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Simulation of a Probabilistic Model for Multi-Contestant Races 

 

Konstantinos Gakis  

Panos Pardalos  

Chang-Hwan Choi  

Jae-Hyeon Park  

 

Abstract 
 

Predictions of sports games have been recognized as an important area of study 

for their economic significance. Most models for such games cover two-player 

games and the resulting championships or study individual players or teams 

and their resulting comparative position. In this paper, we elaborate on a model 

for such multi-contestant races based on order statistics of the negative 

exponential distribution for race times. The games involve only a fixed number 

of athletes out of a broader pool of several athletes. Several large samples of 

games of ten athletes that play four at a time are generated, and Maximum 

Likelihood Estimators are calculated for the relative dominance parameters of 

the athletes. The estimated parameters are then used to test the predictive 

validity of the model. The results are discussed.Subsequently the model is 

modified for Erland-2 distributed race times. New samples are generated and 

the predictive validity of the new model is discussed.The paper concludes with 

a discussion of future research directions for improving the predictive validity 

and establishing confidence levels. 

 

Keywords: Ranking, Joint Exponential Distribution, Order Statistics, Multi-

contestant Races 
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Introduction 
 

Predictions of sports games have been recognized as an important area 

ofstudy for their economic significance. The majority of models for such 

gamescover two-player games and the resulting championships or study 

individualplayers or teams and their resulting comparative position. Most 

popularsports involve predictions of the final score, by fans and bookmakers, 

makingnecessary the creation of a performance index for athletes or teams. 

A “multi-contestant” race is one where the athletes run to finish first by 

achieving the minimum time. Gakis et al.(2016) have presented a discussion of 

the general problem and have provided insight to the problem. Among the 

main points has been that most of the research and the literature have been 

concerned with twocontestantgames, in many cases with a score, where one 

wins and one losesor there can be a tie. Other kinds of sports are not based on 

one-to-one matches and the results are a classification. These are characterized 

as “multi-contestant races” or “games.” For such games, prediction models 

become more complex, and usually they are based on physiological 

information about athletes. However, often it is necessary to predict results 

based only on easily available data, such as previous results, keeping a reliable 

model. 

From a theoretical standpoint, multi-contestant races are difficult to study 

because they involve several random variables (the times or scores of the 

athletes), which in general cannot be assumed to be identically or independently 

distributed. The winner is usually the best (maximum or minimum) scorer. 

Thus the problem, in theoretical terms, is one of order statistics. Gakis et al. 

(2016) presented two theoretical models, which present a series of challenges 

and bring the promise of good predictions if further elaborated and 

appropriately applied. 

The current work builds upon the theoretical model for independently (but 

not identically) distributed race times that follow an exponential distribution. 

Using well-established results about the distribution of the order statistics of 

the exponential distribution, it is shown that the proposed estimation approach 

can deliver very good results in predicting then ranking or relative strength of 

the athletes and thus predicting the winners of races. 

In the next section, we present the literature review, where we connect our 

work to previous work on the same topic. 

In section 3 we present the general methodological foundation of our work 

and in section 4 we present the specific model that has been employed and 

simulated. 

In section 5 we describe our simulation experiments and in section 6 we 

present our conclusions. 

Finally, in section 7 we discuss ongoing research and directions for 

potential future research that will expand on the presented results. 
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Literature Review 

 

The literature on sports and games is very rich. We can categorize the 

literature in several ways, for instance depending on the types of models they 

are using, the objects they study, the purpose they serve, etc. Our current work 

is focused on predictions or forecasting of outcomes of sports. Rich literature 

exists to cover other topics, such as economics, valuation of athletes and teams, 

etc. 

