specialisations 

passed over form a simply extended manifoldness, whose true character is that in it a 

continuous progress from a point is possible only on two sides, forwards or 

backwards. If one now supposes that this manifoldness in its turn passes over into 

another entirely different, and again in a definite way, namely so that each point 

passes over into a definite point of the other, then all the specialisations so obtained 

form a doubly extended manifoldness. In a similar manner one obtains a triply 

extended manifoldness, if one imagines a doubly extended one passing over in a 

definite way to another entirely different; and it is easy to see how this construction 

may be continued. If one regards the variable object instead of the determinable 

notion of it, this construction may be described as a composition of a variability 

of n + 1 dimensions out of a variability of n dimensions and a variability of one 

dimension. 

In other words, let us take a continuous function of position within the given 

manifoldness, which, moreover, is not constant throughout any part of that 

manifoldness. Every system of points where the function has a constant value, forms 

then a continuous manifoldness of fewer dimensions than the given one. These 

manifoldnesses pass over continuously into one another as the function changes; we 

may therefore assume that out of one of them the others proceed, and speaking 

generally this may occur in such a way that each point passes over into a definite 

point of the other; the cases of exception (the study of which is important) may here 

be left unconsidered. Hereby the determination of position in the given manifoldness 
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is reduced to a determination of quantity and to a determination of position in a 

manifoldness of less dimensions. It is now easy to show that this manifoldness has n - 

1 dimensions when the given manifold is n-ply extended. By repeating then this 

operation n times, the determination of position in an n-ply extended manifoldness is 

reduced to n determinations of quantity, and therefore the determination of position in 

a given manifoldness is reduced to a finite number of determinations of quantity when 

this is possible.
2
 

 

In these paragraphs, Riemann‟s concern for defining the concept of manifold 

is perceived, this is motivated by the fact that he wanted to define an appropriate 

model for the universe. In Riemann‟s conception the universe is not contained 

within another ambient space. It is noted that with the notion of extended n- 

manifold the concepts of lines and surfaces are generalized, these entities under the 

new look are 1 and 2 - dimensional manifolds respectively. Let us observe that the 

effort to conceive an idea of space that allows us to have a more delimited 

conception of our universe is the pulsor that puts the holgrammatic operator in 

synergy because, in the generalization that Riemann calls extended n- manifold, it 

is clear that not only the parts are within the whole, but the whole is within the 

parts. Each extended n- manifold can be considered as a whole that contains 

smaller n- manifolds. The hologrammatic principle, which explains the 

relationships between varieties, is one of the most fundamental ideas of the CT 

because it is closely linked to the idea of organization. The hologram being a 

physical image of an object “each point of the hologram object is memorized 

throughout the hologram, and each point of the hologram contains the presence of 

the object in its entirety, or almost” (Morin, 2010, p. 112). An interesting aspect 

that shows this principle is the ability of the parties to regenerate the whole, which 

is more clearly visualized in the organization of living beings whose cells, being 

controlled by the whole organism, in turn contain the information of the whole be 

the one they are able to produce again. 

 

The Definition of Metric 

 

Having defined the concept of extended n- manifold, Riemann considers the 

problem of establishing a metric on the manifold. In section two of his work he 

presents the definition of metric. Although it did not have the notion of space 

tangent to the manifold as we know it today; Riemann makes the basic and crucial 

observation that to find the length of a curve on a variety, it is enough to know 

how to calculate the norm of the velocity vectors at each point of the curve. 

Therefore, if a norm is defined (and therefore an internal product), in each tangent 

space, the length of any curve can be calculated. Riemann assumes that this norm 

varies continuously with respect to points in the manifold, and also assumes that 

this norm comes from an internal product as the following paragraphs in section 

two: 

