
ATINER CONFERENCE PRESENTATION SERIES No: COM2018-0124

1

ATINER’s Conference Paper Proceedings Series

COM2018-0124

Athens, 16 November 2018

Appropriate System to Support Decision Making in Medicine Area

Ana Ktona

Athens Institute for Education and Research

8 Valaoritou Street, Kolonaki, 10683 Athens, Greece

ATINER‟s conference paper proceedings series are circulated to

promote dialogue among academic scholars. All papers of this

series have been blind reviewed and accepted for presentation at

one of ATINER‟s annual conferences according to its acceptance

policies (http://www.atiner.gr/acceptance).

© All rights reserved by authors.

http://www.atiner.gr/
http://www.atiner.gr/acceptance

ATINER CONFERENCE PRESENTATION SERIES No: COM2018-0124

2

ATINER’s Conference Paper Proceedings Series

COM2018-0124

Athens, 16 November 2018

ISSN: 2529-167X

Ana Ktona, Associate Professor, University of Tirana, Albania

Appropriate System to Support Decision Making in Medicine Area

ABSTRACT

Clinical Decision Support Systems, which support physicians in making diagnostic

and therapeutic decisions by providing to them passive and active referential

information as well as reminders, alerts, and guidelines, attract much interest.

Theoretical and practical researches have shown that well designed Clinical

decision support systems help physician in disease diagnosis, treatment options,

etc. There are two types of Clinical Decision Support Systems in medicine area:

Knowledge-based CDSS and Non-knowledge-based CDSS. The logic of

Knowledge-based CDSS is based on rules and associations of data in the form of

IF … THEN. These rules could be found by algorithms. The logic of Non-

knowledge-based CDSS is based on models created by Machine Learning

algorithms. Both types of CDSS have advantages and disadvantages. But, how do

they compare when evaluated against each other? This paper will identify their

logic performance through experimentation and analysis in order to compare them

objectively. A representative algorithm will be chosen for each of these Clinical

decision support systems, and then it will be run against three patient diagnosis

datasets: diabetes diagnosis, contact lenses recommendation and breast cancer

diagnosis. Data will be gathered on algorithm accuracy, for a varying dataset size.

It is expected that knowledge based CDSS perform better in small dataset and non-

knowledge based CDSS perform better in large datasets.

Keywords: Knowledge-based CDSS, Non-knowledge-based CDSS, Machine

Learning.

ATINER CONFERENCE PRESENTATION SERIES No: COM2018-0124

3

Introduction

In the healthcare system, a large amount of electronic data is produced every

day as a result of various examinations and treatments. Raw produced data, which

has features that make it more challenging their studying and analyzing, can

convert to incredibly useful information. This information helps to make decisions

when determining the diagnosis and / or suggestion of treatment, leading to

reduction of diagnosis errors and increase of quality in treating diseases.

Electronic systems that allow the discovering of this useful information that

helps in clinical decision making (The process of formulating a diagnosis is

called clinical decision making)
1
 has become a necessity in the medical field. This

is because:

 There are a lot of diseases, the countless symptoms and tests, and too many

treatment options that make up the medical body of knowledge.

 The complexity of the human physiology.

 Absence of absolutes in medicine.

Computerized Decision Support Systems are developed to address this

necessity in medicine. These systems are also called Clinical Decision Support

Systems. Some of the more quoted definitions about Clinical Decision Support

Systems are:

“Clinical decision support systems link health observations with health

knowledge to influence health choices by clinicians for improved health care.”
2

“Clinical Decision Support Systems are active knowledge systems which use

two or more items of patient data to generate case-specific advice.”
3

Clinical decision support (CDS) provides clinicians, staff, patients or other

individuals with knowledge and person-specific information, intelligently filtered

or presented at appropriate times, to enhance health and better health care.
4

The main purpose of a Clinical Decision Support Systems is to help a

physician by suggesting a diagnosis based on findings and/or suggesting a

treatment at the point of health care.

There are two types of Clinical Decision Support Systems:

 Knowledge – Based CDSS

 Non Knowledge -Based CDSS

1
Encyclopedia Britannica: https://www.britannica.com/science/clinical-decision-making.

2
Robert Hayward, Centre for Health Evidence http://www.cche.net/.

3
http://www.openclinical.org/dss.html.

4
https://www.healthit.gov/providers-professionals/faqs/what-clinical-decision-support.

https://www.britannica.com/science/clinical-decision-making
http://www.cche.net/
http://www.openclinical.org/dss.html

ATINER CONFERENCE PRESENTATION SERIES No: COM2018-0124

4

Literature Review

CDSS have been shown to improve physicians‟ performance significantly

(Angela L. P. Chow, 2015; Clemens, 2018; Garg AX, 2005; Nachtigall, 2014).

The aim of the study (Angela L. P. Chow, 2015) was to evaluate the

effectiveness of the hospital‟s antibiotic CDSS on patients‟ clinical outcomes, and

the modification of these effects by patient factors. They conducted a prospective

cohort study in a tertiary-care hospital in Singapore. They used multilevel logistic

regression model and found that receipt of CDSS-recommended antibiotics

reduced mortality risk in patients aged 65 years or younger and did not increase

the risk in older patients. They suggested that physicians should be informed of the

benefits to increase their acceptance of CDSS recommendations.