Sports forecasting is a diverse and rich field. What we are looking here is 

the forecasting of game or contest outcomes, not the return on investment or 

the income that can be generated by teams, athletes or tournaments. Stekler, 

Sendor and Verlander (2010) present a concise and comprehensive account of 

the issues in sports forecasting. They have recognized that there are three 

approaches in making forecasts for sports: 

 

(1) Betting markets 

(2) Models 

(3) Experts 

 

They review all three approaches for several types of sports and they 

present a comparison of their results, to the extent that this can be established 

through existing bibliography. Here, we limit ourselves to item (2), i.e. models. 

It should be noted that (1) and (3) are qualitative approaches with significant 

weight and predicting ability. Of the sports studied in this work only one falls 

into the category of multi-contestant games, namely that of horseracing. Other 

sports reviewed are: baseball, American football, basketball and soccer.  

The forecasting may focus on a single game, or it may contain a series of 

games that may constitute a tournament or a championship. In the present 

work, we limit ourselves to forecasts of individual events (games, races or 

contests). 

The forecasting analytical models are mostly based on past performance 

data. It has already been said that multi-contestant games have been much less 

studied that two-player games. Interestingly, horseracing is the type of multi-

contestant sport that has attracted more attention, presumably due to its 

financial importance in betting markets. Lessman, Sung and Johnson (2010) 

have recently presented a model for predicting outcomes in horseracing, which 

can be used for predictions in all multi-contestant sports. The model they 

present is based on a much earlier work by McFadden (1974), which in turn 

contains propositions presented in Luce and Suppes (1965). From these 

references, we can see that sports forecasting models can be drawn for a very 

broad spectrum of disciplines ranging from econometrics to quantitative or 

mathematical psychology. In the classical work of McFadden (1974), the 

problem tackled is that of qualitative choice and it is coined as “conditional 

logit estimation.” So, Lessman, Sung and Johnson (2010) see their problem as 

a problem of choice behavior: the eventual outcome of a multi-contestant race 

is the result of successive “choices.” Starting from an initial set of n 



ATINER CONFERENCE PAPER SERIES No: SPO2017-2353 

 

6 

contestants, the winner is chosen, thus leaving n-1 contestants competing and 

successively reducing the number of contestants, until all contestants are 

ranked. The same problem seen from a probabilistic point of view can be seen 

as a problem of ranking order statistics. In an earlier work, Harville (1973) had 

presented a similar simpler approach for horseraces, based on the same 

assumption of successive choice, without providing any further analysis of the 

factors that lead to winning. Chapman and Staelin (1982) are using the same 

basis in a different context to discuss a stochastic utility model and address the 

issue of the data supporting data set. The methodology of McFadden (1974) 

allows for a further analysis or explanation of the parameters of the race, such 

as the rider, the track etc. 

The research is most often connected to assessing the utility of a race in 

conjunction to betting schemes as is done for example in the work of Ali 

(1977). In a more detailed and extensive work, Bolton and Chapman 

(2008)discuss the use of a multinomial logit model for the purpose of achieving 

positive returns at the track. 

The major problem that arises fromemploying this approach is the 

estimation of the underlying parameters for the calculation of the probabilities 

for winning in each race. To employ the model of McFadden (1974), we need a 

rich data set that will allow the use of the maximum likelihood estimation 

(MLE) method. Johnson, Jones and Tang (2006) present an extensive 

discussion and demonstrate the use of the maximum likelihood estimation 

method for the purpose of estimating the parameters in the multinomial logit 

model of McFadden (1974).In their work, they employed orthogonal 

polynomial expansion of order 3 to estimate the parameters of the model. 

Subsequently, they split the data set of 1200 actual race outcomes into two 

subsets of 800 and 400 outcomes. The first subset was used for the estimation 

of the parameters and the second set for the testing and verification of the 

model. 

 

 

General Description 

 

As it has already been stated, the outcome of a multi-contestant race or 

game is basically a ranking problem.Let’s assume that we have seven athletes 

competing in a race. The outcomewill depend on the individual performance of 

each athlete. Let’s say thatthe race outcomes are running times, in which case 

the winner is the athletethat comes first, i.e. the one that achieves the minimum 

of the times.  

