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Neural Network as Function Approximation 

 

ABSTRACT 

 
Reinforcement learning is a form of machine learning in which the agent learns 

by interacting with the environment. By doing so, for each action taken, the 

agent receives a reward or penalty, which is used to determine positive or 

negative behaviour. Unlike other machine learning forms, such as supervised 

learning, the agent is not explicitly told what action to take in each state in 

order to learn that, the agent has to go through a series of trial and error by 

interacting with the environment and receiving the rewards. The goal of the 

agent is to maximise the total reward received during the interaction. This form 

of machine learning has applications in different areas, such as: game solving, 

with the most known game being AlphaGO; robotics, for design of hard-to 

engineer behaviours; traffic light control, personalized recommendations, etc. 

In this work, we consider the problem of tracking a moving target in a 

simulated multi agent environment. The environment consists of a rectangular 

space bounded by walls. The first agent, which is the target, moves randomly 

in the space avoiding the walls and emits some light that makes it recognizable. 

The second agent has the task of detecting the moving target by the light it 

emits, and following it, keeping as close as possible without crashing. The 

target is expected to accelerate or decelerate, as well as change direction. We 

will use reinforcement learning in order for the tracker to learn how to detect 

any change in direction and stay within a certain range from the target. In this 

problem, the task of learning deals with continuous state. Since the state is 

continuous, we approximate the value function using neural network. We will 

apply the Q-Learning algorithm with different reward functions and compare 

the results of each for learning the best policy. 

 

Keywords: neural network, object tracking, reinforcement learning. 
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Introduction 

 

Object tracking is an area that has many applications in different domains, 

some of them being human computer interaction, video surveillance and robot 

navigation. Recent technological developments have seen a growth in different 

types of robots build to carry a large number of tasks. Some of the tasks a robot 

can perform may include rescue operation, disaster relief, patrolling, autonomous 

navigation, personal assistants, surgical assistant etc. All these tasks may require 

some form of object tracking, having a target that needs to be followed, for 

example a personal assistant that follows you carrying you bag.  

In computer vision, object tracking is related to finding a specific object in 

different frames that may be used for example in video surveillance.  Machine 

learning has become a very strong tool for solving different types of problems and 

even surpassing the humans in certain areas. There are many forms of machine 

learning, such as supervised learning, unsupervised learning, semi-supervised 

learning and reinforcement learning. In the supervised learning the outcome for the 

given input is known, and the machine must learn to map the output to the input. 

In the unsupervised learning the outcome for the given input is not known. Here 

the machine classifies the input into groups based on any commonalities that it 

finds. Semi-supervised learning is a combination of supervised an unsupervised 

learning that uses both labeled and non-labeled data.  

Reinforcement learning is a form of machine learning that is based on 

learning from experience. Here the learner is exposed to some environment, starts 

making decisions and gets some feedback which gives it information regarding 

how good or bad was that decision. Based on the feedback, the learner learns 

which are more favorable decisions over not as good ones. In this paper we are 

interested in the problem of following a moving object with the intention of 

staying within some bounds from it. This is related with the task of object 

identification, but this is out of the scope of this paper. In order to track the target, 

it will emit some light that will make it recognizable. Both the target and the 

follower move in two degrees of freedom. Our approach is to use reinforcement 

learning for solving this problem. Since reinforcement learning requires some 

form of reward to be designed in order to orient the learner goals, we will try 

different rewards and will see how they affect the result. Test runs in a simulated 

environment. 

The remainder of this paper is organized as follows: In next part we do a 

literature review over work done in the related area. Then we give a theoretical 

background on reinforcement learning concepts and ideas. Afterwards we focus 

more in depth in the algorithms and techniques that are in use. In part “The 

Problem” we describe the simulation that we have done, the environment and the 

experiment, and in last part we give results and conclusions gathered from this 

work. 
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Literature Review 
 

Here we present shortly a review of other works done related to the problem 

of object tracking in different areas. 