The aim of the study (Clemens, 2018) was to analyze the current literature for

the impact of HIT on medical outcomes. They analyzed publications that defined

an HIT intervention and an effect on medical outcomes in terms of efficiency or

effectiveness from Cumulative Index of Nursing and Allied Health Literature

(CINAHL) and Medical Literature Analysis and Retrieval System Online

(MEDLINE) databases. They found at least one improved medical outcome as a

result of HIT adoption in 81% of research studies that met inclusion criteria and no

statistical difference in outcomes as a result of HIT in 19% of included studies.

They concluded that a strong majority of the literature shows positive effects of

HIT on the effectiveness of medical outcomes, which positively supports efforts

that prepare for stage 3 of meaningful use.

The aim of the study (Garg AX, 2005) was to review controlled trials

assessing the effects of computerized clinical decision support systems (CDSSs)

and to identify study characteristics predicting benefit. They used data from

MEDLINE, EMBASE, Cochrane Library, Inspec, and ISI databases They

compared CDSS with care provided without a CDSS on practitioner performance

or patient outcomes and found that the CDSS improved practitioner performance

in 64% of the studies assessing this outcome, including 40% of diagnostic

systems, 76% of reminder systems, 62% of disease management systems, and

66% of drug-dosing or prescribing systems.

The aim of the study (Nachtigall, 2014) was to evaluate long-term effects of

using a CDSS in support of rational anti-infective treatment strategies based on

guidelines. They implement a CDSS to evaluate these effects and concluded that:

“Implementation of computerized regional adapted guidelines for antibiotic

therapy is paralleled with improved adherence. Even without further measures,

adherence stayed high for a longer period and was paralleled by reduced antibiotic

exposure. Improved guideline adherence was associated with reduced ICU

mortality.”

Knowledge-Based CDSS

The majority of knowledge-based systems are derived from early expert

systems. The expert systems aimed at simulating human thinking in data

ATINER CONFERENCE PRESENTATION SERIES No: COM2018-0124

5

processing. The characteristics of these systems, which tried to provide the logic

and reasoning of a human decision maker, are: heuristic, transparent and flexible

 A heuristic system reasons with judgmental knowledge and with formal

knowledge of established theories;

 A transparent system provides explanations of its line of reasoning and

answers to queries about its knowledge;

 A flexible system integrates new knowledge incrementally into its existing

store of knowledge.

A lot of Knowledge-Based CDSS are implemented in the medicine field due

to the intuitive perception that these systems improve healthcare quality. It is

widely believed that medicine profit more than the other fields from these systems.

It is assumed that a computer could imitate the thought processes of a real-life

physician. The computer then could give a range of diagnosis or treatments based

on the information at hand. The physician evaluates the symptoms of a patient,

personal testimonies and uses the systems as a reference for possible diagnosis or

treatments.

Figure 1. Knowledge Based Systems Architecture

Knowledge-based CDSS use traditional Artificial Intelligence (Russell, 2016)

methods to suggest diagnosis or treatment. Conditional logic is the most used

traditional Artificial Intelligence method in Knowledge-based CDSS. As it is seen

from the Figure 1 there are three main parts in a knowledge-based CDSS: the user

interface (Input/Output), the inference (reasoning) engine and the knowledge base.

The knowledge base contains information (general principles) which is

represented in the form of IF-THEN rules. The statement, or set of statements,

after the word if represents some pattern which is observed and the statement, or

set of statements, after the word then represents some conclusion that can be

drawn or some action that should be taken. A knowledge base could work in

conjunction with an algorithmic structure for data analysis.

Part of the knowledge base CDSS is also a collection of specific details that

apply to the current patient (sometimes called also working memory).

Inference engine processes information from the knowledge base. It integrates

the rules in the knowledge base with patient‟s current data, allowing the system to

create suitable rules and conditions for the patient based on his/her medical history

and the severity of patient‟s current condition. An important aspect of the KBS

ATINER CONFERENCE PRESENTATION SERIES No: COM2018-0124

6

architecture is that the inference engine and knowledge base are separated. There

are a lot of benefits from this architecture. Some of them are:

 The reasoning mechanism could be stable.

 The knowledge base is able to grow and change as knowledge is added.

User interface (input/ output) is the “place” where the physician inputs the

data of a patient and receives the corresponding results. The patient data can be

entered manually or provided through a computer-based record. Generally the

results (output) are represented in the form of recommendations or alerts allowing

the physician to take the final decision about the diagnosis or treatment.

KB CDSS advantages include documentation of knowledge, self-learning,

explanation, intelligent support in decision making and reasoning. On the other

hand the development of KB CDSS is very time consuming.

