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Assembling Large Entangled States in the Rényi-Ingarden-

Urbanik Entropy Measure under the SU(2)-Dynamics 

Decomposition for Systems Built from Two-Level Subsystems 
 

Francisco Javier Delgado 

 

 

Abstract 

 

Quantum Information is a discipline derived from Quantum Mechanics which uses 

quantum systems to exploit their states as information recipients. Normally, these 

states are conformed by two-level systems to reproduce the binary nature 

underlying the classical computation structure. Quantum evolution is then 

controlled to reproduce convenient information processing operations. Evolution 

could be hard to be controlled. SU(2) decomposition procedure lets to set a binary 

structure of processing when a convenient basis is selected to set the dynamics 

description. In this work, we exploit this procedure for a generic Hamiltonian in 

order to set the process to reduce arbitrary states into simplest ones. For this work, 

we use customary SU(2) operations on local and entangled states. These operations 

are described in the development. They involve 1, 2 and 4-local operations meaning 

the number of quantum parties involved, in agreement with the decomposition 

procedure scope. This task is complex in spite the difficulty to set a general way to 

manipulate the entanglement in the system. We are particularly interested on the 

application of stochastic procedures based in SU(2) decomposition operations to 

achieve that goal. In order to have a measure of the advancement of the last task, 

we use the Rényi-Ingarden-Urbanik entropy to describe the whole spectrum of 

entanglement in the large systems through the assembling/disassembling of the 

state.  

 

Keywords: Entanglement, Quantum Information, Quantum Processing, Rényi-

Ingarden-Urbanik Entropy, States Design. 
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Introduction 

 

Quantum information is pursuing novel approaches to set information and 

processing on physical systems exhibiting quantum properties, such as 

superposition and entanglement. There, normally two-level systems are 

combined to scale them into large physical systems being able to hold large 

amounts of complex Information. Due to the entangling interactions among 

them, which are mandatory as part of the improved processing, these composed 

systems exhibit a complex dynamics hard to control under a universal set of 

operations as in classical computing, normally in the form of gates. In the most 

of cases, the whole evolution matrices for the composed system have their 

entries different from zero. This aspect does hard to fit them in controlled 

operations, normally involving two informational parts in the physical systems 

(remember that normally, those states are expressed in the eigenstates of the 

physical parameters composing such subsystems). Thus, the clue is to select an 

adequate basis to re-express the dynamics in order to reduce the complexity of 

such evolution. Nevertheless, the physical meaningful of those states are not 

assured, it is only informational unlinked from the physical parameters.  

SU(2) decomposition (Delgado 2017a) is a procedure recently developed 

for certain architectures and interactions (three interactions and set-ups denoted 

by Type I, IIab and III are able to set this kind of controllable operations; 

despite could be generalizable on a wider spectrum of quantum systems and 

non-only as SU(2) reduction, instead having another group structure). There, 

generic SU(2) operations can be settled in order to design states and to process 

information in terms of the Di Vincenzo criteria (Di Vincenzo 1997). Such 

procedure could be useful to reach processing gates in terms of the Gates 

Based Quantum Computation (GBQC), control in quantum information, 

entanglement quantification, quantum error correction, etc. In the current work, 

we exploit this approach to set key operations to transform random large 

quantum states in order to analyse if they are able to carry out the state through 

the entire spectrum of entanglement. 

The aim of this paper is focused in the complexity to get general quantum 

states departing from the most simple ones, particularly those possibly 

exhibiting several types of entanglement (really, from separable to the genuine 

entangled states as a spectrum). The second section summarizes the details of 

SU(2) decomposition procedure. Third section depicts the general processing 

operations being possible to reach in such procedure. Fourth section sets 

several findings about entanglement already reached under the SU(2) 

decomposition operations. Fifth section presents the Rényi-Ingarden-Urbanik 

(RIU) entropy (Ingarden and Urbanik 1962) and finally sets several automated 

procedures to show the evolution processing of large quantum states transiting 

from separable to entangled states. Last section set the conclusions and future 

work.   
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SU(2)-Dynamics Decomposition 

 

In this section, we set the generalities of SU(2) reduction procedure as it 

has been developed in (Delgado 2015), together with the Hamiltonian being 

considered in such development. This procedure was first applied in the 

Heisenberg-Ising Hamiltonian for two particle spin together with external 

magnetic fields in a fix direction. By using the Bell states basis to describe the 

dynamics, it was discovered that the SU(4) dynamics for the entire system 

became split in two evolution subspaces, each one with a SU(2) dynamics. This 

block structure in the evolution matrix was useful to set the most common 

quantum processing operations. After, it was realized this procedure could be 

generalizable to any system integrated by several interacting two level systems 

being combined in only one bigger system.   

