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Abstract 

 

An efficient recursive procedure is proposed for computation of a 

statistical regularized estimator for the optimal linear estimator in a linear 

model. Regularization is made by introducing a priori non-negative covariance 

structure for the vector of estimated parameters.  

This procedure is designed to overcome the difficulties related to the very 

high dimension of the vector of parameters as well as that of the observation 

vector. 

Theoretical results related to properties of the proposed procedure are 

obtained and proved. Simple numerical example with Monte-Carlo simulation 

as well as parameter estimation in a very high oceanic model are presented to 

demonstrate the utility of the proposed approach. 

 

Keywords: Linear model; regularization; recursive algorithm; non-negative 

covariance structure. 
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Introduction 

 

Hoang and Baraille (2013) introduce a statistical regularized estimator for 

an optimal linear estimator of unknown vector in a linear model with arbitrary 

non-negative covariance structure, 

 

   (1.1)                                                             vHxz   

 

where z  is the p -vector observation, H  is the )( np   observation matrix,  x  

is the n -vector of unknown parameters to be estimated, v  is the p -vector 

representing the observation error. 

 

It is assumed 

 

  (1.2)                                                         VvvEvE T  )(,0)(  

  (1.3)                                      xxeNevEMeeExxE TT  :,)(,)(,)(  

 

where (.)E  is the mathematical expectation operator. Throughout this paper 

let p , n  be any positive integers, the covariance matrix of the joint vector 
TTT vev ),(~   may be singular (and hence the model (1)-(3) is called a linear 

model with arbitrary non-negative covariance structure. 

 

No particular assumption is made regarding the probability density 

function of  v~ and p , n   are any positive integers. 

In Hoang and Baraille (2013) the optimal linear estimator for the unknown 

vector x  in the model (1)-(3)  is defined as 

 

  (1.4)                                )(,,ˆ
11

,

11 HHIVVVVIHGGzx TT    

 

where TV1   is the transpose of 1V , 
A denotes the pseudo-inversion of A . 

 

As in practice all the matrices RNMH ,,,  and the observation vector 

z are given only approximately, instead of data set ),,,,(: zRNMHD   we are 

given their  -approximations 

 

  (1.5)                                       ),,,,(  zRNMHD   

 

hence the resulting estimate  )(ˆ:ˆ  Dxx  . 

 

As shown in Hoang and Baraille (2013), there are situations when when  

the error xxe ˆˆ:  
 between the "true" estimate x̂  and its perturbed 

x̂  may 
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be very large even for small data error  .The regularization procedure has 

been proposed in Hoang and Baraille (2013)  to overcome this difficulty. 

In this paper we are interested in obtaining a simple recursive algorithm 

for computation of  

 x̂  subject to the situation when n   or p  or/and np,  may be very high.  

This problem is very important for many practical applications. As 

example, consider data assimilation problems in meteorology and 

oceanography (Daley, 1991). For typical data set in oceanography, at each 

assimilation instant we have the observation vector with 54 1010 p , 
76 1010 n . We will show that a simplified algorithm can be designed by 

regularization of the priori covariance matrix M  for the vector of unknown 

parameters x . 

 

 

Simple Recursive Method for Estimating the Vector of Parameters 

 

Problem Statement: Free-noise Observations 

First consider the model (1) and assume that 0v . We have then the 

system of linear equations 

 

  (2.1)                                                   np RxRzHxz  ,,  

 

and pRz  for the noise-free observations z . 

 

Suppose that the system (6) is compatible, i.e. there exists 
0x such 

that zHx 0 . In what follows let 
T

pzzz ),...,( 1 , 
TT

p

T hhH ),...,( 1 , i.e. iz  is 

the 
thi  component of z , ih    is the 

thi   row-vector of H . The problem is to 

obtain a simple recursive procedure to compute a solution of the system (2.1). 

 

Iterative Procedure 

To find a solution to (2.1) let us introduce the following system of 

recursive equations 

 

  (2.2a)                          iiiiii xhzKxx 1111   , pixx ,...,0,0  , 

  (2.2b)                                       ,/ 111111

T

iii

T

iii hMhhMK    

  (2.2c)                           ,...1,0,111   iMhKMM iiiii  ; 0M  is given. 