Non-Knowledge-Based CDSS

Non knowledge-based CDSS are systems that aim to learn from past

experiences. They use some machine learning algorithms (Tanveer, 2015) in

historical clinical data to find useful patterns in them. These learned lessons are

saved in knowledge base and could be used in actual patient data. In contrast with

knowledge based systems these systems do not provide explicit information on

how their conclusions are drawn. They don‟t explain the reason behind them. Non-

knowledge-based systems focus mainly on a single disease.

The most popular types of Non knowledge-based CDSSs are:

 CDSS that use Artificial Neural Networks learning algorithm.

 CDSS that use as learning algorithms Genetic Algorithms.

Artificial Neural Networks

Neural networks represent a metaphor of brain for information processing.

They are seen as a system, backed by the results of human brain research, with a

structure similar to that of biological nerve networks, Artificial Neural Networks

(ANN) simulate human thinking by evaluating and eventually learning from

existing examples/occurrences (Yegnanarayana, 2009). Neural networks, though

have a biologically inspired modeling skills, are essentially statistical modeling

tools. These models are not actually an exact copy of the brain's functioning.

Each Artificial neural network is composed of a collection of neurons,

grouped in layers. Three layers are known: input, intermediate (called hidden

layer) and output. A hidden layer is a layer of neurons that gets data from the

previous layer and converts inputs to the output for further processing. Some

hidden layers can be placed between the input layer and the output layer, although

the use of only one hidden layer is most often used. In this case, the hidden layer

simply converts the inputs to a nonlinear combination and passes the transformed

ATINER CONFERENCE PRESENTATION SERIES No: COM2018-0124

7

inputs to the output layer. The most common hidden layer interpretation is a

feature extraction mechanism. That is, the hidden layer converts the original

problem inputs into some of the highest-level combinations of such inputs.

Like a neural biological network, an ANN can be organized in different ways

(e.g., topology or architecture); which means that neurons can be linked in different

ways. Therefore, ANN appears in many configurations called architectures. When

information is processed, many of the processing elements perform their

calculations at the same time. This parallel processing resembles the way the brain

works and this differs from serial processing of conventional informatics.

An ANN finds patterns in the patient data and then correlations between the

signs/symptoms of a patient and a possible diagnosis. They normally are

developed for one disease. Like every system that finds patterns in historical data a

large amount of clinical data has to be inputted in the neural network. These data

are used to “train” the network: i.e. it analyses them and then hypothesizing the

correct output (This is the set of weights for the links between nodes.)

Figure 2. Structure of Artificial Neural Network

Source: exploreai.

5

Learned results are compared to actual results (the difference between actual

and learned weights is made). The network adjust the results following this

process until a substantial number of correct predictions is made

The advantage of using ANN is that it can analyze incomplete data by

reasoning what the data should be. With the increase of patient data being

analyzed the quality of processes and analysis by ANN is improved. On the other

hand the weights produced by these systems are not easily interpreted and the

process of “training” is time consuming.

Genetic Algorithms

The basic idea of a genetic algorithm is to apply biological principles of

natural evolution in artificial systems. A genetic algorithm is an iterative procedure

5
https://exploreai.org/p/machine-learning-introduction-to-machine-learning.

ATINER CONFERENCE PRESENTATION SERIES No: COM2018-0124

8

involving a population of individuals, each of which is represented by a finite

symbol string, known as genes, encoding a possible solution in the space of a

given problem. This space, referred to as the search space, summarizes all possible

solutions to the problem. Genetic algorithms are mainly applied to areas that are

too big to be sought in a finite way.

The Genetic Algorithm is a method based on examples of natural selection in

the "real natural world" (Goldberg, 1989). GA uses different methodologies to

create more and more consistent solutions to a given problem by using older

(parent) solutions to create new ones (child). This will lead to an approximate

solution of the given solution space. It is believed that like in the nature over time

this will lead to solutions that have more and more skills to adapt, and better

survival opportunities.

There are many different implementations of Genetic Algorithms. Because of

the complexity in deriving good parameters, researchers prefer to use a more

traditional, algorithm instead of implementing their algorithm for any new

problem.

Even the simplest Genetic Algorithm for a given problem needs to have a set

of five components to work properly (Chapman, 2001).

 A genetic representation of potential problem solutions.

 One way to create an initial population for potential solutions.

 An assessment function that plays the role of the environment, ranking the

solutions in terms of their fitness with the environment.

 Genetic operators that change individuals to create children.

 Values for the different parameters that the Genetic Algorithm uses

(population size, probabilities of application of genetic operators, etc.).

Genetic algorithms attempt to solve a problem by using randomly generated

solutions to that problem. The random sets of solutions to the problem are

evaluated for their quality through a “fitness function”. The more fit solutions are

in the first places and new solutions could be created by combining them. New

solutions are evaluated in the same way as their parent. The process is repeated

over and over until an optimal solution is found. Genetic Algorithms in medicine

attempt to achieve optimal diagnostic and treatment results by following the

described process.

ATINER CONFERENCE PRESENTATION SERIES No: COM2018-0124

9

Figure 3. Evolution Flow of a Genetic Algorithm

Source: (Ying-Hong, 2001).

Genetic algorithms and neural networks are functionally similar in that they

are "black boxes" that attempt to derive knowledge from patient data.