 

A General Hamiltonian in SU(2
2d

) 

 

Thus, the current analysis of the SU(2) decomposition departs from the 

general Hamiltonian for n=2d qubits (Delgado 2017a): 

 

   (1) 

 

where matrices i , i=0, 1, 2, 3 are the Pauli matrices (and the identity), and 

symbol  is the tensor product. The two-biased notation in the subscripts of 

the Hamiltonian coefficients and Pauli matrices are common in quantum 

information: {i1, i2, …, in} are a set of subscripts as reference of each 

coefficient and each physical part of the system, but alternatively I is an 

equivalent number to those subscripts considered as its expression in base 4 

with n digits. Thus, I 
n
4,k = ik is its k digit in such base. We switch both 

notations under convenience.  

 

The Generalized Bell Basis (GBS) 

 

The last expression is settled on the Hilbert space H 2d
 of spin states for 

each one of the 2d subsystems being combined, a space with 2
2d

 complex 

dimensions (or 4
2d-1 

parametric dimensions due to the normalization condition). 

Procedure suggests re-express the dynamics on the Generalized Bell States 

basis, GBS (Sych and Leuchs 2009): 
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  (2) 

 

where the tilded i are the modified Pauli matrices, differing from the classical 

ones only for i=2 by an additional imaginary unit factor, i. Scripts follow the 

same rule that in the Hamiltonian, as instance: Dn
2,k = k, in this case in base 2. 

Then, the Hamiltonian components can be expressed (Delgado 2017a) as: 

 

  (3) 

 

This expression sets the rules to get the SU(2) decomposition. By taking 

pairs of the entire set of scripts Id
4 and Kd

4, in such way that in both 

corresponding rows of Hamiltonian only the diagonal terms and those with 

entries having them as subscripts, we will get a 2 × 2 block. In the current 

Hamiltonian, we can to get three possible groups of interactions: Types I, IIa,b 

and III (Delgado 2017a). All of them contain entangling operations between 

the pairs 1, d+1; 2, 4; …; d, 2d (called correspondent pairs), a kind of 

operations referred as 2-local operations. All of them exhibit Ising-like 

interactions between correspondent pairs providing the diagonal part of the 

blocks. Additionally, Ising-like interactions among the non-correspondent parts 

provide the diagonal-off entries in the blocks. Correspondingly, the Type IIb 

and III involve Dzyaloshinskii-Moriya-like interactions (Dzyaloshinskii 1958, 

Moriya 1960) among non-correspondent parts and correspondent pairs 

respectively to provide the diagonal-off entries (Delgado 2017a). In any case, 

all interactions work in only two ways: a) they lets to mix or to exchange the 

basis states by pairs if they are different in only one script (Type I ad III), or b) 

they are different in exactly two scripts (Types IIa,b). These exchange rules 

have been described in detail by Delgado (2017b). 

 

The Block Structure Generated by the SU(2) Reduction 

 

Last decomposition lets to express the Hamiltonian in the form (by the 

rearrangement of the basis elements) of 2×2 blocks: 

 

  (4) 
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Thus, because the evolution operator can be calculated from the 

Hamiltonian as the time-ordered integral (Grossman and Katz 1972), basically 

containing time-ordered products preserving that structure, it inherits the same 

block structure: 

 

  (5) 

 

Clearly there are 2
2d-1

 blocks in each matrix with a respective phase factor 

(despite only 2
2d-2

 are independent, thus generating a semi product structure). 

Only U exhibits the structure U(1)
22d-2

×SU(2)
22d-1

 (Delgado 2017a). 

 

Interactions Generating SU(2) Reduction 

 

Only the Type IIa,b interactions are able to generate extended entanglement 

in the system because it works on two correspondent pairs (4-local operations), 

it means on states differing in two elements of the subscripts. Figure 1 depicts 

those interactions showing 2d=20 qubits. The envelope surface depicts the 

permanent entanglement (in some variable degree) between the correspondent 

pairs maintained by non-local interactions in all three cases (non-crossed and 

Ising-like). Type I interaction includes only local interactions in each element 

of only one correspondent pair. Type III interaction includes non-local crossed 

(Dzyaloshinskii-Moriya-like) interactions between elements of only one 

correspondent pair. These interactions do not generate more extended 

entanglement far away than the pair where are applied. Finally, Type IIa,b 

interactions include non-local, and non-crossed (a) or crossed (b) interactions 

able to generate extended entanglement far away from the correspondent pairs. 