                                                 
2
All citations in this section are the English traslation that appear in: W. K. Clifford, “On the 

Hypotheses lie at the Bases of Geometry. Nature. 8 (183–184), 14–17, 36, 37, unless otherwise 

specified. 
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The hypothesis which first presents itself, and which I shall here develop, is that 

according to which the length of lines is independent of their position, and 

consequently every line is measurable by means of every other. Position-fixing being 

reduced to quantity-fixings, and the position of a point in the n-dimensioned 

manifoldness being consequently expressed by means 

of n variables , the determination of a line comes to the giving of 

these quantities as functions of one variable. The problem consists then in 

establishing a mathematical expression for the length of a line, and to this end we 

must consider the quantities  as expressible in terms of certain units. I shall treat this 

problem only under certain restrictions, and I shall confine myself in the first place to 

lines in which the ratios of the increments  of the respective variables vary 

continuously. We may then conceive these lines broken up into elements, within 

which the ratios of the quantities  may be regarded as constant; and the problem is 

then reduced to establishing for each point a general expression for the linear 

element starting from that point, an expression which will thus contain the 

quantities  and the quantities . I shall suppose, secondly, that the length of the 

linear element, to the first order, is unaltered when all the points of this element 

undergo the same infinitesimal displacement, which implies at the same time that if 

all the quantities are increased in the same ratio, the linear element will vary also 

in the same ratio. On these suppositions, the linear element may be any homogeneous 

function of the first degree of the quantities  which is unchanged when we change 

the signs of all the  and in which the arbitrary constants are continuous functions 

of the quantities  

This differential expression, of the second order remains constant when ds remains 

constant, and increases in the duplicate ratio when the dx, and therefore also ds, 

increase in the same ratio; it must therefore be ds
2
 multiplied by a constant, and 

consequently  is the square root of an always positive integral homogeneous 

function of the second order of the quantities , in which the coefficients are 

continuous functions of the quantities . For Space, when the position of points is 

expressed by rectilinear co-ordinates,  Space is therefore included in this 

simplest case. 

I restrict myself, therefore, to those manifoldnesses in which the line element is 

expressed as the square root of a quadric differential expression. 

Manifoldnesses in which, as in the Plane and in Space, the line-element may be 

reduced to the form , are therefore only a particular case of the manifoldnesses 

to be here investigated; they require a special name, and therefore these 

manifoldnesses in which the square of the line-element may be expressed as the sum 

of the squares of complete differentials I will call flat.  

 

In the last paragraph Riemann makes us observe that the degree of generality 

of the metrics with which the Riemannian manifold can be provided. The concept 

of curvature also appears implicitly in this paragraph because as we will see the fl 

at spaces are those with zero curvature. The dual interplay of metric and nodal 

point curvature in Riemann‟s theory makes its appearance. The author realizes that 

in order to continue studying the properties of the metric it is necessary to limit the 

flexibility of the coordinate change, and take some coordinates that are constructed 
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in a geometric way, enter the geodesic coordinates as explained in the following 

paragraph: 

 
For this purpose let us imagine that from any given point the system of shortest limes 

going out from it is constructed; the position of an arbitrary point may then be 

determined by the initial direction of the geodesic in which it lies, and by its distance 

measured along that line from the origin. 

 

The Notion of Curvature 

 

In the following paragraphs in section two, Riemann explains the notion of 

curvature using Gauss‟s Theorem Egregium. Here he exposes the geometric 

meaning of the curvature of a manifold. A precise definition of the curvature 

occurred years later, it was necessary to introduce the notion of tensor, forged 

mainly by Ricci. 

 
In the idea of surfaces, together with the intrinsic measure-relations in which only the 

length of lines on the surfaces is considered, there is always mixed up the position of 

points lying out of the surface. We may, however, abstract from external relations if 

we consider such deformations as leave unaltered the length of lines - i.e., if we 

regard the surface as bent in any way without stretching, and treat all surfaces so 

related to each other as equivalent. Thus, for example, any cylindrical or conical 

surface counts as equivalent to a plane, since it may be made out of one by mere 

bending, in which the intrinsic measure-relations remain, and all theorems about a 

plane - therefore the whole of planimetry - retain their validity. On the other hand 

they count as essentially different from the sphere, which cannot be changed into a 

plane without stretching. According to our previous investigation the intrinsic 

measure-relations of a twofold extent in which the line-element may be expressed as 