Methodology

The logic of Knowledge-based CDSS is based on rules, that can be found by

algorithms and associations of data in the form of IF … THEN. On the other hand,

the logic of Non-knowledge-based CDSS is based on models created by Machine

Learning algorithms. In order to compare them objectively, and as a result to give

an answer to the research question, i.e. what is their performance when evaluated

against each other in a controlled environment, is identified their logic

performance through experimentation and analysis.

Experiments are carried out through Waikato Environment for Knowledge

Analysis (WEKA)
6
 that has as a programming language Java and its variants

based on GNU (General Public License). There are three main ways of using

WEKA.

 First is the analysis of the results of the methods to learn more about the

data, to get as much information about them.

 Second, it is the creation of a model for predicting new cases

 Third, comparison of methods.

Experiments have been carried out against three patient diagnosis datasets:

diabetes diagnosis, contact lenses recommendation and breast cancer diagnosis.

6
http://www.cs.waikato.ac.nz/ml/weka/index.html.

http://www.cs.waikato.ac.nz/ml/weka/index.html

ATINER CONFERENCE PRESENTATION SERIES No: COM2018-0124

10

Knowledge-Based CDSS vs Non-Knowledge-Based CDSS

A lot of algorithms can be used to represent the knowledge through rules. We

can mention Decision Table, OneR, JRip, M5Rules PART etc. To represent

Knowledge Based CDSS was chosen PART algorithm because it had the best

performance when was compared to other candidate algorithms to represent

Knowledge Based CDSS. As mentioned before, two well-known algorithms that

can be used to represent Non-Knowledge Based CDSS are Artificial Neural

Networks and Genetic Algorithms but the last ones have seen less. As a result

Artificial Neural Networks were used to represent Non-Knowledge Based CDSS.

PART Algorithm

PART algorithm generates an unrestricted decision list by building a partial

decision tree to obtain each rule.
7
 PART uses ID3 algorithm to build a partial

decision tree which have nodes and leaves nodes are used for the tests (part

between IF … Then) and leaves for the conclusion (part after THEN). ID3

algorithm is the traditional decision trees algorithm (Quinlan, 1979; Quinlan,

1983). One possible implementation of this algorithm could be found in Annex A.

The main task of the ID3 algorithm is to determine the feature to be tested on each

tree node. Below is the pseudo code for building a partial tree:

Procedure Expand Subset (S)

Choose the feature to be tested that split the given set of examples into

subsets

While exists subsets that are not expanded

And all the expanded subsets are leaves

Choose next subset t and expand it

If all the expanded subsets are leaves and

Estimated error for partial tree>= estimated error for node

Undo expansion into subsets and make node a leaf

Multilayer Perceptron

One implementation of artificial neural networks is multilayer perceptron

(MLP). These structural models consist of multiple layers of neurons. The

information goes through the neural network in one direction, from the input

layers of the network, through one or more hidden layers, toward the output layer.

The neurons of each layer are bound only to neurons of the subsequent layer.

Weka has an implementation of Multilayer Perceptron.
8
 One possible

implementation of this algorithm could be found in Annex B.

7
http://weka.sourceforge.net/doc.dev/weka/classifiers/rules/PART.html.

8
http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/MultilayerPerceptron.html.

ATINER CONFERENCE PRESENTATION SERIES No: COM2018-0124

11

Results

Algorithms are executed in three datasets. The rules created by PART

algorithm and the patterns found by Multilayer Perceptron are evaluated for

accuracy. The datasets are partitioned in 10 subsets where 9 are used to find the

rules and the patterns and one to test it for accuracy. The process is repeated in

order to use all the 10 subsets as a test subset. The average of correctly classified

observations on ten tests is displayed as the accuracy of algorithm.

The first dataset where the algorithms are executed is contact lenses data set.
9

The observations in this dataset are complete i.e. all possible combinations of

attribute-value pairs are represented and correct. There are 24 observations. Each

observation has 4 features: age of the patient, spectacle prescription, astigmatic

and tear production rate and one conclusion: kind of contact lenses that should be

taken.

The rules created by PART algorithm in Contact Lenses dataset were 83.33%

accurate.

Figure 5. Performance of Part Algorithm in Contact Lenses Dataset

The patterns created by Multilayer Perceptron in contact lenses dataset was

70.8 % accurate.

9
http://archive.ics.uci.edu/ml/datasets/Lenses.

ATINER CONFERENCE PRESENTATION SERIES No: COM2018-0124

12

Figure 6. Performance of Multilayer Perceptron Algorithm in Contact Lenses

Dataset

Another dataset that will be used for experiments is Breast Cancer dataset.
10

This data set includes 201 instances of one class and 85 instances of another class.

The instances are described by 9 attributes, including age, tumor size, invasion

nodes etc., some of which are linear and some are nominal. The conclusion (class)

is about the recurrence of the tumor. There are 286 observations in this dataset. It

is provided by the Oncology Institute and has repeatedly appeared in the machine

learning literature.