 

Mention that the system is compatible if  HRz where  HR   is a linear 

space spanned by the columns of H . 

 

Theorem 2.1. Suppose the system (2.1) is compatible. The for any finite x  and 

symmetric positive definitive (SPD) matrix 0M  we have zHx p  . 
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In order to prove Theorem 2.1 we need  

 

Lemma 2.1. The following equalities hold 

 

  (2.3)                                             jiMh ji ,...,1,0   

 

 Proof. By induction. We have for 1j ,  

 

                                                  001110111  MhKhMhMh  

 

since 1/ 10110111  TT hMhhMhKh .  

Let the statement be true for some pl 1 . We show now that it is true 

also for 1l . As the statement is true for l , it implies  liMh li ,...,1,0  . We 

have to prove 

 

                                                     1,...,1,01  liMh li  

 

Substituting .111 lllll MhKMM   into 1li Mh , taking into account the 

form of 1lK  one sees that as liMh li ,...,1,0  it implies  

1,...,1,01  liMh li  (End of Proof). 

 

 Lemma 2.2. The following equalities hold 

 

  (2.4)                                                    ijzxh jij ,...,1,   

 

 Proof. By induction. We have for 1i ,  01110111 ( xhzKxhxh  . As  

111 Kh , it is evident that 111 zxh  . 

 

Let the statement be true for some pl 1 . We show now that it is true 

also for 1l . As the statement is true for l , it implies lizxh ili ,...,1,  . We 

have to prove 1,...,1,1  lizxh ili . From the definition of 1lx , 

 

                                )()( 1111111 lllliilllllili xhzKhzxhzKxhxh    

 

However from Lemma 2.1,   0/ 111111   lll

T

llili MhMhMhKh as 

,0li Mh for all li  . (End of  Proof). 
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Proof of Theorem 2.1. 

Theorem follows from Lemma 2.2 since under the conditions of Theorem, 

from Eq. (9) for pj   it follows pjzxh jpj ,...,1,    or zHx p  . (End of 

Proof). 

 

Corollary  2.1. Suppose the rows of  T

l

T

l hhH ,...,: 1  are linearly independent. 

Then under conditions of Theorem 2.1,  

   

                                                              lnMrank l  . 

 

Proof. By induction. The fact that for 1l , 011 Mh  implies at least the null 

subspace of 1M  has one nonzero element hence   1)(dim 1  nMR . We show 

now that it is impossible that   1)(dim 1  nMR . 

Suppose that   ,...3,2',')(dim 1  nnnMR  For simplicity, let 2'n . It means 

that there exist 2n  linearly independent vectors 21 ,..., naa  such that any 

element from the subspace )( 1MR can be represented on the basis of these 

2n  elements. As to the matrix  

 

                                                    TT hMhMhhMM 10101101 /:         

 

its subspace )( 1MR   has the dimension 1 hence any element from )( 1MR   

can be represented  on the basis of some vector 1b . Thus any element from the 

subspace )'( 1MR  with 111 ' MMM  can be represented as a linear 

combination of 1n  elements 121 ,,..., baa n . On the other hand, as 

011 MMM   is non-singular, any element of )( 0MR  must be represented 

as a linear combination of  n  linearly independent vectors. It contradicts the 

fact that any element from )'( 1MR  could be written as a linear combination of 

1n  linearly independent elements. We conclude that it is impossible  

  1)(dim 1  nMR  hence   1)(dim 1  nMR . The same argument is true for 

nn ,...,4,3' .  

 

Suppose now Corollary is true for 1l  and we have to prove that it holds 

for 1:  ll .For  

 

                                    T

lllll

T

lll hMhMhhMM 11111 /:   , 11   lll MMM   

 

we have     1dim,1)(dim 11  lMnMR . From Lemma 2.1 it follows 

1,...,1,01  liMh li  hence the null subspace     1lMN  has the dimension 

1l (as all the rows of H  are linearly independent). It follows that the 

dimension of the subspace  1lMR  is at least less or equal to 1 ln . 
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By the same way as proved for  1l  one can show that is is impossible 

  1)(dim 1  lnMR l  hence   1)(dim 1  lnMR l (End of Proof). 