Benavidez and Jamshidi (2011) presented a framework for navigation and 

target tracking system for a mobile robot. Here is used a combination of low-cost 

3D depth and color imaging (Kinect sensor) to replace higher cost imaging 

systems in order to identify objects that should be tracked, also to identify free 

space in the space in front of the robot. Fuzzy logic is used to control the 

movement of the robot for tracking the target. 

Mazo et al. (2004) studied the problem of estimating and tracking the motion 

of a moving target by a team of mobile robots. Each robot has a directional sensor 

and for that reason more than one robot (sensor) is needed for solving the task. A 

hierarchical tracking algorithm is used, which fuses sensor reading in order to get 

an estimate of the target motion. 

Lund et al. (1996) built a video tracking system for tracking the movements of 

a robot in the environment. Light is put on top of the mobile robot in order to be 

able to track it. A camera is placed under the ceiling pointing towards the arena 

where the robot moves. The movement of the robot is determined by getting the 

readings of the camera for the position of light that comes from the robot in two 

consecutive frames. Here is important to make camera calibrations, in order to 

map image pixel coordinates to floor coordinates. 

Sankar and Tsai (2019) presented a real-time remote-control system for 

human detection and tracking. In the proposed system is used a Kinect RGB-D 

camera as a visual sensing device. The remote-control system is implemented on a 

four-wheel mobile platform with a Robot Operating System (ROS). In order to 

achieve the human tracking, is used the nearest neighbor search (NNS) algorithm, 

which searches the nearest detected human position in the previous frame to the 

current detection result. 

Tesauro (1993) has created TD-Gammon, which is a neural network that is 

able to play backgammon by playing against itself and learning from the results.  

This is based on the TD(λ) reinforcement algorithm. The network starts with zero 

knowledge and learns to play at a strong intermediate level. 

Mnih et al. (2013) have presented the first deep learning model that is 

successful in learning to control policies using reinforcement learning. The model 

that is used is a convolutional neural network that is trained with a variant of Q-

learning. The model takes the input from raw pixel data, and the output is the 

value function that estimates the future reward. This model is applied to several 

Atari 2006 games from Arcade Learning Environment and surpasses the human 

expert on three of them. 

Luo et al. (2018) treated the problem of active object tracking. This is the 

problem where a tracker takes as input some visual observation, which may be 

some frame sequences, and based on that produces the output that is the camera 

control signal. According to Luo et al. (2018), conventional methods handle the 

tracking and camera control separately, which is very challenging way to tune 

them jointly and also includes many expensive trial-and-error in real life. To solve 
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these problems, the authors propose a solution that uses reinforcement learning 

with ConvNet-LSTM as a function approximator to predict the action for the 

frame. 

Zhang et al. (2017) presented a solution to the problem of visual tracking in 

videos which learns how to predict the bounding box location of the target object 

in every frame. The tracking problem is considered as a sequential decision-

making problem. The solution proposed uses a recurrent convolutional neural 

network that is trained with reinforcement learning algorithms in order to learn 

good tracking policies, taking in consideration inter-frame correlation. The 

network is trainable off-line and this makes it run in faster frame-rates than real-

time. This paper develops a new paradigm for solving the problem of visual 

tracking, by using recurrent neural networks and reinforcement learning in order to 

exploit temporal correlation in videos. 

Ren et al. (2018) solved the problem of multi object tracking (MOT) using 

collaborative deep reinforcement learning. Existing methods for MOT use the 

strategy of tracking-by-detection. The results of these methods rely on the result of 

the process of detection, which may not be very satisfactory especially in crowded 

scenes. The solution that is proposed is a deep prediction-decision network, which 

uses deep reinforcement learning that simultaneously detects and predicts objects. 

Xiang, Alahi and Savarese (2018) considered the problem of multi object 

tracking, which is formulated as decision making in Markov Decision Processes. 

The lifetime of the objects to be tracked is modeled as a MDP, and data 

association is achieved using reinforcement learning. 

Zhong et al. (2019) presented a decision controller based on deep reinforcement 

learning that maximizes long turn tracking performance without supervision. This 

is applicable in both single object and multi object tracking problems. 

