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Discriminant Analysis with High Dimensional von Mises - 

Fisher Distributions 

 

Mario Romanazzi 

Professor 

Ca' Foscari University 

Italy 

 

Abstract 

 

This paper extends previous work in discriminant analysis with von Mises-

Fisher distributions (e. g., Morris and Laycock, Biometrika, 1974) to general 

dimension, allowing computation of misclassification probabilities. The main 

result is the probability distribution of the cosine transformation of a von 

Mises-Fisher distribution, that is, the random variable , where 

, satisfying , is a random direction with von Mises-

Fisher distribution and , satisfying , is a fixed non-

random direction. This transformation is of general interest in multivariate 

analysis, in particular it underlies discriminant analysis in both two-group and  

multiple group problem. 

 

Keywords: Directional data, Bayes' discriminant rule, maximum likelihood 

discriminant rule, misclassification probabilities. 
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Introduction 

 

We denote with  the p-dimensional euclidean space and with 

 a general point (vector) of the space. The scalar product of 

 is the real number  and and their euclidean norms 

are , . Let  denote the null vector. If 

, the cosine of the angle between their directions is 

. The hyper-sphere  centered at  with unit radius is the 

subset of unit-length vectors of , i. e., vectors  satisfying . 

The von Mises-Fisher (vMF) distribution plays for data in  the same role 

as the normal distribution for unconstrained euclidean data. The random 

vectors belonging to vMF family are indexed by two parameters, the center 

, , and the concentration parameter . When 

, the uniform distribution on  is obtained. Otherwise, the distribution is 

unimodal, with modal direction , and  measures the concentration of data 

around . We write ,  and , for a p-dimensional 

random vector with a vMF distribution. For , the probability density 

function is (Mardia et al., 1979) 

 (1) 

where  is the probability element of  and 

  (2) 

Here  denotes the modified Bessel function of first type and order . 

In practice, when dealing with hyper-spherical data , the spherical polar 

coordinates of  are often considered. The corresponding 

transformation is 

 
  

(3) 

where, for , 

 
  

(4) 

Writing  for the spherical polar coordinates of , and using 

(3) and (4), if , writing  for the 

corresponding angular version, the density function of   is 

  (5) 
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with , the Jacobian of the transformation, given by 

 

(6) 

For fixed values of the parameters, vMF density is an increasing function 

of the cosine of the angle between  and . When , this proves the 

distribution to have a unique mode at  and an anti-mode at the antipodal 

point . 

It is well-known that Mahalanobis' distance underlies normal-based 

discriminant analysis. For example, maximum likelihood discriminant rule 

amounts to assigning an (unclassified) data point to the nearest centroid, with 

respect to Mahalanobis' metric. Loosely speaking, for vMF distributions the 

scalar product replaces Mahalanobis' metric, that is, maximum likelihood 

discriminant rule amounts to assigning an (unclassified) data point to the 

centroid with maximum scalar product. This suggests to investigate the 

distribution of the random variable , or more in general, of , 

where  and  with . The random variable  is 

interpreted as the cosine of the angle between the fixed direction  and the 

random direction  with vMF distribution. The distribution of  is derived in 

the Cosine Transformation section in a general p-dimensional setting. In the 

Discriminant Analysis section, the implications for discrimination problems 

under vMF distributions are discussed.  A final discussion is given in the 

Discussion section.  

Results related to the topic of the present paper can be found in the 

literature but they are confined to the circular and spherical case. See, for 

example, Morris and Laycock (1974) and El Khattabi and Streit (1996) for 

treatments of discriminant analysis under vMF and several other distributions. 

A more recent paper devoted to clustering problems for mixtures of vMF 

distributions is Banerjee et al. (2005). This paper considers the general p-

dimensional situation and highlights the importance of cosine similarity. 