As a result, under this scheme, we have a group of SU(2) based operations 

through the whole matrix evolution to produce quantum information 

processing with well identified operations. 
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Figure 1. Depiction of the Three Types of Interactions Exhibiting SU(2) 

Reduction in the GBS Basis a) Type I b) Type IIa,b c) Type III 

 

a) 

 

 

 

b)  

 

 

 

c) 

Non-local interactions between 

each pair of correspondent pairs 
and local operations on each 

element of one correspondent 

pair 

 

Non-local interactions between 

each pair of correspondent pairs 
and non-local operations among 

elements in only two different 

correspondent pairs (a: non-
crossed or b: crossed) 

 

Non-local interactions between 
each pair of correspondent pairs 

and a non-local crossed 

operation between elements of 
only one correspondent pair 

 

 
  

Operations for Quantum Information and their Classification 

 

This section is devoted to depict some generic operations in quantum 

processing. In spite of the SU(2) reduction, then each block is able to adopt this 

form. They are shown able to generate large entangled states departing from 

basic (separable) or similar quantum information states (as a re-scaling in the 

number of qubits). Still, the operations presented are not necessarily the most 

general, instead the most common operations in terms of similitude with those 

used as traditional gates in GBQC. 

 

Generic Operations in Quantum Processing 

 

A general common operation (but not the most general actually) in the 

previous SU(2) reduction context can be expressed as: 

 

  (6) 

 

where 
2
+

2
=1; m, c  Z. In particular, we can identify there certain 

archetypical operations (Delgado, 2017b). By instance, Hadamard-like gate: 

 

   (7) 
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or the exchange gate, responsible to switch the states related in the block: 

 

  (8) 

 

and the quasi-identity gate: 

 

  (9) 

 

where: I is the identity matrix, s is a sign,  R. In all cases, I, I’ in [0, 2
2d

] 

depict the rows (or columns) where the block is allocated. Despite (6) is a more 

general gate under the SU(2) decomposition able to be adapted into other 

necessities. Delgado (2017b, 2017c) has presented several results about the use 

of these operations in order to get special extended entangled states as 

Greenberger–Horne–Zeilinger states (GHZ) and W states. Despite, they are 

very limited cases of large entangled states and they are easy because contain a 

reduced number of terms (despite of their importance). In the current approach, 

we are interested on the analysis of general processes to reach states with 

arbitrary degrees of entanglement. Normally, it has been probed that while size 

of the combined system becomes larger, the number of entangled states grows, 

thus a random state in H 2d
 becomes normally an entangled state, and 

particularly exhibiting a large value of entanglement (Enriquez et al. 2015).  

 

 

Reaching General States with 1, 2 and 4-Local Operations 

 

In this section, we describe some previous works developing the 

generation of maximal entangled states in the context of SU(2) reduction 

operations, despite limited because they are special cases, they have set probes 

about how basic processing operations are able to generate large entangled 

states. The aim of this section is to prepare the reader for a stochastic process to 

reduce (or alternatively to construct) arbitrary large quantum states into other 

simpler. Operations being presented should be responsible to assemble or to 

disassemble each state considered in each step of the process. Each operation 

has a group of parameters to be selected, we are interested in the best selection 

able to reduce or to increase the entanglement as a roadmap. 

 

Processes Generating Entanglement under SU(2) Reduction Procedures 

 

2-local operations let to the entanglement inside of the correspondent pairs 

but no longer that it. Particularly, in this context, the absolute local operations 

(the 1-local), are a special case of 2-local ones. While, 4-local operations 

generate entanglement involving more than two pairs. Note no longer exchange 

of entanglement is directly allowed at a time in the nature because physical 
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interactions are between pairs of physical particles. Because the SU(2) 

reduction sets the interaction architecture in the system and there the GBS basis 

works as a universal basis still if the three types of interactions are combined, 

then is few recommendable as first instance to change the structure of 

correspondent pairs because it will destroy the stable basis on which the 

dynamics is being analysed.  