 

Comment 2.1. By verifying the rank of lM , Corollary  2.1 allows us to check if 

the computer code  is correct. In particular if H  is non-singular, at the end of 

the iterative procedure the matrix nM    should be zero. The recursive equations 

(7a-c) yield the unique solution of the equation Hxz   after n  iterations. 

 

Using the result (2.3) in Lemma 2.1, it is easy to see that 

 

 Corollary 2.2. Suppose  1lh  is linearly dependent on lhh ,...,1 . Then in (2.2), 

ll MM 1 . 

 

Corollary 2.3. Suppose lhh ,...,1   are linearly independent, 1lh  is linearly 

dependent on lhh ,...,1 .  Then under the conditions of Theorem 2.1, 

  lnMRrank l  )( 1  

 

Corollary 2.3 follows from the fact that when 1lh  is linearly dependent on 

lhh ,...,1  from Corollary 2.2, ll MM 1  and hence from Corollary 2.1, 

  lnMRrank l  )( 1 . 

 

Comment 2.2 The last equation for iM   in (2.2) is equivalent to that given in 

(3.14.1) in Albert (1972) since from Corollary 2.2 it follows automatically 

ll MM 1  if 1lh  is linearly dependent on lhh ,...,1 .  Another difference is that 

in (2.2) the initial 0M  may be any SPD matrix whereas in (3.14.1) of Albert 

(1972) it is assumed IM 0 . 

 

In the next section we shall show that the fact 0M  may be any SPD matrix 

is important to obtain the optimal in mean squared estimator for x . 

 

 

Optimal Properties of the Solution of (2.2) 

 

Regularized Estimate 

Return to Eqs (1.1)-(1.3) and assume that 0,0  NV .   The optimal 

estimator is given in the form 

 

  (3.1)                                    )(ˆ xHzHMHMHxx TT 

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where H  is the pseudo-inversion of H . Consider first the equation 

xhz 11  . By the same way the optimal estimator obtained on the basis of the 

first observation is 

 

(3.2)                  )(ˆ
1111 xHzMhhMhxx TT 


,   MhMhhMhMM TT

111101


  

 

If we apply Eq. (3.14.1) in [Albert],  IM   and instead of 1x̂   we have 

 

  (3.3)                           1111111 )/('ˆ zhzhhhx TT  , 11111 )/(' hhhhIM TT  

 

For simplicity, let 0x . Comparing (3.2) with (3.3) shows that if  1'x̂  is 

the orthogonal projection of  x  onto the subspace spanned by Th1 , the estimate 

1x̂  belongs to the subspace spanned by M .  Thus the algorithm (3.2) takes into 

account the fact that we known a priori x  belongs to the space  MR . This fact 

is very important when the number of observations  p  is much less that the 

number of the estimated parameters n  as it happens in oceanic data 

assimilation: today usually  54 1010 p  , 76 1010 n . 

In Hoang and Baraille (2014) a similar question has been studied which 

concerns the choice of adequate structure for the Error Covariance Matrix 

(ECM) M . 

We prove now a more strong result saying that all the estimates 

,...2,1, ixi   are projected onto the space  MR . 

 

Theorem 3.1. Consider the algorithm (2.2). Suppose  MRx  . Then all the 

estimates ,...2,1, ixi  belong the space spanned by the columns of M , i.e. 

 MRxi  . 

 

Proof. For 1i  the statement is evident as shown above. 

 

Suppose the statement is true for some i . We will show that it is true also 

for 1:  ii . 