So, let  (assuming m athletes are competing) be the times 

(which hare random variables) achieved by the athletes in a particular 

game.Then, the probability of a particular outcome would be expressed as, 

fore.g. m = 4 
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or the probability of athlete 1 being the first 

 

 
 

The simplest case would be to assume that running times are 

independentlydistributed. Then the fact that several athletes compete in a race 

isreally irrelevant. What would matter is just individual performance. 

Fromexperience we know that this is not true. The fact that athletes are 

competingagainst each other makes a difference in the running times and thus 

theassumption of independence cannot be realistic. We clearly need a 

morecomplex assumption. Since for the prediction we only need probability 

forthe relative performance, i.e. the ranking and not the absolute times, we 

canassume as an approximation that the simultaneous presence of many 

athletesin the same competition just reduces the time scale but not the final 

rankingprobabilities. So, when our sample from races is large and we have 

resultsfor all possible combinations of athletes from the pool, we can build a 

predictionmodel that would yield good results in terms of predictive power.If 

this is the case, and if we have races of m athletes out of a pool of n>m,then to 

express the probability of a specific outcome it would suffice to know the 

relative strength of each athlete in the form of a dominance vector  

that not only ranks the contesting athletes, but quantifies the dominanceas well. 

Knowledge of the dominance vector can lead to the calculation of the 

probabilities of outcomes in races with specific athletes. 

 

 

The Conditional Logit Model 

 

Here we present the Conditional Logit Model as was presented by 

McFadden (1974) and was utilized by Lessman, Sung and Johnson (2010). 

Let  denote a dataset of R past races, where  represents 

the m independent characteristic variables (such as the rider) of a single 

contestanti in a race j. 

Also, let  be the vector of coefficients that measure the relative 

contribution of the independent characteristic variables of contestant-race 

combination. 

Then we define a random variable  that expresses the probability of 

contestantk winning race j as 

 

 
 

And  is an error factor. If the error factors are independent and identically 

distributed according to the double exponential distribution, the probability of 

contestantk winning race j is given by the following conditional logit function: 
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The values of vector  are the ones estimated by means of a maximum 

likelihood estimation procedure. 

The model has the fundamental advantage that it allows for the estimation 

of the probabilities for the specific composition of the specific race. Assuming 

that the underlying characteristics remain stable, then the model can describe 

sufficiently the race outcomes. 

Next, assuming that the second position is a choice among the remaining 

contestants with no dependence on the first winner, then the probability of 

contestant k winning race j is given by the following conditional logit function: 

 
 

Clearly, a simplification of the problem is to consider the factors  

as constant parameters, not depending on the race, but rather only on the 

contestant. In the next section, we show how some simple assumptions can 

lead to a simplified model that can provide a way to calculate the probabilities 

in the absence of more information or a deeper analysis of the underlying 

success factors. 

It should be noted that the model conditional logit model was developed for 

a general class of qualitative choice behavior model and has been applied for 

horse races in the existing bibliography. Horse races have some easily 

discernible characteristics e.g. horse-riders, tracks etc. which may not be as 

easy to recognize in the case of other sports, e.g. bicycle races, where there is 

no underlying reason to connect a bicyclist with the bicycle, the track, the 

season or other influencing factors. 

 

 

Independently Distributed Exponential RaceTimes 

The Basic Problem 

 

We have a pool of  athletes competing in groups of 

athletes each time. We have data results from , 

races. 

In this first approach we assume independently and identically 

distributednegative exponential random variables(“expo r.v.’s”) for the 

individual racetime of each athlete. Say the individual parameters of the 

distributions are .  

With knowledge of the actual ranks, without knowing the actualrace times, 

we can obtain an estimate of the relative rank. We know thatwhen comparing 

two iid expo r.v.’s, then the probability of 1 coming aheadof 2 is 

 

  (1) 

 

where denotes the distribution parameter of the athlete that ranked n-th. 