 

 

The Cosine Transformation  
 

For a given non-random direction , we derive the probability distribution 

of the random variable , with , to be interpreted as the 

cosine of the angle formed by  and . It is clear that  and the 

minimum and maximum values are attained when  and , 

respectively. For a real number , the cumulative distribution function of  is 

 
(7) 

for  and it is equal to 0 and 1 when  and , 

respectively. In (7)  is the inverse image on the 
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hyper-spherical surface of the half line . To obtain probability (7) 

explicitly for general p, an invariance argument is used. For any  

orthogonal matrix  

 (8) 

i. e., the probability distribution of  is invariant to rotations and/or 

reflections simultaneously operating on  and . This proves to be a key 

property to reduce the complexity of the problem. Let  be the orthogonal 

matrix satisfying  

 (9) 

 is well-defined: its first row is vector  and the remaining  rows are 

any set of orthonormal vectors from the orthogonal complement of . As vMF 

family is closed under orthogonal transformations  

,  (10) 

where = , with . Using this invariance property, 

the cumulative distribution function of  can be rewritten as follows 

,  (11) 

and therefore  is coincident with the cumulative distribution function of 

, the first marginal component of , the -rotated vMF random vector. Here 

it is convenient to switch to spherical polar coordinates. Let  be the angular 

transformation of . From (3) and (4), 

  (12) 

implying that 

  (13) 

Summing up the previous discussion, the required cumulative distribution 

function of  is the cumulative distribution function of the cosine of , the 

first marginal component of . The circular case looks particular and is dealt 

with in the Circular Case section, whereas the general (hyper-)spherical case is 

dealt with in the Spherical and Hyper-Spherical section. 

 

Circular Case 

In the circular case, , with , and (13) is easily 

evaluated. The density function of  is 

  (14) 

with  satisfying 

  (15) 

By (13),  

 

  
(16) 
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where  Put 

,  (17) 

The density function is the derivative of  with respect to : 

 
  

(18) 

  

The previous expression holds for all . When , i. 

e., , then  and a simpler formula is obtained 

 
(19) 

This expression is coincident with equation (6) in Morris and Laycock 

(1974), giving the density function of . 

 

Spherical and Hyper-Spherical Case 

The derivation of the distribution of  when  relies on a preliminary 

lemma, possibly of independent interest. 

 

Lemma 1. For , let  be distributed as , with 

 and let  and  be the spherical 

polar coordinates of  and , respectively. Partition ,   and   as 

 
(20) 

where  is the subvector of  obtained by dropping the first component and 

the same holds for  and . Assume . Then 

i. the conditional distribution  is the angular transformation of a 

vMF distribution , , where 

 
(21) 

ii. for , the marginal density function  of  is 

 

(22) 

 
 

Proof. The proof is obtained from the factorization of the joint density  

as the product of the marginal density of  and the conditional density of 

. 

 

The following corollary deals with the special case . 

 

Corollary 1. If , then  and 

. This implies that  and  are independently 
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distributed and  has a uniform distribution on . The marginal density of 

 turns out to be 

 

 

(23) 

  

with  according to whether  or , respectively 

(compare with Mardia et al. 1979, p. 431, equation 15.3.18).  

 

Lemma 1 and Corollary 1 provide an explicit expression of the density function 

of  and this allows (13) to be easily evaluated. For ,  

 

 

(24) 

  

The density function follows by differentiation of (24) with respect to . Again 

put , . 

Assuming , i. e., , expression (22) is 

considered and the density function of  turns out to be 

 
  

(25) 

  

If , i. e., , expression (23) is considered and in 

this special case the density function of  turns out to be 

  (26) 

When , (25) and (26) are coincident with (18) and (19), respectively. 

Therefore, the circular case is essentially included in the general case.   

 

The following remark deals with the relation between normal and vMF 

distributions. 

  

Remark 1. We write  for a p-dimensional random vector with a 

normal distribution with mean vector  and covariance matrix . Mardia 

(1975) proved the following characterization of vMF distribution. If 

, with ,  and  denoting the identity matrix of 

order p, then the conditional distribution of , given , is . It 
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follows that, under the same hypotheses, the density of , given , is 

still given by (25) and (26). 

 

A geometrical interpretation of the set  in (7) is given in the remark below. 

 

Remark 2. Suppose . For  and , the equation  

defines the family of parallel hyperplanes orthogonal to vector . If 

, they intersect the sphere  in a set of parallel circles and if 

 they are tangent to  at , the intersection points of the line , 

, with . It follows that  is the spherical cap 

including  whose boundary is the circle . Rotating the 

sphere according to  (see (13)) amounts to rotate the coordinate system axes 

so as  is coincident with , the direction from the origin  to the 

North pole. With the obvious adaptations, this picture holds in the circular case 

and carries over the general p-dimensional case. 