Really as  MRxi  , it is sufficient to show that  MRzK ii  11 . From 

 MRxi  , iiii Kxx  1 , as  MRxi 1  it follows that  MRK ii  . But  

  i

T

iii

T

iiii hMhhMK 


 11  hence the columns of  1iM  must belong to 

 MR .  Again from the equation for iM  in (2.2) we have  MRM i  . It 

proves  MRzK ii  11  

since  MRM i   (End of proof).  
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Theorem 2.2 says that by specifying   MRM 0  the algorithm (2.2) will 

produce the estimates belonging to the subspace  MR . Specification of the 

matrix M  plays the most important task to produce the estimate with high 

quality if we are given a priori that the estimates must belong to  MR . At the 

second iteration from Lemma 2.1 it is seen that for 2,1i , 02 Mhi  and 

0'2 Mhi . It means that two subspaces  2MR  and  2'MR  are orthogonal to 

null subspace  2HN  hence    22 'MRMR  . 

 

 Comment 3.1 

(i) In practice, as  M  is estimated from samples, it is important to 

ensure that  MRx  . 

(ii)  Theorem 3.1 says that there is a possibility to regularize the 

estimate when the number of observations is less than the number 

of estimated parameters by choosing   MMMRx  0, . Thus the 

algorithm can be considered as that which finds  the solution 

zHx   under the constraint  MRx  . In the procedure in Albert 

(1972) putting IM 0  means that there is no constraint on x  hence 

the best way to do is to project x  orthogonally onto subspace of 

 THR . 

 

Minimal Variance Estimate 

Suppose x  is a random variable having the mean x  and covariance 

matrix M . We have then the following result 

 

Theorem 3.2. Suppose x  is a random variable having the mean x  and 

covariance matrix 

M .  Then  ix   generated by the recursive equations (2.2) is an unbiased and 

minimum variance estimate for x  in the class of all unbiased estimates  

linearly dependent on x  and izz ,...,1 . 

 

Proof. Introduce for the system (2.1), 

 

   (3.4)                                    TTTiT

i

i hhHzzz ),...,(:,),...,(: 11111   

 

and the class of all estimates ix'  linearly dependent on on x  and izz ,...,1 . 

 

                                                                 
i

i BzxABAx 1),('   

The condition for unbiasedness of ),(' BAx i  is 

 

                                                          xBzxAEBAxE i

i  )(),(' 1  
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or 

                                                                xxxBHA i  ,)( 1  

from which follows iBHIA 1 . Substituting this relation into 
i

i BzxABAx 1),('   leads to 

 

  (3.5)                                                   xHzBxBx ii

i 11)('   

 

It means that all the estimate in (3.5) is unbiased. 

 

Consider the minimization problem  

 

                                          )(':,minarg)()( BxxeeetraceEBJ iB

T   

 

We have 

 

                                   
TiiiiT xHzBxxxHzBxxEeeE )()()( 1111  

 

                                                 TTiiiTTi BHMBHMBHBHMM ,

111

,

1   

 

Taking the derivative of )(BJ  with respect to B  implies the following 

equation for finding B , 

 

                                                       TiTii HMHMBH ,

1

,

11   

 

from which follows one of the solutions  

 

                                                          TiiTi HMHHMB ,

11

,

10  

 

If now instead of (3.4) we consider the system 

 

  (3.6)                           IvvEvxHz Tiiiii  )(,0 ,

11111 ,   0)(1  Ti xxvE  

 

and repeat the same proof, one can show that the unbiased minimum variance 

estimate 

for x  is given by 

 

 (3.7a)                                           xHzKxx ii

i 11)()(ˆ    

 (3.7b)                                            1,

11

,

1)(


 IHMHHMK TiiTi   

 

 

Using the properties of the pseudo-inverse, one can prove that 
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  (3.8)                                                     00 )(lim BK    

 

Thus for a very small 0  the estimate  )(ˆ ix  is unbiased minimum 

variance which can be made as close as possible to )(' 0Bx i . 

    On the other hand, applying Lemma 1 in Hoang and Baraille (2011a) for the 

case of uncorrelated sequence  iv , one can show that 

 

  (3.9a)                                 )(ˆ)()(ˆ)(ˆ
1111  iiiiii xhzkxx   , 

  (3.9b)                                  

T

iii

T

iii hMhhMk 111111 )(/)()( , 

  (3.9c)                                    )()()()( 111  iiiii MhkMM    

  (3.9d)                                                        MM )(0    

 

Letting 0  one comes to  ii xx )(ˆ  in (2.2) (End of proof). 