Thus, the likelihood of a particular outcome is  
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  (2) 

 

For a discussion of the order statistics of the exponential distribution and a 

proof of the above, the reader is referred to Ahsanullah, Nevzorov andShakil 

(2013). 

Knowing the values of the parameters , we can obtain the probability of 

each outcome or just the first athlete in each race. Inversely, knowing several 

outcomes of races (without knowing the underlying scores or race times), we 

can estimate relative values for the parameters , to maximize the likelihood 

of all the outcomes. 

Thus, in our approach we generate random outcomes of games (with given 

distributions and parameter values) and we proceed to estimating the 

parameters. The comparison between the original values and the estimated 

ones give us an indication of the ability of our approach to generate good 

predictions of races. 

If we generate n races and we denote with  the likelihood of 

each race, then the likelihood function for the simulation run is 

 
 

and the log-likelihood function is 

 

 
 

It should be noted that the vector of the values is the dominance vector 

D, discussed in Section 3. 

The values of the estimator vector are the ones that maximize . A 

log-likelihood function can be calculated for the first athlete in each race only 

as follows: 

 
This log-likelihood function can be used for computational simplicity 

although it should not be expected to yield more accurate results. 

 

 

The Simulated Problem 

 

In our simulation, we considered the case of a pool of ten (10) athletes, 

running in groups of four (4) athletes each time. We generate 500 races with 

random participation of athletes with each probability. Race times 

(exponentially and independently distributed) are generated based on assumed 

values of the parameters according to the following table: 

 

λ(1) λ(2) λ(3) λ(4) λ(5) λ(6) λ(7) λ(8) λ(9) λ(10) 

1.0000 0.9091 0.8333 0.7692 0.7143 0.6667 0.6250 0.5882 0.5556 0.5263 
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The first 400 races are used to generate Maximum Likelihood Estimators 

(MLEs). The estimators are always estimated relative to that of the first athlete, 

whose value is set to 1. The last set of 100 values is used to compare the value 

of the Likelihood Function for the first-ranking athletein each race with the 

assumed and the estimated parameter values to appraise the predictive power 

of the estimators.  

We run a total of 100 simulation runsand we are additionally calculating 

the percentage of timesthat athlete 1 is the dominant athlete, i.e. there is no 

other athlete with a parameter value higher than 1. Finally, we calculate the 

average estimated parameter values, we order them and we compare the 

rankings with the original rankings. The number of permutations needed to 

recover the original order is a measure of performance of the estimation since it 

reflects the degree to which we have recovered the original order. 

Furthermore, we repeat the above process with times that follow the 

Erlang-2 and Erlang-4 distributions, with the same -parameter values. 

 

 

The Simulation Program 

 

The simulation was performed using MS Excel workbook with the 

simulation runs programmed with VBA and the MLEs obtained using the 

Solver add-in. 

The simulation program consists of one main procedure and four sub-

routines, which are given in the Appendix: a subroutine for initialization, a 

subroutine for the repetition of the simulations, a subroutine for the generation 

of the simulated game results and a subroutine for the calculation of the MLEs. 

The subroutine for the generation of race times is different for the exponential 

times and for Erlang-ktimes, although k is entered as an integer parameter and 

in general can cover the case of exponential distribution for value k=1. 

 

 

Results of the Simulation Runs 

Exponentially Distributed Race Times 

 

For exponentially distributed race times we obtain the following results: 
 

 Athlete 1 was found to be the best athlete in 68% of the cases. 

 The ML function with the estimated values was very close to the one 

with the original values. 
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 The resulting ordering of athletes was relatively close to the original. 
 

 
 

The mean permutations number is 4.68. 