 

The Family of  Random Variables 

The family of random variables  has a simple structure that 

can be summarized by saying that they are ordered according to the scalar 

parameter , where  is the center of the parent vMF distribution. The 

ordering is the standard stochastic ordering  of random variables 

 
(27) 

For ,  and , the expectation vector and the 

covariance matrix are (Mardia et al., 1979, Watamori,1995) 

 (28) 

 

 

(29) 

  

where 

 (30) 

  (31) 

It is known that  is non-decreasing and  because  is a 

decreasing function of the order  for a given value of the argument . From 

(28) and (29), for , expectation and variance of  and covariance of 

,  turn out to be 

 (32) 

  (33) 

( )=( )  (34) 
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For fixed values of  and ,  and  only depend on . It is 

easily checked that  and the minimum and 

maximum values are attained when  and , respectively. 

Moreover,  and the minimum and maximum 

values are reached when  and when , i. e.,  is orthogonal to , 

respectively. 

We now prove the ordering property stated above. 

 

Proposition 1. If , , and , then  

implies . 

Proof. A geometrical argument will be used. From (7) 

 (35) 

where, according to Remark 2,  is the hyper-spherical cap of  including  

whose boundary is the -dimensional sphere . As the 

random vector  is unimodal and symmetric about , the probability of  

reaches the maximum value when  because in this case  is a symmetric 

neighbourhood of the mode . Conversely, the probability reaches the 

minimum value when  because then  is a symmetric neighbourhood 

of the anti-mode . In general, the probability of  is an increasing function 

of the cosine . 

 

The following example provides an illustration of the properties of  random 

variables. 

 

Example 1. We assume , with ,  and . 

Moreover,  so as  and . 

Figure 1 shows the density and survival functions, respectively, of . The 

behaviour of survival functions confirms the stochastic ordering of Proposition 

1. It is also clear that the value of  determines not only location, but also 

spread and shape. The distribution is generally asymmetric, but when  it is 

symmetric. 
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Figure 1. Probability Density (Left) and Survival Functions (Right) of  

Random Variables for . 
 

 Discriminant Analysis 

 

In this section the usual model of discriminant analysis is considered. The 

distribution of the random vector  depends on a partition of 

the sample space in  classes , . The prior probabilities of the 

classes are , , . These classes often 

correspond to the distinct modalities of an observable stratification variable, e. 

g., gender or education level of the units of a human population. The 

conditional random vector , given , is denoted with  and is 

assumed to belong to vMF family for all , with class-dependent 

parameters, that is 

  (36) 

Let  be the data vector observed on a unit to be allocated to one of the 

classes. Bayes' allocation rule (BR) states that it must be assigned to the class 

with maximum posterior probability, according to Bayes' theorem. It amounts 

to compute 

 

(37) 

and to determine the optimum class  satisfying 

 
(38) 
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Here,  is the vMF density function value of , given  class, 

. The natural logarithm in (38) turns out to be 

  (39) 

i. e., an affine transformation of a -type random variable, with , the 

class center. This makes clear the connection between the results in the Cosine 

Transformation section and discriminant analysis under vMF distributions. 

A remarkable property of Bayes' rule is that it maximizes the posterior 

probability of correct allocation, with respect to the prior . Of course 

it assumes that the prior distribution exists and is known. An alternative is 

maximum likelihood allocation rule (LR) that assigns a unit with data vector  

to the class providing maximum likelihood to . In the present context, it 

amounts to maximize the function 

 (40) 

with respect to . Bayes' and maximum likelihood rule agree for a 

uniform prior distribution. In the rest of the paper, the latter rule is always 

considered. 

 

Two-Class Discrimination 

When , the problem considerably simplifies. In terms of maximum 

likelihood rule, a unit with data point  is assigned to class , say, iff 

, that is,     

 (41) 

where 

 
(42) 

and 

 
(43) 

Once again, the discriminant variable  is a -type random variable, 

whose class-conditional distributions are known. This allows an easy 

evaluation of several summaries, including misclassification probabilities.  

The probability of erroneously allocating to  a unit belonging to  is 

 
(44) 

and the probability of erroneously allocating to  a unit belonging to  is 

  (45) 

Moreover, the expectation of the difference of the two discriminant variables 

,  is 

 (46) 
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Remark 3. Once again, there is a simple geometrical interpretation of (41). 

Suppose, for simplicity, . The plane , , intersects the 

sphere  in a circle. Therefore, the domain of allocation to , i. e., the set 

 is the spherical cap cut by such a plane which includes  

and the domain of allocation to  is the complementary spherical cap, which 

includes . The boundary circle is the set of equal density of the two classes. 