Particularly, by using the Partial Trace criterion for pure states (Nielsen 

and Chuang 2000) to measure the entanglement degree between two basis 

elements of the entire system:  

 

  (10)  

 

Concretely, we are interested mainly on the effect of one of the 4-local 

operations exchanging the indexed I and J (assuming they are different in a 

couple of digits in base 4). Then, under such criterion, the concurrence is: 
 

  (11) 

 

where S is the set of scripts left after to take the partial trace (Ulhmann 2000). 

We assume they are k, k’’. If m=min(m1, m2), where m1, m2 are the dimensions 

of each part in the partial trace, then concurrence values ranges from 0 (for 

separable states) to 2(m-1)/m (maximal entangled states). For our case, 

m=m1=m2=4 because we are comparing the entanglement between one 

corresponding pair with another. By expressing conveniently the state 

coefficients as: 

 

  (12) 

 

Then, we get by computing the density matrix and then the concurrence 

C2
: 

 

  (13) 

 

clearly denoting the possible maximum value 3/2. In this case: 

 

   (14) 

  (15) 

 

Nevertheless, this is important only for the case i=2 and those cases 

involving it (there, i = /2). This result exhibits how entanglement is 

exchanged between two correspondent pairs under the 4-local operation 

generating the linear combination (10). This fact appoints on the generation of 

extended entanglement, which can be continued if interactions consider now 
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other non-correspondent pairs. This aspect will be fundamental in this work 

because it is the source of extended entanglement. 

Several cases have been developed (Delgado 2017b, 2017c) for specific 

cases of interest: a) the reaching of GHZ and W states departing from separable 

states (Delgado 2017c), and b) the enlargement of those states departing from 

their shorter versions with two less qubits by the integration of an additional 

separable pair (Delgado 2017b). Nevertheless, those cases have a low 

complexity due to their reduced number of terms. In the SU(2) reduction, 

despite of simplicity of the operations, still remains the complexity on the large 

number of blocks operating in the entire state. In addition, the number of 

different SU(2) blocks (not including their U(1) phase component) is reduced, 

the most of them are identical. This fact reflects the underlying complexity of 

entanglement (Gurvits 2003), particularly when the number of parts grows. 

 

Process to Generate Extended Entanglement in the SU(2) Reduction Scheme 

 

In this subsection, we address with the problem to generate (or to reduce, 

with the inverse operations, due to the reversibility of quantum mechanics), 

larger entanglement from separable states, as instance. By departing from the 

2-separable basic state 0
2d

=0,..,0 (the tensor product of d Bell states 

0), a general procedure (but non unique) to generate the sixteen terms in a 

general state involving two correspondent pairs (four single qubits) could be 

stated in the following way. If i, j, k is a permutation of 1, 2, 3, then we apply 

first a 2-local operation with associated direction i on the first correspondent 

pair s, then another on the second correspondent pair s’ in the direction j. After, 

we apply a 4-local operation on both pairs in the direction k (generating 

entanglement between the two pairs). Finally, we apply a 2-local operation on 

the first pair s in the direction j. This procedure gives the sixteen possible terms 

and certain degree of entanglement: 

 

  (16) 
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where C4={0,1,2,3} and p
t, 

s,j 
is the extension of the inverse exchange rule 

(Delgado, 2017b), but specifying the rule j as function of the direction of the 

interaction involved and the script t ∈ {0, i} is a label specifying each possible 

inverse. It means, if j is the characteristic direction of interaction: p
0,i

s,j
=k=p

0,k

s,j
 

, p
0,0

s,j
=0=p

0,j

s,j
 and p

i,i

s,j
=i=p

i,k

s,j
 , p

i,0

s,j
=j=p

i,j

s,j
. By increasing the number of 

additional intermediate operations (1-local, 2-local or 4-local), it is possible to 

extend the coverage on the elements of SU(2) for each evolution operator in 

each subspace. Alternatively, other possible procedures to generate larger 

entangled states could give more extended entanglement as those cases 

presented in Delgado (2017b) to generate the GHZ and W states with genuine 

entanglement. In any case, the way (clearly the ways) to reach some state by 

construction departing from a very simple state as 0
2d

 is still open. The last 

fact suggests how to address a quantum information processing to generate 

some general states from simpler ones or otherwise, reducing an arbitrary state 

into another with low entanglement (1 or 2-separable in the current scheme). 

But the process will not become sufficiently obvious when the complexity 

grows together with the size of the system. For an arbitrary state is not always 

clear how it can be reduced into a separable state, despite from the analysis 

becomes true it requires both, 1 or 2-local operations, but necessarily, 4-local 

operations to decompose the possible entangled structure in an arbitrary state. 