Table of results: 

ANALYSI

S 

 

λ(1) λ(2) λ(3) λ(4) λ(5) λ(6) λ(7) λ(8) λ(9) λ(10) 

Real 

 

1 0.9091 0.8333 0.7692 0.7143 0.6667 0.625 0.5882 0.5556 0.5263 

Means 

 

1 0.9115 0.8724 0.7743 0.7224 0.6816 0.629 0.5893 0.5592 0.5266 

Median 

 

1 0.9185 0.8682 0.7564 0.7047 0.6768 0.6094 0.576 0.5585 0.5223 

St. Dev. 

 

0 0.1371 0.1278 0.1226 0.1123 0.1034 0.1013 0.0918 0.0797 0.0873 
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(sample) 

Max 

 

1 1.3327 1.2278 1.0834 1.1673 0.9702 0.9046 0.8272 0.7212 0.843 

Min 

 

1 0.6496 0.6032 0.5259 0.5387 0.4257 0.444 0.3839 0.3744 0.3282 

Range 

 

0 0.6831 0.6246 0.5574 0.6286 0.5445 0.4606 0.4432 0.3468 0.5148 

Range/Me

an 

 

0 

0.7494 0.7159 0.7199 0.8702 0.7989 0.7322 0.7521 0.6203 0.9776 

 

 

Erlang-2 Distributed Race Times 

 

For Erlang-2 distributed race times we obtain the following results: 
 

 Athlete 1 was found to be the best athlete in 91% of the cases. 

 The ML function with the estimated values was very close to the one 

with the original values. 

 

 
 

 The resulting ordering of athletes was relatively close to the original. 
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The mean permutations number is 2.06. 

 

Table of results: 

ANALYSIS 

 

λ(1

) λ(2) λ(3) λ(4) λ(5) λ(6) λ(7) λ(8) λ(9) λ(10) 

Real 

 

1 

0.869

6 

0.769

2 

0.689

7 0.625 

0.571

4 

0.526

3 

0.487

8 

0.454

5 

0.425

5 

Means 

 

1 

0.822

8 

0.677

6 

0.580

3 0.496 

0.438

3 0.382 

0.349

7 

0.316

2 0.283 

Median 

 

1 

0.807

9 

0.678

2 

0.566

3 

0.494

4 

0.429

2 

0.374

2 

0.342

6 

0.309

2 0.275 

St. Dev. 

(sample) 

 

0 

0.124

9 

0.109

6 

0.095

4 0.083 

0.065

7 

0.063

3 

0.053

8 0.055 

0.048

3 

Max 

 

1 

1.175

7 

0.986

5 

0.824

3 

0.725

6 

0.642

2 

0.583

6 

0.520

9 

0.542

8 

0.412

7 

Min 

 

1 

0.573

2 

0.464

9 

0.405

4 0.339 

0.311

6 0.257 

0.234

8 

0.207

3 

0.190

3 

Range 

 

0 

0.602

5 

0.521

5 

0.418

9 

0.386

6 

0.330

7 

0.326

6 

0.286

1 

0.335

5 

0.222

4 

Range/Mean 

 

0 

0.732

2 

0.769

7 

0.721

9 

0.779

5 

0.754

4 0.855 

0.818

1 

1.061

1 

0.785

9 

 

Erlang-4 Distributed Race Times 
 

For Erlang-4 distributed race times we obtain the following results: 
 

 Athlete 1 was found to be the best athlete in 97% of the cases. 
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 The ML function with the estimated values was very close to the one 

with the original values. 

 

 
 

 The resulting ordering of athletes was relatively close to the original. 

 

 
 

The mean permutations number is 0.94. 