 

 

Reinforcement Learning 

 

General Presentation 

 

Reinforcement learning is a form of machine learning that is concerned with 

sequential decision making. The learning agent learns what is the best action to 

take in each state of the environment, with the purpose of maximizing a numerical 

reward signal. The agent may not have any knowledge of the environment and it is 

not told what to do. Instead, it has to learn the best action through interacting with 

the environment, a process known as trial and error.   

A reinforcement learning system may contain four sub-elements (Sutton and 

Barto, 2018): a policy that defines how the agent behaves at any given time (what 

action it takes in every state); a reward signal which is sent to the agent from the 

environment at each time step and is used to define the goal in reinforcement 

learning. The reward defines what are the good and bad states, and the objective of 

the agent is to maximize the total reward it receives.; a value function which 

indicates how good is a state in the long term, taking into consideration the reward 

for that state and the rewards of states that are likely to follow; a model of the 
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environment, which may be optional, and is used to make predictions about next 

states and rewards. 

Reinforcement learning algorithms estimate value functions (which may be 

functions of states or functions of state-action pairs) that determine how good is 

for the agent to be in a certain state (or how good it is to take an action in a state). 

The general process of RL may be defined as follows: 

 

1. At each time step t, the agent is in a state s(t) 

2. The agent choses one of the possible actions in this state, a(t) and applies 

that action 

3. After applying the action, the agent transitions in a new state s (t+1) and 

gets a numerical reward r(t) from the environment. 

4. If the new state is not terminal, the agent repeats the step 2, otherwise the 

episode is finished 

 

The goal of reinforcement learning is to find an optimal policy which tells 

how to act in each state in order to maximize the return. In order to learn the 

optimal policy, value functions are used, such as state value and action value. 

Sutton and Barto (2018) define three classes for solving the reinforcement 

task: Dynamic Programming, which is based on the Bellman Equation and 

depends on a perfect model of the environment; Monte Carlo methods that do not 

need a model of the environment. They can approximate future rewards from 

experience, but they update the value when the final state is reached; Temporal 

difference methods that are a combination between the previous methods. They do 

not require a model of the environment and the updates are done at each step. 

These methods learn directly from experience. 

 

Markov Decision Process 

 

A reinforcement learning problem can be modeled as a Markov Decision 

Process (MDP). A MDP is a stochastic process that satisfies the Markov Property. 

In a finite MDP, the set of states, actions and rewards have a finite number of 

elements. Formally, a finite MDP can be defined as a tuple M = (S, A, P, R, γ), 

where: 

 

 S is the set of states: S = (s1, s2, …, sn) 

 A is a set of actions: A = (a1, a2, …, an) 

 γ ∈ [0,1] is the discount factor 

 P defines the probability of transitions from s to s’ when taking action a: 

◦ Pss’ = Pr{st+1 = s’ | st = s, at = a} 

 R defines the reward function for each of the transitions 

◦ Rss’ = E{rt+1 | st = s, at = a, st+1 = s’} 

 

The goal of the agent is to maximize the total reward it receives. The agent 

should maximize the total cumulative reward it receives in the long run, not just 
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the immediate reward (Sutton and Barto, 2018). The expected discounted reward 

is defined as follows: by Sutton and Barto (2018) 

 

 Gt = Rt+1 + γ Rt+2 + γ
2
 Rt+3 + … = γ

k 
Rt+k+1 

 

The sequence of states that end up in a terminal state is called an episode. In 

case the terminal state is reached after a fixed number of states, this is called a 

finite-horizon task (Kunz, 2013). When the length of a task is not limited by e 

fixed number, it is called infinite-horizon task (Kunz, 2013). 

 

The Policy 

 

A policy, written as π(s,a), is a function that takes as an argument the state and 

an action, and returns the probability of taking the action in that state. If the agent 

is following the policy π at time t, them π(a|s) is the probability that at = a if st = s 

(Sutton and Barto, 2018). 