The rules created by PART algorithm in Breast Cancer dataset were 71.3%

accurate.

Figure 7. Performance of Part Algorithm in Breast Cancer Dataset

10

https://archive.ics.uci.edu/ml/datasets/breast+cancer.

ATINER CONFERENCE PRESENTATION SERIES No: COM2018-0124

13

The patterns created by Multilayer Perceptron in Breast Cancer dataset was

64.68 % accurate.

Figure 8. Performance of Multilayer Perceptron Algorithm in Breast Cancer

Dataset

.

The last dataset that is used for experiments is Pima Indians Diabetes

dataset.
11

 All observations in this dataset are from females at least 21 years old of

Pima Indian heritage. This dataset has 768 observations.

The rules created by PART algorithm in Pima Indians Diabetes dataset were

75.26% accurate.

11

https://www.kaggle.com/uciml/pima-indians-diabetes-database.

ATINER CONFERENCE PRESENTATION SERIES No: COM2018-0124

14

Figure 9. Performance of Part Algorithm Pima Indians Diabetes Dataset

The patterns created by Multilayer Perceptron in Pima Indians Diabetes

dataset was 75.39 % accurate.

Figure 10. Performance of Multilayer Perceptron Algorithm in Pima Indians

Diabetes Dataset

As it is seen from the experiments the PART algorithm, a representative

algorithm for Knowledge Base CDSS, performs better in datasets with a small

number of observations. As the number of observations is increasing the

performance of PART algorithm is decreasing. On the other hand the Multilayer

Perceptron, a representative algorithm for Non Knowledge Base CDSS, has a

better performance in the dataset with the biggest number of observations. A huge

amount of data is generated in health care organizations. As a result Non

Knowledge Base CDSS will perform better than Knowledge Base CDSS in

medicine area.

ATINER CONFERENCE PRESENTATION SERIES No: COM2018-0124

15

Conclusions

Clinical Decision Support Systems (CDSS) are developed in medicine area to

address a necessity: convert raw produced data into useful information that will

support the diagnosis and/or treatment decision making. There are two well-

known types of CDSS: Knowledge Based and Non Knowledge Based CDSS.

There is a considerable number of Knowledge-Based CDSS implementation in the

medicine field due to the intuitive perception that these systems improve

healthcare quality. It is widely believed that medicine profit more than the other

fields from these systems. The rules in Knowledge Based CDSS are easy to

understand and allow documentation of knowledge, self-learning, explanation,

intelligent support in decision making and reasoning. On the other hand the

development of Knowledge Based CDSS is very time consuming and their

accuracy is decreasing with the increase of observations‟ numbers (data records).

The last one is a big disadvantage. Healthcare organizations generate a tremendous

amount of data. Experiments show that Non-Knowledge Based systems perform

better in big datasets. Now that we are in Big Data Era Non-Knowledge Based

CDSS will perform better than Knowledge Based CDSS.

References

Angela L. P. Chow, David C. Lye and Onyebuchi A. Arah (2015) Mortality Benefits of

Antibiotic Computerized Decision Support System: Modifying Effects of Age;

Scientific Reports volume 5, Article number: 17346. Doi: 10.1038/srep17346.

Chapman and Hall/CRC (2001) The Practical Handbook Of Genetic Algorithms

Applications.

Clemens Scott Kruse, Amanda Beane (Published online 2018 Feb 5) Health Information

Technology Continues to Show Positive Effect on Medical Outcomes: Systematic

Review; J Med Internet Res. 2018 Feb; 20(2): e41. Doi: 10.2196/jmir.8793;

PMCID: PMC5818676.

Garg A. X., Adhikari N. K., McDonald H., Rosas-Arellano M. P., Devereaux P. J.,

Beyene J., et al. (2005) "Effects of computerized clinical decision support systems on

practitioner performance and patient outcomes: a systematic review."

 JAMA. 293 (10): 1223-38. PMID: 15755945DOI: 10.1001/jama.293.10.1223.

Goldberg, David (1989) Genetic Algorithms in Search,Optimization and Machine

Learning. Reading, MA: Addison-Wesley Professional. ISBN 978-0201157673.

Nachtigall I., Tafelski S., Deja M., et al. Long-term effect of computer-assisted decision

support for antibiotic treatment in critically ill patients: a prospective „before/after‟

cohort study. BMJ Open 2014;4:e005370. Doi:10.1136/bmjopen-2014- 005370.

Quinlan, J. R. (1979) Discovering rules by induction from large collections of examples.

In D. Michie (Ed.), Expert systems in the micro electronic age. Edinburgh University

Press.

Quinlan, J. R. (1983) Learning efficient classification procedures and their application to

chess endgames. In R. S. Michalski, J. G. Carbonell & T. M. Mitchell, (Eds.),

Machine learning: An artificial intelligence approach. Palo Alto: Tioga Publishing

Company.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5818676/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5818676/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5818676/
https://doi.org/10.1001/jama.293.10.1223
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0201157673

ATINER CONFERENCE PRESENTATION SERIES No: COM2018-0124

16

Russell, Stuart J., Peter Norvig (2016) Artificial Intelligence: Pearson New International

Edition: A Modern Approach Paperback. Pearson Education Limited.