the square root of a quadric differential, which is the case with surfaces, are 

characterised by the total curvature. Now this quantity in the case of surfaces is 

capable of a visible interpretation, viz., it is the product of the two curvatures of the 

surface, or multiplied by the area of a small geodesic triangle, it is equal to the 

spherical excess of the same. The first definition assumes the proposition that the 

product of the two radii of curvature is unaltered by mere bending; the second, that in 

the same place the area of a small triangle is proportional to its spherical excess. To 

give an intelligible meaning to the curvature of an n-fold extent at a given point and 

in a given surface-direction through it, we must start from the fact that a geodesic 

proceeding from a point is entirely determined when its initial direction is given. 

According to this we obtain a determinate surface if we prolong all the geodesics 

proceeding from the given point and lying initially in the given surface-direction; this 

surface has at the given point a definite curvature, which is also the curvature of 

the n-fold continuum at the given point in the given surface-direction is given. 

 

Today the curvature that Riemann defines is known as the sectional curvature, 

and this one assigns to each two-dimensional subspace of the tangent space a real 

number. It should be noted that instead of talking about the curvature in the surface 

direction, we talk about the sectional curvature in a two-dimensional subspace. As 

we had pointed out, the curvature tensor of a Riemannian manifold depends on 

four arguments, while the sectional curvature only two. And we had also said that, 
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in a Riemannian manifold, knowledge of sectional curvature at one point 

determines the curvature tensor. This leads us to think about how the 

organizational recursion operator acts on the idea of Riemann just mentioned. 

Here it is observed how the knowledge of the parties is related to the knowledge of 

the whole, how new qualities arise that did not exist in the isolated parts, that is, 

they are the organizational emergencies that are not deduced from the previous 

elements. In the process of recursive organization, the phenomena - complex 

systems - are explained by the tetragram proposed by Morin: order/disorder/ 

interaction/organization, where there is no primacy of one over others but they are 

interdependent (2008, p. 150). As we said at the beginning, each restructuring is 

the evolution towards a new structure that turns out to be the realization of one of 

the multiple probabilities that nonlinear causality offers the system. This new 

organization appears with original, unpublished characteristics, because changes 

are generated in the relations between the elements and therefore it turns out to be 

a novelty, an emergency, a creation. The fact that there are several possibilities 

shows the flexibility of the structures in the face of fluctuations and it is these 

bifurcations that allow a choice.  

This flexibility in the field of mathematical ideas has also taken the name of 

polysemy or ambiguity. Emily Grosholz proposes that polysemy does not generate 

confusion but creates the conditions for the generation of new ideas by stating that 

"when different representations are juxtaposed and superimposed, the result is 

often a productive ambiguity that expresses and generates new knowledge" (2007, 

p. 25); That new knowledge is a new structure. W. Byers has referred to this 

concept as a metaphorical quality characteristic of numerous mathematical 

situations where antagonistic ways of approaching a topic are proposed, and for 

this reason they become a matrix of deep ideas. For Byers “ambiguity is not only 

present in mathematics, it is essential. Ambiguity, which implies the existence of 

multiple, conflicting frames of reference, is the medium in which new 

mathematical ideas arise” (2007, p. 23). 

 

Geometries and the Notion of Curvature 

 

In general, it can be said that Euclidean geometry is defined as the totality of 

the concepts that are conserved by rigid movements in the Euclidean space 

(isometries). In the following section, Riemann explains that manifols with 

constant sectional curvature reflect one of the essential properties of a geometry. 

That is, the property of the invariance of objects under isometries. 