 

 

Noisy Observations 

The algorithm (3.9) thus yields the unbiased minimal variance (UMV) 

estimates for  x  in the situation when   represents the observation noise 

variance. We want to stress that these algorithms produce the UMV estimates 

only if MM   where M is the true covariance of the error xxe :  before 

arriving ,...2,1, izi  

 

 

Very High Dimension of x : Simplified Algorithms 

In the field of data assimilation in meteorology and oceanography usually 

the state vector x  is of very high dimension, of orders of 
76 1010  (Daley, 

1991). This happens because x  is a collection of several variables defined in 

the three dimensional grid. It is therefore impossible to evaluate the matrices 

iM  in (2.2) and (3.9) with the number of elements 
1412 1010  . One of possible 

ways is to seek some leading eigenvectors of M  and use them to approximate 
M . More precisely, let us have the following eigen-decomposition for M  

(Golub and Van Loan, 1996) 

  

  (3.10)                                                             
TUDUM   

 

In (3.10) the columns of  U are the eigenvectors of M  and D  is diagonal 

with the elements n ...21   at the diagonal – the eigen-values of  M . Let 

 21 ,UUU  ,  21 , DDdiagD  . If we put in the algorithms (2.2) or (3.9) 
TUDUM 111 , then the algorithm (2.2), for example, will yield the best 
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estimate for x  projected in the subspace )( 1UR . Let  )(11 mUU   has the 

dimension  nmmn  , . Let )()()()( 111 mUmDmUmM T . 

 

Main Theoretical Results 

Theorem 3.3 

Consider two algorithms of the type (2.2) subject to two matrices  

 

                                         )( ii mMM )()()( i

T

iiiii mUmDmU ,  2,1i  

where the columns of the columns of  )( ii mU consist of  im  leading 

eigenvectors  

of  M , 21 mm  . Then the following inequalities hold 

 

  (3.11)                      2,1,)(ˆ)(,,)()( 21

2

1

2

2  ixmxmemmmeEmeE ii  

 

)(ˆ imx is the estimate produced by the algorithm (2.2) subject to )(: imMM  , 

where the strict inequality takes place if 0
2
m . 

 

 Proof 

Write the representation of x  in the terms of decomposition of  M on the 

basis of its eigenvectors (for simplicity, let 0x . 

 (3.12)                             TUDUMUDLLyyUDx  ,:, 2/12/1  

where y  is of zero mean and has the covariance matrix I .  

Let ly   is a sample of y .  Theorem 3.2 states that for all ll Lyx : , the 

algorithm (2.2)  will yield the estimate with the minimal variance. 

 

In what follows we introduce the notation: 

                                       
TUDUM  - the true ECM of x ; 

             )()()()( mUmDmUmM T  - a truncated covariance coming from M  ; 

                               M  - the initialized ECM in the algorithm (2.2). 

 

                                 The samples lx  of x  are coming from a variable  

                                           having zero mean and covariance M . 

 

                                         )(mx l  - a sample are coming from a variable  

                                             having zero mean and covariance )(mM . 

 

There are the following different cases 

 

1.  MM   : By Theorem 3.2  the algorithm (2.2) will produce  the estimates 

of minimal variance for all  
lx ; This is true also if (2.2)  is applied to )(mx l . 
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2. 0,),( 1  mnmmMM  : 

 

      2.1. For samples belonging to  )(mUR  : The  estimates will  be of minimal 

variance. 

      2.2. For samples belonging to   )(/ mURR n  (i.e. belonging to nR  but not 

to  )(mUR ) : The estimates will not be of minimal variance. 

