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Abstract 

 

In this paper, by conditioning the covariance structure of matrix variate 

normal distribution the construction of a generalized matrix t-type family is 

considered, thus providing a new perspective of this family. In this regard, a 

generalized multivariate gamma distribution including zonal polynomials is 

introduced. Some important statistical characteristics are given. An attempt is 

made to reconsider Bayes analysis of the column covariance matrix of the 

underlying population model. 
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Introduction 

 

In 1964, Lukacs and Laha defined the matrix/multi variate gamma (MG) 

distribution. 

In multivariate statistical analysis, the MG distribution has been the 

subject of considerable interest, study, and applications for many years, since 

this distribution can be considered as the sample variance-covariance matrix 

when sampling from a weighted multivariate normal distribution. It also 

includes the well-known Wishart distribution as a special one. A systematic 

treatment of the Wishart and MG distributions can be found in Gupta and 

Nagar (2000). There is not much account of the MG distribution in the 

literature and neglected. Das and Dey (2007) considered some Bayesian issues 

of the MG distribution. Iranmanesh et al. (2010) considered this distribution in 

Bayesian analysis as a conjugate prior for the covariance matrix of a 

multivariate normal distribution. Iranmanesh et al. (2013) derived the inverted 

MG distribution and proposed many statistical characteristics along its usage in 

Bayesian context. Recently Nagar et al. (2013) defined an extended matrix 

variate gamma distribution by extending the multivariate gamma function due 

to Ingham and Siegel. In this paper, by making use of an integral relation 

containing zonal polynomials, we give a generalization to the result of Das and 

Dey (2007), which contains the latter as a special case. 

In the following we provide the reader with the definition of the 

generalized multivariate gamma distribution. 

 
 

Definition 1.1. A random matrix  of order p is said to have a  generalized 

multivariate gamma (GMG) distribution with parameters α U 

denoted by ),,,,(~ UGMGp   , if its density is given by 
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the generalized hypergeometric coefficent is defined 
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.))((),(  pp   (seeMuirhead, 2005). 

 

 
ik

m

i

i
a 







 


 2

1

1





ATINER CONFERENCE PAPER SERIES No: STA2014-1114 

 

5 

The normalizing constant in Definition 1.1 obtained from the following  

  

(3) 

The density in (1) is a generalization of the matrix variate gamma distribution 

introduced by Das and Dey (2007). In the following result, the inverse GMG is 

defined. 

 

Lemma 1.1. Let ),,,,(~ UGMGX p  . Then 1 has inverse GMG 

(IGMG) distribution denoted by ),,,,(~ UIGMGY p   with the following 

density function  
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Proof.  The proof follows from the fact that the jacobian of transformation is 

given by 
)1()det()(  pJ . 

For the case )0( since 1C  and 1)(  , the distribution (4) reduces to 

the inverted matrix gamma distribution proposed by Iranmanesh et al. (2013).

Alongside, we use the following definition. 

 

Definition 1.2. The random matrix )( pn is said to have a matrix variate 

normal distribution with mean )( pnM  and covariance matrix  where 

0)(  pp  and 

0)(  nn , if ).),((~)( MvecNXvec pn We shall use the notation 

).,(~ , MNX pn  The probability density function (p.d.f) of X is given by 

(Gupta and Nagar, 2000) 

 

where  is the Kronecker product and vec is the vectorizing operation for 

matrix notation. 

If ),(~ , MNX pn , then the characteristic function of X is 
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Properties of GMG and IGMG Families 

 

In this section, various properties of the GMG and IGMG distributions are 

derived. 

 
Theorem 2.1. Let ),,,,(~ UGMGp   . Then the laplace transformation 

of  is 
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Corollary 2.1.1.  Let ),,,,(~ UGMGp   . Then the characteristic 
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Theorem 2.2. Let ),,,,(~ UGMGp   . Then 

),(

)det(),(
))E(det(

hhp

h





p

p h




 

Proof 

 

 

 

in order to find the expectation of the trace of an GMG random variable, it is 

useful to find the expectation of zonal polynomial, which is stated below. 
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symmetric matrix. Then 
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Theorem 2.8. Let ),,,,(~ 11 UGMGp   and ),,,,,(~ 22 UGMGp    

and 

 21,  be independent. Then the distribution of 
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211 )( W is 
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By integrating over V  we have 
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Family of Generalized Matrix t-Distributions  
 

In this section, the main result of the paper concerning the construction of 

the new family of matrix variate t-distributions is presented. This distribution 

will be applied in the Bayesian context. 

 
Definition 3.1. The random matrix )( pn is said to have a generalized 

matrix variate t-distribution (GMT) with parameters 
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For 
2

1
,2




pn
  and 0k  then ),0(  the GMT distribution 

simplifies to the matrix  distribution with n  degrees of freedom. (See Gupta 

and Nagar(2000)) 

Further for the case ),0(  the GMT simplifies to the generalized t-

distribution defined by Iranmanesh et al. (2010). 
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Some Properties of the GMT Family 
 

In this section, various properties of the GMT distribution are studied 

using its p.d.f. 
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proof.  
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where (.)0  is the type two Bessel function of matrix argument. 
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where .,0 pnRS   Now, let .)'( 21 MS   The Jacobian of 

transformation is 
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where .,0 pnRS   

Now integrating out S  and by using (3) the density of   is obtained as 
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Bayes Estimation 

 

For application purposes, in this section the Bayes estimator of  based on 

the conditional property is derived. In this regard, we consider Kullback 

Leibler divergence loss (KLDL) as the measurement. First we state a result due 

to Das and Dey(2010). 

Lemma 5.1. Suppose   is an estimator for unknown parameters matrix  , 

where )( D  and )( D  are the corresponding posterior probability density 

function over 
pR respectively, where D indicates Data. Now the posterior 

expected loss of  , when the posterior distribution is ),( D  is 
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where the loss function is .
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 Then the Bayes rule is 
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 which is the mode of posterior distribution of ).( D  

Note that the posterior expected loss function in Lemma 5.1, 
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can be interpreted as the Kullback Leibler divergence of the posterior 

distribution evaluated under action   from the true posterior distribution of 
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unknown parameters .  Therefore the posterior expected loss or Kullback 

Leibler divergence is minimum, if we choose our action as posterior mode. 

 

Lemma 5.2. Let ).,0(~ ,  pnN  Further  has prior distribution as 

).,,,,( UIGMGp   Then the posterior distribution of   is 
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Proof. By definition 
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By applying Theorem (3.1) we obtain the underlying result. 

 

According to Lemma 5.2 the Bayes estimator of  under KLDL function is 

given by  

                                               ).(maxarg  



  

Iranmanesh et al.(2010) showed that 
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for the especial case k=0. 
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