 

Value Function 

 

The value of a state under s under policy π (state-value function for policy π), 

v π (s), is the expected return starting from s and following policy π. It can be 

defined formally as Sutton and Barto (2018): 

 

v π (s) = E π[Gt | St = s ] = E π [ γ
k 
Rt+k+1  | St = s ], for all s ∈ S 

 

The value of taking action a in state s under policy π (the action-value 

function for policy π), q π (s,a), is the expected return starting from state s, taking 

action a and then following policy π. It can be defined formally as (Sutton and 

Barto, 2018): 

 

qπ (s,a) = E π[Gt | St = s, At = a ] = E π [ γ
k 
Rt+k+1  | St = s, At  = a], for all s ∈ S 

 

The value functions satisfy the Bellman equation, which expresses the 

relationship between the value of a state (state-action) and the values of it next 

states (state-actions). The Bellman equation for the action-value function is 

defined as follows: 

 

Qπ (s,a) = P
a
ss’ [ R

a
ss’  + γ π(s’,a’) Qπ(s’,a’)] 

 

where P is the transition probability and R is the reward for the next state. 

 

Reinforcement learning has an important characteristic, which is the tradeoff 

between exploration and exploitation. The learner tries to maximize the reward by 

picking one of the known actions which has the highest reward so far, thus 
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exploiting the already gained knowledge. On the other hand, the learner should 

explore new actions that might result in e higher reward. 

 

On-Policy and Off-Policy Learning 

 

Sutton and Barto (2018) define on-policy learning as improvement of the 

same policy that is used to make decisions, while off-policy is improvement of a 

policy that is different from the one being used to make decisions. Following that 

definitions, off-policy methods are more efficient because those can make use of 

experience replay which allows for usage of samples from different policies. 

 

Function Approximation 

 

Function approximation is a method used for generalization when the state 

and/or action spaces are large or continuous (Li, 2018). It generalizes from 

examples of a function in order to construct an approximation of the entire 

function. This is a concept related to supervised learning, studied in the fields of 

machine learning and pattern recognition (Li, 2018). Following is the TD (0) 

algorithm with function approximation from Sutton and Barto (2018): 

 

Algorithm 1. TD(0) with Function Approximation Adapted from Sutton and Barto 

(2018) 

Input: the policy π to be evaluated 

Input: a differentiable value function v̂(s,w),  v̂(terminal,·) = 0 

 

initialize value function weights w arbitrarily (e.g., w=0) 

for each episode do 

      initialize s 

      while s is not terminal do 

           a ←  π(·|S) 

           Take action a and observe r(reward) and s’(next state) 

           w ← w +  α [r + γv̂(s’,w) – v̂(s,w)] ∇v̂(s,w) 

            s ← s’ 

      done 

done 

 

In the above algorithm, v̂(s,w) is the approximate value function, w is the value 

function weight vector, ∇v̂(s,w) is the gradient of the approximate value function 

with respect to the weight vector (Li, 2018). 

 

 

Temporal Difference Learning 

 

Temporal difference learning is a central idea in Reinforcement Learning 

(Sutton and Barto, 2018).  TD is a combination of dynamic programming and 

Monte Carlo methods, it learns directly from experience without a model of the 
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environment (Sutton and Barto, 2018). TD is a prediction problem, which given 

some experience following a policy π, it updates the estimate vπ for nonterminal 

states St that occur in that experience (Sutton and Barto, 2018).  In Sutton and 

Barto (2018) the update rule from TD is defined as follows: 

 

V(St) ← V(St) + α [Rt+1 + γV(St+1) – V(St)] 

 

where α is the learning rate, and Rt+1 + γV(St+1) – V(St) is the TD error. This 

method is called TD(0), which is a special case of TD(λ), because is based on one 

step return. Following is the algorithm for TD learning, adapted from Sutton and 

Barto (2018). 