In addition, the advancement on the process is difficult to be continuously 

monitored because the lack of a universal entanglement measure. We will try 

to compensate that lack in the next section with the Rényi-Ingarden-Urbanik 

entropy. 

 

 

Analysis to Reduce the RIU Entropy through the SU(2) Reduction with 1, 

2 and 4-Local Operations 

 

In this section we finally analyze how a series of operations based on 

SU(2) reduction are able to transform arbitrary states into simple ones. We use 

the Rényi-Ingarden-Urbanik entropy to depict the process in terms of the 

global entropy of the state.  

 

Rényi-Ingarden-Urbanik Entropy 

 

A measure of entanglement for arbitrary number of qubits (q-dits in fact) is 

the RIU entropy (Ingarden and Urbanik 1962) defined as: 

 

 (17) 
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We will consider the most common case p=1 as a measure of the 

entanglement of larger states as those presented in the context of the SU(2) 

reduction process: 

 

  (18) 

 

The Shannon entropy; clearly these quantities depend on the representation 

of the states and the basis being used in it, despite they can be minimized 

through optimal local operations into the minimal RIU entropy (Enríquez, 

Puchala and Życzkowski 2015). RIU entropy with p=1 for 2d qubits exhibits 

values ranging from 0 (for separable states) to log(2
2d

) (for certain maximal 

entangled states).   

Despite this entanglement measure could be useful to provide a dial to 

sense the entanglement degree, it is not clear how it relates with the inner 

structures of entanglement. Thus, it will work to have a general and a side-to-

side quantification for the entanglement. We are particularly interested on the 

big picture of the transit from an arbitrary state (commonly entangled) into 

another finally separable, using only 1, 2, 4-local operations as they could be 

provided by the SU(2) decomposition scheme.                                              

 

Stochastic Process Reducing RIU Entropy with SU(2) Reduction Operations 

 

Following the ideas previously presented, it has been automated a process 

to reduce the entropy of arbitrary states. It begins by generating a random state 

in the Haar’s measure in 2
2d-1

 dimensions (Diestel and Spalsbury 2014). Then, 

the state is first processed with 1-local operations to reduce optimally its RIU 

entropy. After, a stochastic process begins by selecting a 2-local or a 4-local 

operation, together with a characteristic direction for it. In any case, an 

optimization problem is solved in order to select the best parameters of such 

operation in order to minimize its RIU entropy with it. Then, process is always 

followed with the application of an optimal 1-local operation to reduce again 

the entropy (2 and 4-local operations includes by extension the 1-local 

operations in the SU(2) reduction scheme). Clearly, this step process only is 

able to reduce it in a limited strength because the residuary entanglement 

involving more complex structures (Gurvits 2003). Thus, the process continues 

alternating those 2 or 4-local operations followed with a 1-local operation 

optimally to reduce the RIU entropy (Figure 2).  

As was stated, the selection of the local order of operations, the associated 

direction together with the pairs involved, are completely stochastic in each 

step. Last process is hard to simulate because the large number of parameters 

associated to be optimized on each step. Each one lasts out around of two 

minutes to be numerically processed (for utmost six qubits on an Intel Xeon 

3.40 GHz). The process was followed by certain number of operations tracking 

its RIU entropy. For the six-qubits, we are working with basis of size 64. 



ATINER CONFERENCE PAPER SERIES No: PHY2018-2621 

 

12 

Figure 3 depicts such basis elements and their relations under the SU(2) 

reduction combining 2 and 4-local operations, reflecting the complexity in the 

interactions for this system (only six qubits!). Each script exhibits their 

composition in terms of Bell states if it is expressed in base 4.  

 

Figure 2. Stochastic Process to Reduce the RIU Entropy 

 
 

Blue arrows match the overall relations settled by any 2-local operation in 

all possible associated directions and parts (between those basis elements 

differing in only one digit in the base 4 representation of scripts). Green arrows 

relate the relations settled by any 4-local operation considering all possible 

directions and parts (differing in two digits in the scripts).   

Figure 4 shows ten simulation experiments with a six-qubits system 

processed with the last procedure with 300 steps of such optimal operations 

each one. Note how the RIU entropy reduces rapidly in the first steps. After, 

the process slows until a casual operation finally reaches a deep reduction of 

the entropy (resembling a thermodynamic change of state) to then remain 

almost static until a new remarked reduction. Some of those experiments reach 

a zero entropy indicating the achievement of a separable state. Clearly, the 

inverse process can be attained reversing the quantum operations. In any case, 

we note it is possible to disassemble (or assemble) arbitrary states reaching (or 

departing from) single separable states. 