The normal direction of the cutting plane, the -vector, depends on the location 

and concentration parameters of the two classes. Bayes' rule is only a minor 

modification because the prior probabilities affect the constant term , only, 

and make the cutting plane shift nearer to  or  according to the relative 

size of  and . This holds for general dimension p. 

Two particular cases are of interest. First, suppose  and . 

Then 

 
(47) 

 

It can be shown that in such a case  is orthogonal to the bisector direction 

 of the angle formed by  and . Moreover, 

 implies that the spherical caps corresponding to the allocation domains 

of the two classes are hemispheres. Therefore, the misclassification 

probabilities of maximum likelihood rule are equal. This could no longer hold 

with Bayes' rule because then  which is not 

equal to zero if . 

Second, suppose  with =1 and, without loss of generality, 

. Then 

 
(48) 
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Table 1. Conditional Allocation Probabilities , , under vMF 

Distributions of Example 2. 

 Case A – True Class Case B1 – True Class 

Predicted Class C1  C2  C1  C2  

C1  0.843 0.201 0.738 0.262 

C2  0.157 0.799 0.262 0.738 

 Case B2 – True Class Case C – True Class 

Predicted Class C1  C2  C1  C2  

C1  0.876 0.124 0.702 0.442 

C2  0.124 0.876 0.298 0.558 

 

Therefore, the allocation domain of  is the spherical cap cut by the plane 

with normal direction  which includes  and the allocation domain of  is 

the complementary spherical cap, not including . This appears coherent with 

model features because, in this case, the conditional random vectors ,  

have the same center  and  is more concentrated around it. As in the 

general case, the boundary of the allocation domains is the equal density set of 

the two classes.  
 

Example 2. We consider two vMF random vectors, , 

 and four different cases, labelled A, B1, B2, and C. In case 

A, , , , . In 

case B1, centers are as in case A and . Case B2 is the same as B1 

except that . Finally, in case C  and 

concentration parameters are as in case A. Figures 2 and 3 show the density 

functions of the discriminant functions  and  together with the  

thresholds for allocation to C1 , according to maximum likelihood rule. In case 

C, (26) is used because . The pictures confirm the 

thresholds to coincide with the crossing points of the conditional densities. The 

allocation probabilities are reported in Table 1. As suggested by the density 

plots, case C gives the worst results. According to the underlying geometry, 
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when the concentration parameters are equal, as in cases B1 and B2, the 

allocation probabilities for B1 and B2 are exactly the same. 

 

Figure 2. Density Curves of Random Variables  and  and   

Threshold (Vertical Line) in Cases A (Left) and B1 (Right) of Example 2. 

Discussion 

 

Bayes and maximum likelihood discriminant rules for vMF distributions 

depend on the scalar products , , where the coefficient 

vector  is a function of distribution parameters. This implies that the 

allocation regions are spherical caps when , or intersections of them, 

when . However, if  is seen as a subset of , the allocation regions 

are halfspaces when , or intersections of them, when . The 

boundary hyperplanes depend on distribution parameters, centers and 

concentration parameters, according to a well-understood mechanism. That the 

discrimination rules, in , produce a linear separation of centers is not 

surprising (recall Remark 1) because vMF distributions are restrictions on  

of p-variate normal distributions with a scalar covariance matrix. 

The central role of the scalar product in parametric discriminant analysis 

can be of help in devising sensible distribution-free rules. An example is k-th 

nearest neighbour classification rule with (suitable rescaled) scalar product 

replacing euclidean distance as the measure of neighbourhood width. 

With sample data, unknown parameters are replaced by suitable estimates, 

e. g., maximum likelihood (ML) estimates. Recently, there were several 

contributions aimed to improve the performance of the ML estimator of the 

concentration parameter, e. g., Song et al. (2012), Sra (2012) and references 

therein. An R package implementing the improved ML estimation is described 

by Hornik and Grun (2013). 
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The main application of the theory developed in this work is discriminant 

analysis of data belonging to  under vMF distribution, for all p. As shown by 

Banerjee et al. (2005), two important fields of application are text 

categorization and supervised classification of gene expression data. In both 

cases dimension p is typically greater than 3, a situation that requires the 

general results derived in the Cosine Transformation section. 

Figure 3. Density Curves of Random Variables ,  and  

Threshold (Vertical Line) in Cases B2 (Left) and C (Right) of Example 2. 
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