 

Thus in the mean sense 

 

                                           xmxmenmmeEneE  )(ˆ)(,,)()(
22

 

 

3. Consider two initializations )( 1mMM   and )( 2mMM  , 

0, 121 1
 mnmm   

In the same way we have 

 

        3.1. )( 1mMM  : 

 

                (i)       )( 1mMRx l   :: the estimates are of minimal variance 

                (ii)      )( 1mMRx l   : the estimates are not of minimal variance; 

 

        3.2. )( 2mMM  :   The algorithm (2.2)  will produce  the estimates  

               (i) of minimal variance for  )( 1mMRx l  ; 

               (ii)  of minimal variance for    )(/)( 12 mMRmMRx l   ; 

               (iii) not of minimal variance for    )(/)( 2mMRnMRx l  . 

 

Thus in the mean sense 

 

  (3.14)                        xmxmemmmeEmeE  )(ˆ)(,,)()( 21

2

1

2

2                

 

Simplified Algorithm 

 Theorem 3.4 

Consider the algorithm (2.2) subject to 

nmmUmDmUmMmMM T  ),()()()(),(: .  

Then this algorithm can be rewritten in the form 

 

  (3.15a)                          m

eei RixixmUx  )1(),1()(1 , 

  (3.15b)            )()1()1()()1( 1 ixihziKixix eeieee   , 

pixx ,...,1,0,0   

  (3.15c)                    )1()1()1()1()1()1( ihiMihihiMiK T

eee

T

eee , 
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  (3.15d)                             )()0(),()1( 1 mDMmUhih eie    

 

It is seen that in the algorithm (3.15a-d), the estimate m

e Rix )( belongs to 

the linear space of dimension m . In data assimilation, it happens that the 

dimension of x  maybe is very high but there is only some leading directions 

(leading eigenvectors of M ) which are very important to be captured. Thus the 

algorithm (15a-d) is quite adapted for solving such problems if the initial 

covariance M  can be constructed from physical considerations or numerical 

model,  and next to decompose it to obtain an approximated decomposition 

                                          ),()()()( mUmDmUmM T nm   

 

Mention that the version (3.15a-d) is very closed to that studied in Hoang 

et al. (2001) for ensuring a stability of the filter. 

 

 

Numerical Example 

 

Consider the system (1.1) subject to the covariance M , 

 

  (4.1)                                       



















00

05625.0525.0

0525.085.0

M  

 

Here we assume that the 1st and 3rd components of x  is observed, i.e. 

 

  (4.2)                                              









1

0

0

0

0

1
H  

 

Numerical computation of eigen-decomposition of 
TUDUM  yields 

 

  (4.3)                   
























1549999.0454.1

795.0168.76066.0

606.016.6795.0

,, 321

EE

E

E

uuuU  

 

  (4.4)                                         )162.0,64.0,25.1(diagD   

 

Three algorithms of the type (3.15) are applied subject to three covariance 

matrices )()()()( mUmDmUmMM T . They are denoted as ALG(m). 

In Figure 4.1 we show the numerical results obtained from the Monte-

Carlo simulation. 

There are 100 samples simulating the true x  which are generated by a 

random generator  
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distributed according to the normal distribution ),/(. MxN . The curves in 

Figure 4.1 represent rms of the estimation error xxe ˆ  obtained by different 

algorithms. Here the curves 3,2,1  mmm  correspond to the three 

algorithms ALG(1), ALG(2), ALG(3). 

The curve Id denotes the 4th algorithm ALG(4) which is run subject to 

IM   - identity matrix. This is equivalent to the orthogonal projection (using 

the pseudo-inversion of H ) of z  into the subspace  THR . 

 

Figure 4.1. Performance (rms) of the Algorithm (3.15) Subject to Different 

Projection Subspaces 

 
 

As seen from Figure 4.1, the estimation error is highest in ALG(1). There 

is practically no difference between ALG (2) and ALG (3) which are capable 

of decreasing considerably the estimation error (50%) compared to ALG (1). 

As to the ALG(4), its performance is situated between ALG(1) and ALG(2). 

This experiment confirms the theoretical results and demonstrates that if we are 

given a good priori information on the estimated parameters, there is a simple 

way to improve the quality of the estimate by appropriately introducing it into 

the algorithm in the form of the regularization matrix M . 