Tanveer Syeda-Mahmood (March 2015) plenary talk: “The Role of Machine Learning in

Clinical Decision Support". SPIE Newsroom. Doi:10.1117/2.3201503.29.

Yegnanarayana, B. (2009) Artificial Neural Networks. PHI Learning Pvt. Ltd.

Ying-Hong Liao, Chuen-Tsai Sun (2001) An Educational Genetic Algorithms Learning

Tool. Retrieved on March 2018 from: https://bit.ly/2Ome5pm.

Annex A

package com.dt.ml;

importjava.util.ArrayList;

public class DecisonTreeCons {

 ArrayList<children> child;

 public class children{

 DecisonTreeConschildPointer;

 int value;

 children(DecisonTreeCons address, int v){

 value = v;

 childPointer = address;

 }

 }

 ArrayList<Record> data;

 double entropy;

 ArrayList<Integer>remainingfeatures;

 intbestfeatureindex;

 intpos_classcount;

 intneg_classcount;

 booleanisLeaf;

 String classvalue, className;

 HW1 mainClass = new HW1();

 publicDecisonTreeCons(){

 }

 publicDecisonTreeCons(ArrayList<Record> records, ArrayList<Integer>

remainingfeatures1){

 data = records;

 remainingfeatures = new ArrayList<Integer>();

 for(int count = 0; count < remainingfeatures1.size(); count++){

 this.remainingfeatures.add(remainingfeatures1.get(count));

 }

 pos_classcount = calc_poscount(data);//calculates # of positive class labels

for a set of records

 neg_classcount = records.size() - pos_classcount;

 entropy = calcEntropy(data);

 isLeaf = false;

 child = new ArrayList<DecisonTreeCons.children>();

ATINER CONFERENCE PRESENTATION SERIES No: COM2018-0124

17

 }

 public void buildTree() {

 if(remainingfeatures.size() == 0){

 setLeaf(1); //Leaf Node-- remaining features are same

 }

 else if(pos_classcount == data.size() || neg_classcount == data.size()){

 setLeaf(2); //Leaf -- class values are same

 }

 else{

 bestfeatureindex = findBestFeature();

 if(bestfeatureindex != -1){

 //System.out.println("Defining feature is: " +

remainingfeatures.get(bestfeatureindex));

 int temp = remainingfeatures.get(bestfeatureindex);

 className =

mainClass.getFeatureName(remainingfeatures.get(bestfeatureindex));

 remainingfeatures.remove(bestfeatureindex);

 for(int j = 0; j< 2;j++){

 ArrayList<Record>subrecordschild =

getSubrecord(data, temp, Integer.toString(j));

 if(subrecordschild.size() != 0){

 DecisonTreeConschild_temp = new

DecisonTreeCons(subrecordschild, remainingfeatures);

 child.add(new children(child_temp, j));

 child_temp.buildTree();

 }

 else{

 ;//System.out.println(j + " this values has

0 records");

 }

 }

 }

 else{

 setLeaf(1);//Leaf -- Information gain is zero

 }

 }

 }

 public void setLeaf(int i) {

 if(i == 2){

 isLeaf = true;

 classvalue = data.get(0).class_label;

 }

 else if(i == 1){

 isLeaf = true;

 if(pos_classcount>neg_classcount){

 classvalue = "1";

 }

 else{

ATINER CONFERENCE PRESENTATION SERIES No: COM2018-0124

18

 classvalue ="0";

 }

 }

 }

 publicintfindBestFeature() {

 doublemax_infogain = 0;

 int index = 0;

 for(int i = 0; i<remainingfeatures.size();i++){

 doublesub_pos_neg_entropies = 0;

 for(int j=0; j<2; j++){

 ArrayList<Record>subdata = getSubrecord(data,

remainingfeatures.get(i), Integer.toString(j));

 double curvalue_ent = findCurrentEnt(subdata);

 sub_pos_neg_entropies += (

(double)(double)subdata.size()/(double)data.size())* curvalue_ent;

 }

 ;

 if(max_infogain< (entropy - sub_pos_neg_entropies)){

 max_infogain = entropy - sub_pos_neg_entropies;

 index = i;

 }

 }

 if(max_infogain == 0){

 return -1;// zero info gain

 }

 return index;

 }

 private double findCurrentEnt(ArrayList<Record>subdata) {

 doublenegativeent = 0;

 doublepositiveevnt = 0;

 for(int i = 0 ; i<subdata.size();i++){

 if(subdata.get(i).class_label.equals("0")){

 negativeent += 1;

 }

 else{

 positiveevnt += 1;

 }

 }

 doublesubdatasize = subdata.size();

 double a = -plogp(positiveevnt/subdatasize);

 double b = -plogp(negativeent/subdatasize);

 return (a+b);

 }

 publicArrayList<Record>getSubrecord(ArrayList<Record>datalist, intfeatureposition,