 
Manifoldnesses whose curvature is constantly zero may be treated as a special case of 

those whose curvature is constant. The common character of those continua whose 

curvature is constant may be also expressed thus, that figures may be viewed in them 

without stretching. For clearly figures could not be arbitrarily shifted and turned 

round in them if the curvature at each point were not the same in all directions. On 

the other hand, however, the measure-relations of the manifoldness are entirely 

determined by the curvature. 
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The non-Euclidean geometry constructed by Lobachevsky and Bolyai around 

1829 (independently), held that through an outside point to a straight line passed 

more than one parallel. When Riemann discloses the assumptions that underlie 

Geometry, there was still confusion about non-Euclidean geometries and the 

examples of Lobachevsky and Bolyai were not fully accepted. According to 

Morin, confusion and uncertainty are not the last words of knowledge, but the 

precursor signs of complexity (1993, p. 30). As we can see in the previous quotes 

by Grosholz and Byers, we can argue that the aforementioned confusion amounts 

to a productive ambiguity. Confusion and uncertainty should not be taken here as 

psychological states but as essential cognitive instruments of the epistemological 

paradigm of complexity. On the other hand, the notion of uncertainty is associated 

with the notion of probability and, therefore, with random phenomena. That is to 

say that in any process the restructuring does not take place in a deterministic way 

towards a single possible state, but that there is a degree of uncertainty about what 

the „chosen‟ structure will be among the various probable candidates; and this is 

valid for both natural and social phenomena and for knowledge - as in our case -. 

Using the notion of Riemannian geometry, Riemann gives a first concrete 

example for a non-Euclidean geometry, as the following paragraph in section two. 

 
The measure-relations of these manifoldnesses depend only on the value of the 

curvature, and in relation to the analytic expression it may be remarked that if this 

value is denoted by , the expression for the line-element may be written 

 

 

It follows that the example constructed by Lobachevsky and Bolyai is 

obtained assuming  constant and negative, i.e it results a geometry according to 

Riemann. In the last two paragraphs we have just quoted and commented on, the 

very meaning of the word complex, unity in diversity is highlighted. Riemann puts 

us in direct contact with complex thought by capturing the diversity and plurality 

of unity, that is, with a thought that links and globalizes. 

 

Curvature and Interdisciplinary Complexity 

 

In the new disciplines its specialization is interdisciplinary, so that the 

disciplinary closure requires at the same time the opening to other disciplines. This 

can be observed in the Applications to space section where Riemann implicitly 

states that the basic purpose of the ideas created was to understand the space where 

we live. In this section there is an opening towards theoretical physics 

transcending the boundaries of Riemannian geometry and anticipating the ideas of 

the theory of relativity and quantum mechanics. For Riemann our universe had no 

zero curvature, that is, it is not a flat manifold. According to Riemann, the metric 

of space should be searched for in physical properties, that is, of the observation, 

as can be seen in the following paragraph. 
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In the course of our previous inquiries, we first distinguished between the relations of 

extension or partition and the relations of measure, and found that with the same 

extensive properties, different measure-relations were conceivable; we then 

investigated the system of simple size-fixings by which the measure-relations of 

space are completely determined, and of which all propositions about them are a 

necessary consequence; it remains to discuss the question how, in what degree, and to 

what extent these assumptions are borne out by experience. 

 

It follows that, for Riemann, the space metric had to be determined by 

observing nature. For him, the curvature determines the metric and the metric 

determines the curvature. In the General Theory of Relativity, from observation it 

follows what is known as the energy-momentum tensor, knowing this tensor 

determines the curvature of space and this knowledge of curvature determines the 

metric, as Riemann claimed. This shows that the substantial idea of the Theory of 

Relativity is present in the foundations of Riemann‟s geometry. For physical 

reasons, the General Theory of Relativity considers time as part of the manifold 

which implies studying a manifold of dimension four, that is, space-time, rather 

than a three-dimensional manifold. Time as a new coordinate of the manifold does 

not behave like the others, since the movement in three-dimensional space is 

reversible, but we cannot return in time. Semi-Riemannian metrics have the 

distinction of distinguishing the time variable from the spatial ones. In a semi-

Riemannian metric the condition of being a positive definite bilinear form is 

changed, by the condition of being a non-degenerated bilinear form. 

Every organization gives rise to new qualities that did not exist in isolated 

parts, they are the organizational emergencies that are not deduced from the 

previous elements. This is evident in the following elucidation of Riemann, where 

he speculates that it is feasible that our universe is finite, in the sense that it has a 

finite diameter. 