The results produced by ALG(1) and ALG(4) show also that when the 

priori information is insufficiently rich, the algorithm naturally produces the 

estimates of poor quality. In such situation, simple applying orthogonal 

projection can yield a better result. For the present example, the reason is that 

using the 2nd mode 2u  allows to capture the important information contained 

in the second observation 2v . Ignoring it (as does ALG(1)) is equivalent to 

ignoring the second observation 2z . As to the third mode 3u , it has a weak 

impact on the estimation since the corresponding eigenvalue 3 is too small. 

That explains why ALG(2) and ALG(3) have produced almost the same 

results. 

 



ATINER CONFERENCE PAPER SERIES No: STA2014-1256 

 

17 

Experiment with Oceanic MICOM Model 

 

MICOM Model 

In this section we will show an importance of the regularization factor in 

the form of a priori covariance M  in the recursive procedure for the design of 

a filters for systems of very high dimension. 

The MICOM model used in this experiment is exactly as that presented in 

Hoang and Baraille (2011b). We recall only that the model configuration is a 

domain situated in the North Atlantic from N30   to N60  and W80  to 

W44 . The grid spacing is about 2.0  in longitude and in latitude, requiring 

the horizontal mesh 140,...,1i ; 180,...,1j . The distance between two points 

kmxxx ii 201   , kmyyy ii 201   . The number of layers in the 

model 4vn . We note that the state of the model ),,(: vuhx   where 

),,( ljihh   is the thickness of the thl  layer, ),,( ljiuu  , ),,( ljivv   are two 

velocity components. The "true" ocean is simulated by running the model from 

"climatology" during two years. Each ten days the sea-surface height (SSH) are 

stored at the grid points 140,...,20,10oi  ; 180,...,20,10oj  which  are 

considered as observations in the assimilation experiment. The sequence of 

true states will be available and allows us to compute the estimation errors. 

Thus the observation operator H is constant at all assimilation instants. 

The assimilation experiment consists of using the SSH to correct the 

model solution, which is initialized by some arbitrarily chosen state resulting 

from the control run. 

 

Different Filters 

The different filters will be implemented to solve this assimilation 

problem. It is well known that determining the filter gain is one of the most 

important tasks in the design of a filter. As for the considered problem it is 

impossible to apply the standard Kalman filter (Kalman, 1960) since in the 

present experiment, )10( 6On  and the number of elements in the ECM is of 

order )( 2nO . At each assimilation instant, the estimate for the system state in 

all filters is computed in the form (3.1) with the corresponding ECM M . As 

the number of observations 252p  is largely inferior to the dimension of the 

system state, the choice of M  as a regularization factor has a great impact on 

the quality of the produced estimates. In this assimilation experiment the 

following filters will be employed. First the Prediction Error Filter (PEF) 

whose ECM is obtained on the basis of leading real Schur vectors (Hoang and 

Baraille, 2011b).  Parallelly two other filters, one is the Cooper-Haines filter 

(CHF) (Cooper and Haines, 1996) and another is an EnOI (Ensemble based 

Optimal Interpolation) filter (Greenslade and Young, 2005) will be used. 

Mention that the ECM in the CHF is obtained on the basis of the principle of a 

vertical rearrangement of water parcels (see also Hoang and Baraille, 2011b). 

The method conserves the water masses and maintains geostrophy. The main 

difference between PEF and EnOI is lying in the way to generate the 
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ensembles of Prediction Error (PE) samples. In the PEF, the ensemble of PE 

samples is generated using the sampling procedure described in Hoang and 

Baraille (2011b) (and it will be denoted as En(PEF)). As for the EnOI, the 

ensemble of background errors samples (the term used in Greenslade and 

Young (2005)) and will be denoted by En(EnOI)) will be used. The elements of  

En(EnOI) are constructed according to the method in Greenslade and Young 

(2005). It consists of using 2-year mean of true states as the background field 

and the error samples are calculated as differences between individual 10-day 

true states during this period and the background. 