 

Table of results: 
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ANALYSIS λ(1) λ(2) λ(3) λ(4) λ(5) λ(6) λ(7) λ(8) λ(9) λ(10) 

Real 1 0.8696 0.7692 0.6897 0.625 0.5714 0.5263 0.4878 0.4545 0.4255 

Means 1 0.7518 0.561 0.439 0.3622 0.2933 0.2503 0.2127 0.1818 0.1562 

Median 1 0.7613 0.5688 0.4434 0.3646 0.2909 0.2464 0.2147 0.1752 0.1545 

St. Dev. (sample) 0 0.1225 0.0885 0.0729 0.0559 0.0456 0.0438 0.0334 0.0333 0.0271 

Max 1 1.0425 0.74 0.6787 0.5375 0.4133 0.3812 0.2993 0.2977 0.2266 

Min 1 0.4372 0.3465 0.2967 0.2372 0.1989 0.161 0.1175 0.112 0.0924 

Range 0 0.6053 0.3935 0.382 0.3004 0.2144 0.2202 0.1818 0.1857 0.1342 

Range/Mean 0 0.8052 0.7015 0.8701 0.8293 0.7309 0.8798 0.855 1.0214 0.8591 

 

 

Conclusions 
 

From the above results we can see that our approach gives very good 

results for the given original parameter values. In particular, the estimators we 

obtain constitute reliable estimators for the prediction of first finishing athlete 

in races. The rankings are in most case very close to the original ones. Most 

importantly (and not surprisingly), the basis of exponentially distributed race 

times for the likelihood function seems to provide results for the dominance 

vector that work better for Erlang-k times. 

 

 

Directions for Future Research 

 

Further experimentation is needed to reveal the limitations of the method 

and establish the preconditions for usage, possibly with confidence levels. 

Another direction is the establishment of a likelihood function based on 

the order statistics of the Erlang-k distribution to obtain more accurate 

estimators for a broader range of values. 

The authors of the present work are in the process of generalizing the 

above results for the Weibull distribution in general. It can be shown that the 

ranking problem and the order statistics of the Weibull distribution can be 

described by equations (1) and (2) for the same shape parameters. Thus, 

assuming the same shape parameters. 

It should be noted here that Lessman, Sung and Johnson (2010) in their 

criticism for the conditional logit (CL) model, explain that  

 

Despite CL’s advantage with respect to accounting for within-race 

competition, it suffers from some important limitations. In particular, the 

application of CL assumes that errors are distributed according to the 

double exponential distribution, which is unlikely in practice… 
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Furthermore, they pinpoint that the conditional logit (CL) model is unable 

to capture nonlinear interactions among independent variables. Finally, they 

warn that a maximum likelihood based estimation of the coefficients may be 

unstable if a large number of independent variables are used. The authors have 

developed and presented a machine learning method using a random forest 

procedure. The suggested procedure complements the conditional logit model 

and compensates for the instability of the standard maximum likelihood 

estimation. 

A similar approach is recommended for the presented model. A machine 

learning approach can be developed to generate estimators and improve them 

as more results are being added. 
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VBA simulation program 
The initialization procedure 

Sub initialize() 

 

Set ws = Sheets("Input_parameters") 

 

athletes_num = Range("athletes_num") 

athletes_per_game = Range("athletes_per_game") 

games_num = Range("games_num") 

 

ReDimathlete_rates(athletes_num) 

Set cur_cell = Range("base_rate") 

For i = 1 Toathletes_num 

athlete_rates(i) = cur_cell.Offset(0, i).Value 

Next i 

 

End Sub 

 

The main procedure 

Sub hundred_simulations() 

Dim counter As Integer 

Dim my_ws As Worksheet 

 

Set my_ws = Sheets("Simulation_results") 

 

Application.ScreenUpdating = False 

Application.Calculation = xlManual 

Application.CalculateBeforeSave = True 

 

For counter = 1 To 100 

Call simulate 

my_ws.Range("a6").Offset(counter, 0).Value = counter 

    For i = 1 To 17 

my_ws.Range("a6").Offset(counter, i).Value = my_ws.Range("A1").Offset(1, 

i).Value 

    Next 

Next counter 

 

Application.ScreenUpdating = True 

Application.Calculation = xlAutomatic 

Application.CalculateBeforeSave = True 

 

my_ws.Activate 

 

End Sub 
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The simulation subprocedure 

Sub simulate() 

 