String featurevalue) {

ATINER CONFERENCE PRESENTATION SERIES No: COM2018-0124

19

 //returns array list of records having particular feature - indicated by feature

position -- as feature value - 0 or 1

 ArrayList<Record> subset = new ArrayList<Record>();

 for(int i = 0; i <datalist.size(); i++) {

 Record record = datalist.get(i);

 if(record.getRecord_row()[featureposition].equals(featurevalue)) {

 subset.add(record);

 }

 }

 return subset;

 }

 public double calcEntropy(ArrayList<Record> records){

 if(records.size() == 0)

 return -1;

 intposcount_class = 0;

 intnegcount_class = 0;

 doublerecsize = records.size();

 for(int j = 0; j <records.size(); j++) {

 Record record = records.get(j);

 int a = Integer.parseInt(record.getClass_label());

 if(a == 1) {

 poscount_class += 1;

 }

 else{

 negcount_class += 1;

 }

 }

 doublepos_prob = (double)poscount_class/(double)recsize;

 doubleneg_prob = (double)negcount_class/(double)recsize;

 doubleent = -plogp(pos_prob) - plogp(neg_prob);

 returnent;

 }

 private static double plogp(double value) {

 if (value == 0){

 return 0;

 }

 double a = value *(Math.log(value) / Math.log(2));

 if(!Double.isNaN(a)){

 return a;

 }

 else{

 return 0;

 }

 }

 publicintcalc_poscount(ArrayList<Record> records) {

 //calculates # of positive class labels for a set of records

 int count = 0;

ATINER CONFERENCE PRESENTATION SERIES No: COM2018-0124

20

 for(int j = 0; j <records.size(); j++) {

 Record record = records.get(j);

 int a = Integer.parseInt(record.getClass_label());

 if(a == 1) {

 count += 1;

 }

 }

 return count;

 }

 public String printDtree(inttabCount) {

 tabCount++;

 if(isLeaf){

 returnclassvalue;

 }

 else{

 for(int counter = 0; counter <child.size(); counter++){

 System.out.println();

 for(int count = 0; count <tabCount; count++){

 System.out.print("| ");

 }

 System.out.print("|" + className + "= " +

child.get(counter).value + ": ");

 String formatPrint =

child.get(counter).childPointer.printDtree(tabCount);

 if(formatPrint.equals("0") || formatPrint.equals("1")){

 System.out.print(formatPrint);

 }

 }

 return "null";

 }

 }

 public String traverseTree(Record testRecord){

 DecisonTreeCons node = this;

 while(node.isLeaf != true){

 String best_feature_name = node.className;

 intbest_feature_index =

HW1.printfeatures.indexOf(best_feature_name);

 inttestrec_value =

Integer.parseInt(testRecord.getRecord_row()[best_feature_index]);

 node = node.child.get(testrec_value).childPointer;

 }

 String obtained_classlabel = node.classvalue;

 returnobtained_classlabel;

 }

}

ATINER CONFERENCE PRESENTATION SERIES No: COM2018-0124

21

Annex B

importjava.util.ArrayList;

importjava.util.Random;

import java.io.*;

public class MultilayerPerceptron {

 // main constructor

 public MultilayerPerceptron(intmp_neurons[])

 {

 Random rand = new Random();

 // create the required layers

 _layers = new ArrayList<Layer>();

 for (int i = 0; i <mp_neurons.length; ++i)

 _layers.add(

 new Layer(

 i == 0 ?

 mp_neurons[i] :mp_neurons[i -

1],

 mp_neurons[i], rand)

);

 _delta_w = new ArrayList<float[][]>();

 for (int i = 0; i <mp_neurons.length; ++i)

 _delta_w.add(new float

 [_layers.get(i).size()]

 [_layers.get(i).getWeights(0).length]

);

 _grad_ex = new ArrayList<float[]>();

 for (int i = 0; i <mp_neurons.length; ++i)

 _grad_ex.add(new float[_layers.get(i).size()]);

 }

 public float[] evaluate(float[] inputs)

 {

 // propagate the inputs through all neural network

 // and return the outputs

 assert(false);

 float outputs[] = new float[inputs.length];

 for(int i = 0; i < _layers.size(); ++i) {

 outputs = _layers.get(i).evaluate(inputs);

 inputs = outputs;

ATINER CONFERENCE PRESENTATION SERIES No: COM2018-0124

22

 }

 return outputs;

 }

 private float evaluateError(float nn_output[], float desired_output[])

 {

 float d[];

 // add bias to input if necessary

 if (desired_output.length != nn_output.length)

 d = Layer.add_bias(desired_output);

 else

 d = desired_output;

 assert(nn_output.length == d.length);

 float e = 0;

 for (int i = 0; i <nn_output.length; ++i)

 e += (nn_output[i] - d[i]) * (nn_output[i] - d[i]);

 return e;

 }

 public float evaluateQuadraticError(ArrayList<float[]> examples,

 ArrayList<float[]>

results)

 {

 // this function calculate the quadratic error for the given

 // examples/results sets

 assert(false);

 float e = 0;

 for (int i = 0; i <examples.size(); ++i) {

 e += evaluateError(evaluate(examples.get(i)), results.get(i));