 

2
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entropy 

reduction 

RIU 
entropy 

reduction … 

O
ptimal 1-

local 
operation 

O
ptimal 1-

local 
operation O

ptimal 2 
or 4-local 
operation 



ATINER CONFERENCE PAPER SERIES No: PHY2018-2621 

 

13 

Figure 3. Basis Elements for the 2d=6 Case for the SU(2) Reduction and 

Relations for a) 2-Local Operations (blue), and b) 4-Local Operations (green) 
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Figure 4. Ten Random States Evolving through a Series of 300 Steps of the 

Stochastic Process Combining 2-Local and 4-Local Optimal Operations to 

Decrease their RIU Entropy 

 
 

The process is not direct, to see that it is important understand how the use 

of information states (more than physical states) works. The evolution by 

blocks works in parallel on large number of states, instead independently. It 

means, for the 2-local interactions, there are only two different blocks at the 

time. In fact, all blocks are of two types, both exchanging one digit in the script 

of states while other remain unchanged: a) those exchanging 0 and the digit j 

(the associated direction to the interaction; in the crossed interaction the Type 

III, both coordinates involved defines that direction as a permutation of 1, 2, 3), 

and b) those exchanging i, j, the remaining scripts. For the Type IIa,b 

interactions, the situation is similar, but there are eight different blocks related 

with the exchanges (Delgado 2017a). Despite the complexity, the RIU entropy 

works as an indicator in the process. The processes depicted in the Figure 4 

deeply suggest a certain order in the decreasing of the RIU entropy under this 

stochastic roadmap. Still more numerical data are precise to reach statistical 

meaningful in such quantification. Other findings in the last plot are suggested 

in the deceleration of the RIU entropy reduction around of log(4). Further 
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evolution departing from this point is erratic in terms of optimality in the 

reduction of the residual entropy. Six-qubits case is only the beginning. Note 

other works have attempted similar approaches in the comprehension of the 

structure of large entangled states by identifying inner structures of partial 

entanglement (Guhne and Toth 2009, Kraus 2010, Zangi et al. 2018). 

 

 

Conclusions 

 

The comprehension of entanglement, constitution and measurement are 

aspects closely related. In addition, limitations associated with the formation of 

entangled states for large systems suppose a high quest being able to reach or 

manipulate arbitrary quantum states, because it is closely related with the 

system and the associated Hamiltonian. Quantum information theory is widely 

based on this fact, thus the importance to learn about control and processing in 

many body systems.  

In the current work, the use of SU(2) reduction as analysis element to 

identify and to classify the entangling operations based on the concrete 

possibilities for the Hamiltonian has becoming valuable to set an automated  

road to analyze the possibility of processing. In addition, it has been useful to 

set a common grammar for a group of possible related interactions. Despite the 

complexity becomes exacerbated by the lack of a general measurement and 

quantification of entanglement, the use of RIU entropy is still useful to appoint 

the beginning and the goal of the entire processing, nevertheless it does not 

give a clear and complete compass in the middle of the road, particularly in 

terms of optimality. A future work opportunity in this context is a customary 

factorization for a direct SU(2
2d

) matrix resembling the processing 

transforming a state into another, which could be uniquely factorized in terms 

of a matrix basis being formed with the SU(2) blocks present in the reduction 

formalism.  

In the last outcome (Figure 4), it is barely clear there is a notable reduction 

in the RIU entropy in the first steps of the process by the use of combined 2 

and 4-local operations. The decided reduction stops approximately in log(4) to 

then going on a slower reduction with only casual and sudden entropy fallings. 

This region appears as the most unclear and complex processing in terms of the 

RIU entropy reduction with the available operations. Despite, the processing 

seems going to zero-RIU entropy as a function of time (or the number of steps 

needed). Still more research and improvements in the computer simulations of 

this proposed process appears as necessary to get some statistical insights about 

its qualities, which could be associated in general as the processing of quantum 

states for large systems. Statistical analysis is suggested in terms of other 

approaches as invariants (Eltschka et al. 2011), customized factorization (Luo 

et al. 2014), rank of coefficient matrix (Li and Li 2012), generalized singular 

value decomposition (De Lathauwer et al. 2000), etc. In any case, still there are 

many facts to explore in the understanding of entanglement and its 
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quantification, together with the general dominion of quantum processing, in 

particular when the size of systems grows. 
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