 

Algorithm 2. TD Algorithm Adapted from Sutton and Barto (2018) 

 

Input: The policy π to be evaluated 

Initialize V arbitrarily (e.g 0) for all states 

for each episode do 

     Initialize state S 

     while S in not terminal state do 

           A ← action given by policy  π for S 

           Take action A, observe R(reward), S’(next state) 

           V(S) ← V(S) + α [Rt + γV(S’) – V(S)] 

           S ← S’ 

      end 

end 

 

On-Policy TD Control with Sarsa 

 

Sarsa algorithm learns state-action values, instead of state values. As given in 

(Sutton and Barto, 2018) it takes into consideration transitions from state-action 

pair to state-action pair using the following update rule (Sutton and Barto, 2018): 

 

Q(St, At) ← Q(St, At) +  α [Rt+1 + γ Q(St+1, at+1) – Q(St, At)] 

 

Following is the pseudo code for the Sarsa algorithm. 

 

Initialize Q(s,a) for all action-state pairs and set action value 0 from terminal states 

for each episode do 

     Initialize S 

     Take action A from S using policy derived from Q (e.g., ε-greedy) 

     Repeat for each episode 

          Take action A, observe R and S’ 

           Chose action A’ from S’ using policy derived from Q (e.g., ε-greedy) 

           Q(S,A) ← Q(S,A) + α [R+ γ Q(S’, A’) – Q(S, A)] 

           S ← S’; A ← A’    

done 
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Algorithm 3. Sarsa algorithm adapted from (Sutton and Barto, 2018) 

 

Sarsa is considered an on-policy method, which improves the same policy that 

it uses to choose the action. 

 

Off-Policy TD Control with Q-Learning 

 

Q-Learning (Watkins and Dayan, 1992) is also considered as a TD method. It 

is defined with the following update rule: 

 

Q(St, At) ← Q(St, At) +  α [Rt+1 + γ maxa Q(St+1, a) – Q(St, At)] 

 

In this case, what is learned is the action-value function Q. This is an 

appoximation of the optimal action-value function, independent of the policy that 

is being followed. Following is the algorithm for Q-Learning, adapted from 

(Sutton and Barto, 2018): 

 

Initialize Q(s,a) arbitrarily for all action-state pairs, set action vale 0 from terminal 

states 

for each episode do 

     Initialize S 

     while S is not terminal state do 

          A ← action from S using policy derived from Q (e.g., ε-greedy) 

          Take action A, observe R(reward), S’(next state) 

         Q(S, A) ← Q(S, A) +  α [R + γ max Q(S’, a) – Q(S, A)] 

         S ← S’ 

      done 

done 

 

      Algorithm 4.  Q-Learning algorithm adapted from (Sutton and Barto, 2018) 

 

Q-Learning is considered an off-policy method, because it improves a policy 

that may be different from the one that is used to choose the action. 

 

Neural Network Implementation Approach 

 

When the state and action space are discrete, Q-values may be stored in a 

look-up table:qi,j = Q(si,aj), for  si ∈ S and aj ∈ A. If the size of S and A increases 

considerably, or if S is continuous, is is impossible to visit all the states and to test 

all actions in reasonable time (Glorennec, 2000). For this reason, it is more 

convenient to use the interpolation capabilities of Artificial Neural Networks 

(ANN). The ANN would be defined as explained in (Glorennec, 2000): 

 

1. Let n be the dimension of S. A state s is a vector of components s1,s2, ……, 

sn 
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2. Let J be dhe number of actions A. There are possible two neural 

implementations: 

     a) one ANN with n inputs and J outputs, where every output represent 

the Q-value Q(., aj), j = i to J 

     b) J ANN with one output: one output for action. 

 

Following is the process of using ANN, for the Q(0) prediction problem 

(Glorennec, 2000): 

 

1. Every state s is presented  as a vector x, with dimension n. The ANN 

calculates an evaluation of Q(x, aj), j = 1 to J(dimension of action space) 

2. The action aj* is chosen, according to the exploration/exploitation policy 

3. New state s’, and the reward r are observed 

4. The new state s’, is presented as an input to the ANN, and its value is 

calculated by: 

        V(s’) = max ANNj(s’), 1<= j<= J 

5. The new evaluation of Q(x, aj*) becomes r + γV(s’). The difference between 

the new value and the old one is the error committed by ANN and is used 

to modify the weights. 