 }

 return e;

 }

 private void evaluateGradients(float[] results)

 {

 // for each neuron in each layer

 for (int c = _layers.size()-1; c >= 0; --c) {

 for (int i = 0; i < _layers.get(c).size(); ++i) {

 // if it's output layer neuron

 if (c == _layers.size()-1) {

ATINER CONFERENCE PRESENTATION SERIES No: COM2018-0124

23

 _grad_ex.get(c)[i] =

 2 * (_layers.get(c).getOutput(i) -

results[0])

 *

_layers.get(c).getActivationDerivative(i);

 }

 else { // if it's neuron of the previous layers

 float sum = 0;

 for (int k = 1; k < _layers.get(c+1).size(); ++k)

 sum += _layers.get(c+1).getWeight(k, i)

* _grad_ex.get(c+1)[k];

 _grad_ex.get(c)[i] =

_layers.get(c).getActivationDerivative(i) * sum;

 }

 }

 }

 }

 private void resetWeightsDelta()

 {

 // reset delta values for each weight

 for (int c = 0; c < _layers.size(); ++c) {

 for (int i = 0; i < _layers.get(c).size(); ++i) {

 float weights[] = _layers.get(c).getWeights(i);

 for (int j = 0; j <weights.length; ++j)

 _delta_w.get(c)[i][j] = 0;

 }

 }

 }

 private void evaluateWeightsDelta()

 {

 // evaluate delta values for each weight

 for (int c = 1; c < _layers.size(); ++c) {

 for (int i = 0; i < _layers.get(c).size(); ++i) {

 float weights[] = _layers.get(c).getWeights(i);

 for (int j = 0; j <weights.length; ++j)

 _delta_w.get(c)[i][j] += _grad_ex.get(c)[i]

 * _layers.get(c-1).getOutput(j);

 }

 }

 }

 private void updateWeights(float learning_rate)

 {

 for (int c = 0; c < _layers.size(); ++c) {

 for (int i = 0; i < _layers.get(c).size(); ++i) {

 float weights[] = _layers.get(c).getWeights(i);

ATINER CONFERENCE PRESENTATION SERIES No: COM2018-0124

24

 for (int j = 0; j <weights.length; ++j)

 _layers.get(c).setWeight(i, j,

_layers.get(c).getWeight(i, j)

 - (learning_rate *

_delta_w.get(c)[i][j]));

 }

 }

 }

 private void batchBackPropagation(ArrayList<float[]> examples,

 ArrayList<float[]> results,

 floatlearning_rate)

 {

 resetWeightsDelta();

 for (int l = 0; l <examples.size(); ++l) {

 evaluate(examples.get(l));

 evaluateGradients(results.get(l));

 evaluateWeightsDelta();

 }

 updateWeights(learning_rate);

 }

 public void learn(ArrayList<float[]> examples,

 ArrayList<float[]> results,

 floatlearning_rate)

 {

 // this function implements a batched back propagation algorithm

 assert(false);

 float e = Float.POSITIVE_INFINITY;

 while (e > 0.001f) {

 batchBackPropagation(examples, results, learning_rate);

 e = evaluateQuadraticError(examples, results);

 }

 }

 privateArrayList<Layer> _layers;

 privateArrayList<float[][]> _delta_w;

 privateArrayList<float[]> _grad_ex;

ATINER CONFERENCE PRESENTATION SERIES No: COM2018-0124

25

 /**

 * @paramargs

 */

 public static void main(String[] args) {

 // initialization

 ArrayList<float[]> ex = new ArrayList<float[]>();

 ArrayList<float[]> out = new ArrayList<float[]>();

 for (int i = 0; i < 4; ++i) {

 ex.add(new float);

 out.add(new float);

 }

 // fill the examples database

 ex.get(0)[0] = -1; ex.get(0) = 1; out.get(0)[0] = 1;

 ex.get(1)[0] = 1; ex.get(1) = 1; out.get(1)[0] = -1;

 ex.get(2)[0] = 1; ex.get(2) = -1; out.get(2)[0] = 1;

 ex.get(3)[0] = -1; ex.get(3) = -1; out.get(3)[0] = -1;

 intmp_neurons[] = {

 ex.get(0).length, // layer 1: input layer - 2 neurons

 ex.get(0).length * 3, // layer 2: hidden layer - 6

neurons

 1 // layer 3: output layer - 1

neuron

 };

 MultilayerPerceptronMultilayerPerceptron = new

MultilayerPerceptron(mp_neurons);

 try {

 PrintWriterfout = new PrintWriter(new FileWriter("plot.dat"));

 fout.println("#\tX\tY");

 for (int i = 0; i < 40000; ++i) {

 MultilayerPerceptron.learn(ex, out, 0.3f);

 float error =

MultilayerPerceptron.evaluateQuadraticError(ex, out);

 System.out.println(i + " -> error : " + error);

 fout.println("\t" + i + "\t" + error);

 }

 fout.close();

 } catch (IOException e){

 e.printStackTrace();

 }

 }

}