According to Corollary 4.1 in Hoang and Baraille (2014), using the 

hypothesis on separable vertical-horizontal structure for the ECM, we represent 

hv MMM  , where hv MM , are the ECM of vertical and horizontal variables 

respectively. In the case of sea-surface height observations, from the 

representation hv MMM  , the gain filter can be represented in the form 

 

                                                         T

vhv kkkkKKKK ],,,[, 4321  

Figure 5.1. Vertical Gain Coefficients Obtained during Application of the 

Samp-Proc for Layer Thickness Correction 

 
                                         

where  denotes the Kronecker product. The gain vK allows the correction 

available at the surface to propagate into all vertical subsurface layers. As to 

hK , it represents an operator of (horizontal) optimal interpolation which 

interpolates the observations over all horizontal grid points at the surface. 

Mention that the elements of vM  and the correlation length parameter in 

hM are estimated by minimizing the mean distance between the data matrix 

dM  and M using a simultaneous perturbation stochastic approximation 

algorithm (Spall, 2000). The data matrix dM  is obtained from samples of the 

leading real Schur vectors as described in Hoang and Baraille (2011b). 
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Figure 5.1 shows the estimated vertical coefficients 4,3,2,1, lk
lv  

obtained on the basis of the ECM spanned by the elements of En(PEF). It is 

seen that the estimates converge quite quickly. The estimated vertical gain 

coefficients T

v kkkkK ],,,[ 4321  computed on the basis of the ECM from two 

ensembles En(PEF), En(EnOI) at the iteration 72t  are 

 

  (5.1a)                                    p

Tpef

v IK  12.80,44.34,53.29,59.144 , 

  (5.1b)                                         Tenoi

vK 21.22,3.3,53.7,04.34   

 

The reason for the choice 72t  is that in practice the ensemble En(EnOI) 

has only a limited number of samples and for the comparison purpose we want 

to use  two ensembles of the same number of samples. We remark that all the 

gain coefficients in two filters are of identical sign but the elements of enoi

vK  

are of much less magnitudes than that of pef

vK . Two gains in (5.1a-b) will be 

used in the two filters PEF and EnOI to assimilate the observations. 

The vertical gain coefficients for the CHF are taken from Hoang and 

Baraille (2011b) and are equal to 

 

  (5.2)                                            Tchf

vK 97.184,0,0,97.185   

 

Numerical Results 

 

Figure 5.2. Performance Comparison of EnOI, CHF and PEF: Variance of 

SSH Innovation Resulting from the Filters EnOI, CHF and PEF 

 
 

 

In Figure 5.2 we show the instantaneous variances of the SSH innovation 

produced by three filters EnOI, CHF and PEF. It is seen that initialized by the 

same initial state, if the innovation variances in EnOI, CHF have a tendency to 

increase, this error remains stable for the PEF during all assimilation period. At 

the end of assimilation, the PE in the CHF is more than two times greater than 
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that produced by the PEF. The EnOI has produced very poor estimates, with 

error about two times greater than the CHF has done.  

 

Figure 5.3. The Prediction Error Variance of the u  Velocity Component at the 

Surface )/( scm Resulting from the EnOI, CHF and PEF 

  
 

For the velocity estimates, the same tendency is observed as seen from 

Figure 5.3 for the surface velocity PE errors. These results prove that 

regularization of the estimate on the basis of the ECM spanned by the members 

of En(PEF) allows to better approach the true system state  compared to that 

based on the samples taken from En(EnOI) or to that  constructed on the basis 

of the physical consideration as in the CHF. 

 

 

Conclusions 

 

We have presented an efficient recursive procedure for computation of a 

statistical regularized estimator for the optimal linear estimator in a linear 

model with arbitrary non-negative covariance structure. The problem studied 

here is emphasized on the situation with a priori non-negative covariance 

structure of estimated parameters. Initialization of the procedure with this 

covariance is proved to be important in regularization of the estimate when the 

number of observations is much less than the dimension of the vector of 

estimated parameters. That initialization plays also an important role in 

reducing the number of estimated parameters by using a principal component 

analysis which is very useful for the state estimation in very high dimensional 

systems. The efficiency of the proposed recursive procedure has been 

demonstrated by some numerical experiments, with small and very high 

dimension of the vector of estimated parameters. 
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