Call generate_games 

Call find_MLEs 

 

End Sub 

 

The generation of the games procedure(for exponential distribution) 

Sub generate_games() 

 

'change the seed 

Dim seed As Integer, first As Double 

seed = Second((Now)) 

Call Randomize(seed) 

first = Rnd() 

 

Application.Calculate 

Call initialize 

 

'declare the array of games and position 

Dim game_results() As Integer 

ReDimgame_results(games_num, athletes_per_game) 

'declare the athletes pool for each game 

Dim athlete_pool() As Integer 

ReDimathlete_pool(athletes_num) 

'declare each athletes participating in each lane 

Dim athlete_set() As Integer 

ReDimathlete_set(athletes_per_game) 

 

'initialize games: for each game create a set of participating athletes 

For i = 1 Togames_num 

    'initialize the pool 

ReDimathlete_pool(athletes_num) 

    For j = 1 Toathletes_num 

athlete_pool(j) = j 

    Next j 

 

    For j = 1 Toathletes_per_game 

        'calculate available athletes in the pool for selection 

n = athletes_num - j + 1 

        'select an athlete from the pool for the j-th lane 

k = Int(Rnd() * n) + 1 

        'put selected athlete in the set and remove from pool 

athlete_set(j) = athlete_pool(k) 

m = UBound(athlete_pool) 
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athlete_pool(k) = athlete_pool(m) 

ReDim Preserve athlete_pool(m - 1) 

game_results(i, j) = athlete_set(j) 

    Next j 

Next i 

 

'go and print participating athletes in lanes 

Call ClearSheet(Sheets("Games_initial"), games_num, athletes_per_game) 

Set ws = Sheets("Games_initial") 

Set top_cell = ws.Range("A1") 

 

For i = 1 Togames_num 

    For j = 1 Toathletes_per_game 

top_cell.Offset(i, j).Value = game_results(i, j) 

    Next j 

Next i 

 

'go and simulate the games 

Call ClearSheet(Sheets("Games_simulated"), games_num, athletes_per_game) 

Call ClearSheet(Sheets("Times_simulated"), games_num, athletes_per_game) 

 

Dim temp_d As Double 

Dim temp_i As Integer 

Dim sorted As Boolean 

 

Dim times() As Double 

ReDimtimes(athletes_per_game) 

 

Application.Calculate 

For i = 1 Togames_num 

    'find times 

    For j = 1 Toathletes_per_game 

times(j) = -1 / athlete_rates(game_results(i, j)) * Log(Rnd()) 

    Next j 

 

    'rearrange by position 

 

    Do 

sorted = True 

        For j = 1 Toathletes_per_game - 1 

            If times(j) > times(j + 1) Then 

temp_i = game_results(i, j) 

game_results(i, j) = game_results(i, j + 1) 

game_results(i, j + 1) = temp_i 

temp_d = times(j) 

times(j) = times(j + 1) 
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times(j + 1) = temp_d 

sorted = False 

            End If 

        Next j 

    Loop Until sorted 

    'print time 

    For j = 1 Toathletes_per_game 

Sheets("Times_simulated").Range("A1").Offset(i, j).Value = times(j) 

    Next j 

Next i 

 

'go and print the results 

Set ws = Sheets("Games_simulated") 

Set top_cell = ws.Range("A1") 

For i = 1 Togames_num 

    For j = 1 Toathletes_per_game 

top_cell.Offset(i, j).Value = game_results(i, j) 

    Next j 

Next i 

 

End Sub 

 

The generation of the games procedure (for Erlang-k disribution) 

Sub generate_games() 

 

'change the seed 

Dim seed As Integer, first As Double 

seed = Second((Now)) 

Call Randomize(seed) 

first = Rnd() 

 

Application.Calculate 

Call initialize 

 

'declare the array of games and position 

Dim game_results() As Integer 

ReDimgame_results(games_num, athletes_per_game) 