 

Neural Fitted Q-Learning 

 

Neural fitted q-learning introduced by (Riedmiller, 2005) proposes a memory 

based method to train Q-value functions based on multi-layer perceptron. The 

basic idea of this method, as explained by (Riedmiller, 2005) is the following: the 

neural value function is not updated on-line, but is updated off-line using a set of 

transitions gathered from experience. Transitions in the form of (s,a,s’) are 

acquired by interacting with the environment.  The state is given as an input to the 

Q-network, and the output is given for each of the possible actions. This structure 

is very efficient because it allows the computation of the maximum value for each 

state-action value with only one forward pass of the neural network for any given 

state. The Q-values are parametrized with a neural network Q(s,a; θk). The 

parameters θk are updated by stochastic gradient descent. 

 

Deep Q-network 

 

Deep reinforcement learning (deep RL) is obtained when we use deep neural 

networks to approximate any of the following components of RL: value function, 

v̂(s; θ) or qˆ(s,a;θ), policy  π(a|s;θ), where parameters  θ are the weights of deep 

neural network (Li, 2018). On the other side, shallow RL is obtained when linear 

models, like linear function or binary trees, are used as function approximator (Li, 

2018). 

Deep Q-network was introduced by (Mnih et al., 2015). It has obtained strong 

performance playing a variety of ATARI games, learning directly from pixels. 

Following is the pseudo code for DQN as adapted from (Mnih et al., 2015): 
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Input: pixels from the game 

Output: Q action value function 

Initialize replay memory D 

Initialize action-value function Q with random weight θ 

Initialize target action-value function Q* with weights θ
-
 = θ 

for each episode do 

     Initialize sequence s1  = {x1}, preprocessed sequence    φ1 = φ(s1) 

     for each time step do 

           Select action at following  ε-greedy policy: a random action with probability  

ε, or argmaxa Q(φ(st),a;θ)  otherwise 

           Execute action a, observe next image xt+1 and reward rt 

                    Set st+1 = st, at, xt+1  and φt+1 = φ(st+1) 

            Store in D the transition ( φt, at, rt,  φt+1) 

 Sample random minibatch transitions  ( φj, aj, rj,  φj+1) from D 

 If episode terminates at step j+1 set yj = rj, otherwise set yj = rj + 

γmaxa’Q*(φj+1,a’;θ
-
 ) 

 Perform gradient descent step (yj – Q(φj, aj;θ))
2  

on the network parameter  

θ 

 Set θ
- 
= θ every C steps 

    end 

end       

 

Algorithm 5. DQN algorithm adapted from (Mnih et al., 2015) 

 

This algorithm has used some heuristics to improve its performance: 

 

1. It uses two networks, Q and Q*, where Q* network parameters are updated 

only every C iterations. This prevents instabilities from propagating 

quickly and reduces the risk of divergence. 

2. It uses the replay memory. This memory keeps information for the last N 

time steps in the form of tuples <s, a, r, s’>, and updates are made on 

batches selected randomly from the memory.  This method allows for 

updates that cover a wide range of the state action space. 

 

 

The Problem 

 

In this work we have considered a simplified form of the object following 

problem in a multi agent system. The system consists of two agents that move in 

an empty space that is bounden by walls. Each of the agents can move left, right or 

forward. The first agent is the target and its movements are generated using 

probability: ½ for action forward, ¼ for action left and ¼ for action right. This 

agent emits some light which makes it recognizable in the environment. The 

second agent should learn to follow the first agent by staying within some bounds 

form it.  It starts from a position behind the first one, and has some light sensors 

that can detect the light emitted from the target. From the light sensed by the 



ATINER CONFERENCE PRESENTATION SERIES No: COM2019-0160 

 

13 

 

sensors he can perceive the position of the target relative to his own.  Since both 

agents can move simultaneously and this makes this task very hard, we have 

simplified the problem by imposing the following restrictions: both agents move 

with the same speed; they chose their action one after the other, not moving at the 

same time. For each action taken from the first agent, the follower should make his 

move. 
 