 
The unboundedness of space possesses in this way a greater empirical certainty than 

any external experience. But its infinite extent by no means follows from this; on the 

other hand if we assume independence of bodies from position, and therefore ascribe 

to space constant curvature, it must necessarily be finite provided this curvature has 

ever so small a positive value. 

 

It is remarkable that this universe model was suggested by Einstein many 

years later. Morin points out that "in the beginning was complexity" (1993, p. 77) 

to highlight how the very foundation of reality is not simplicity but complexity. 

The concept of complexity sees the systematic and multidimensional phenomena. 

The following quote shows that Riemann sensed that Riemannian geometry 

should have its reservations when modeling the physics of small distances. 

 
The questions about the infinitely great are for the interpretation of nature useless 

questions. But this is not the case with the questions about the infinitely small. It is 

upon the exactness with which we follow phenomena into the infinitely small that our 

knowledge of their causal relations essentially depends. 

Now it seems that the empirical notions on which the metrical determinations of 

space are founded, the notion of a solid body and of a ray of light, cease to be valid 



ATINER CONFERENCE PRESENTATION SERIES No: EDU2020-0206 

 

18 

for the infinitely small. We are therefore quite at liberty to suppose that the metric 

relations of space in the infinitely small do not conform to the hypotheses of 

geometry; and we ought in fact to suppose it, if we can thereby obtain a simpler 

explanation of phenomena. 

The question of the validity of the hypotheses of geometry in the infinitely small is 

bound up with the question of the ground of the metric relations of space. In this last 

question, which we may still regard as belonging to the doctrine of space, is found the 

application of the remark made above; that in a discrete manifoldness, the ground of 

its metric relations is given in the notion of it, while in a continuous manifoldness, 

this ground must come from outside. Either therefore the reality which underlies 

space must form a discrete manifoldness, or we must seek the gound of its metric 

relations outside it, in binding forces which act upon it. 

 

As evidenced in the cited paragraphs, Riemann envisioned that in the domain 

of the immeasurably small it was forced to consider discrete quantities. This refers 

us to the nodal idea of quantum mechanics where electromagnetic radiation is 

absorbed and emitted by matter in the form of quanta, that is, a discrete entity. 

 

 

Final Considerations 

 

The present work constitutes a reflection on our own pedagogical practices as 

teacher trainers, has motivated us and oriented to the attempt to carry out an 

interdisciplinary work with the objective not only of transmitting the specific 

disciplinary content that we have developed here, but also, and in a way 

intertwined, to put into play available to students the epistemological foundations 

that validate that content. 

In this way we find ourselves in a goal that exceeds fragmentation, where we 

first had to establish certain ideological agreements about our conception of the 

world and the values committed to it, that is what Garcia calls “the epistemic 

framework of the interdisciplinary research” (2006, p. 35). 

Due to the timeliness of the objective, the interdisciplinary work was made up 

of the areas of Philosophy, Geometry and Education, and we soon noticed the 

relevance of this integration since the concept of Riemman's curvature tensor is (as 

we argued) a complex system whose main thread-elements correspond to those 

disciplines, and being a notion of a high level of abstraction, their understanding 

requires an additional effort to contextualize it significantly. 

Following the educational guidelines of Morin, who in his text on education 

The well-placed head proposes us the challenge of teaching to state and solve 

problems based on organizational principles of knowledge - such as self-

organization, hologram, recursive and dialogic -, and not as an accumulation of 

data or information, we set out to incorporate these principles by articulating them 

with the subject of study and opening the thought to the context showing that it is 

constitutive of each phenomenon, which cannot be conceived in isolation in a pure 

abstraction. 

Our task was guided by the premise that “the development of the ability to 

contextualize and totalize knowledge becomes an imperative of education” 
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(Morin, 1999, p. 27), and this is complex thought, which implies unite the 

scientific culture with the humanities. 

Finally, the great challenge that Complexity gives us to trainers of trainers, 

professors of future professors, is the search for strategies that guide the dialogue 

between the knowledge that appears scattered; there is no list of rules or strategies 

set in advance to follow and according to Morin, everyone must find and create in 

their own field those paths; the present work is our proposal, a possible way. 
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