'declare the athletes pool for each game 

Dim athlete_pool() As Integer 

ReDimathlete_pool(athletes_num) 

'declare each athletes participating in each lane 

Dim athlete_set() As Integer 

ReDimathlete_set(athletes_per_game) 

 

'initialize games: for each game create a set of participating athletes 

For i = 1 Togames_num 



ATINER CONFERENCE PAPER SERIES No: SPO2017-2353 

 

21 

    'initialize the pool 

ReDimathlete_pool(athletes_num) 

    For j = 1 Toathletes_num 

athlete_pool(j) = j 

    Next j 

 

    For j = 1 Toathletes_per_game 

        'calculate available athletes in the pool for selection 

n = athletes_num - j + 1 

        'select an athlete from the pool for the j-th lane 

k = Int(Rnd() * n) + 1 

        'put selected athlete in the set and remove from pool 

athlete_set(j) = athlete_pool(k) 

m = UBound(athlete_pool) 

athlete_pool(k) = athlete_pool(m) 

ReDim Preserve athlete_pool(m - 1) 

game_results(i, j) = athlete_set(j) 

    Next j 

Next i 

 

'go and print participating athletes in lanes 

Call ClearSheet(Sheets("Games_initial"), games_num, athletes_per_game) 

Set ws = Sheets("Games_initial") 

Set top_cell = ws.Range("A1") 

 

For i = 1 Togames_num 

    For j = 1 Toathletes_per_game 

top_cell.Offset(i, j).Value = game_results(i, j) 

    Next j 

Next i 

 

'go and simulate the games 

Call ClearSheet(Sheets("Games_simulated"), games_num, athletes_per_game) 

Call ClearSheet(Sheets("Times_simulated"), games_num, athletes_per_game) 

 

Dim temp_d As Double 

Dim temp_i As Integer 

Dim sorted As Boolean 

 

Dim times() As Double 

ReDimtimes(athletes_per_game) 

 

Application.Calculate 

 

k = Range("Erlang_k").Value 
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For i = 1 Togames_num 

    'generate times Erlang-k 

    For j = 1 Toathletes_per_game 

times(j) = 0 

        For m = 1 To k 

times(j) = times(j) - 1 / athlete_rates(game_results(i, j)) * Log(Rnd()) 

        Next m 

        'times(j) = times(j)/k 

    Next j 

 

    'rearrange by position 

 

    Do 

sorted = True 

        For j = 1 Toathletes_per_game - 1 

            If times(j) > times(j + 1) Then 

temp_i = game_results(i, j) 

game_results(i, j) = game_results(i, j + 1) 

game_results(i, j + 1) = temp_i 

temp_d = times(j) 

times(j) = times(j + 1) 

times(j + 1) = temp_d 

sorted = False 

            End If 

        Next j 

    Loop Until sorted 

    'print time 

    For j = 1 Toathletes_per_game 

Sheets("Times_simulated").Range("A1").Offset(i, j).Value = times(j) 

    Next j 

Next i 

 

'go and print the results 

Set ws = Sheets("Games_simulated") 

Set top_cell = ws.Range("A1") 

For i = 1 Togames_num 

    For j = 1 Toathletes_per_game 

top_cell.Offset(i, j).Value = game_results(i, j) 

    Next j 

Next i 

 

End Sub 

The estimation of MLEs procedure 

 

Sub find_MLEs() 

Application.Calculate 
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Worksheets("MLE_with_four_players").Activate 

 

'reset the problem 

SolverReset 

 

'set desired precision 

SolverOptions precision:=0.001 

 

'define objective function 

SolverOKsetCell:=Range("objfunction"), maxMinVal:=1, 

byChange:=Range("variables") 

 

'flow preservation sonstraints 

'NO CONSTRAINTS 

 

'non-negativity constraints 

SolverAddcellRef:=Range("variables"), relation:=3, formulaText:=0 

 

SolverSolveuserFinish:=True 

 

End Sub 

 

 
 