The Framework Used 

 

In order to run our experiments, we have used ARGoS Simulator (Pinciroli et 

al., 2012), which is a multi-robot simulator for complex environments that involve 

large swarms of different types of robots. We have used two foot-bot robots for the 

target and for the follower. Each entity is equipped with sensors that can get 

information, and with actuators that are used to act in the environment. The target 

robot has a led actuator that is used to emit red light. The follower robot has 

omnidirectional camera sensor that can sense light from surrounding objects. We 

use it to detect red light, since it is the light emitted from the target. The readings 

of the camera sensor give the angle and the distance from the light. Using these 

readings, the follower robot can learn the position of the target relative to its own. 
 

Proposed Solution 

 

We have treated this problem as a reinforcement learning problem. For the 

learner agent, the state consists of two consecutive reading of the camera sensor, 

that give the previous and current position of the target (distanceprevious, angleprevious, 

distancecurrent, distanceprevious), so the state can have continuous values. Based on 

this, it may choose one of the actions: left, forward, right, no action. We used 

different types of reward functions that are detailed later in the results section. For 

doing the training we created e neural network that uses concepts given in (Mnih 

et al., 2015). It has a replay memory, and two models. The input to the neural 

network is the state of the learning agent, and the output is the value for each 

action. The net has one input layer with 12 neurons, two hidden layers with 12 and 

24 neurons, and one output layer with 4 neurons. It uses rectified linear unit as 

activation function, and calculates error based on mean squared error. The replay 

memory has a size of 2000, and each replay is done with a batch size of 42.  
 

Results 
 

In this section we give the different reward functions and parameters that we 

have used and the results that we achieved with each of them. For each test we 

give the number of episodes played and the length of the episode. 
  

1. If current distance > previous distance or current angle > previous angle 

then reward = +1; otherwise is -1 and the episode is finished. The learning 

rate is 0.8, Γ = 0.85 and there are 22000 episodes played.  Figure 1 shows 

the results. 
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2. If current distance is > ε1 or current angle >  ε2 then reward = -1 and the 

episode is finished; otherwise the reward is +1. The learning rate is 0.8, Γ 

= 0.85 and there are 41250 episodes played.  Figure 2 shows the results. 

3. If current distance > 22 or current distance < 18 then the reward is -10 and 

the episode is finished; otherwise the reward is +1; The learning rate is 

0.01, Γ = 0.85 and there are 7500 episodes played.  Figure 3 shows the 

results. 

 

Figure 1. 

 
 

Figure 2. 
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4. If current distance > 22 or current distance < 18 then the reward is -10 and 

the episode is finished; otherwise the reward is +1.The learning rate is 

0.08, Γ = 0.85 and there are 8150 episodes played.  Figure 4 shows the 

results. 

5. Id current distance > 22 or current distance < 18 then the reward is -10 and 

the episode is finished; otherwise the reward is +1.The learning rate is 0.6, 

Γ = 0.85 and there are 7500 episodes played.  Figure 5 shows the results. 

 

Figure 3. 

 
 

Figure 4. 
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Figure 5. 

 
 

 

Conclusions 

 

In this paper we have considered the problem of tracking a moving target in a 

simulated multi agent environment and modeled it as a reinforcement learning 

problem. We tried to solve the problem using different parameters and reward 

functions and compared the results by taking into consideration the length of each 

episode played. When solving a reinforcement problem it is very important the 

way that the reward function is defined because based on it the learner will learn 

how to act. In our problem we got better results when we designed the reward as a 

function that takes into consideration both the distance and the angle from the 

target. In other cases, when the reward was based only on the distance, the reslts 

were not as good. Another important factor to consider is the learning rate which 

affects the amount of learning and as a result the convergence. In our tests, we did 

not really get convergence, but comparing results with different learning rates, we 

saw that a big learning rate is not always the best solution, because it did not make 

the convergence faster. 
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