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Teaching Ridge Regression in Polynomial Data Fitting 
 

Diarmuid O’Driscoll 

 

Abstract 

 

The standard linear regression model can be written as Y=Xβ+ε with 

uncorrelated zero mean and homoscedastic errors. Here X is a full rank n x p 

matrix containing the explanatory variables and the response vector y is n x 1 

consisting of the observed data. The Ordinary Least Squared (OLS) estimators 

are given by   and the Gauss-Markov Theorem states that   

is the best linear unbiased estimator. However, the OLS solutions require that 

 be accurately computed. In most real life situations, for example in 

engineering, economics and medicine, data is often given in discrete values 

along a continuum and it is necessary to find estimates at points between the 

discrete values. In particular, the data may suggest that a polynomial best 

represents the general trend of the data. If we try to fit a polynomial of too high 

a degree to a data set, containing noise, using OLS, then  will be 

numerically difficult to calculate and can lead to very unstable solutions. This 

paper will use the surrogate estimators of Jensen and Ramirez (2008) to 

‘control’ the complexity of the model, to reduce the size of the confidence 

intervals of the parameters and prevent the polynomial from fitting the noise in 

the data. As the models are nested, the F-test will be used to compare the 

models. 

 

Keywords: Collinearity; Ill-conditioning; Surrogate estimators. 
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Introduction 

 

It is often the case that in many of our institutions, especially the smaller ones, 

time factors often prevent us, as teachers, from providing applications of topics 

covered in modules at undergraduate level for students of mathematics and 

statistics. Fitting polynomials to noisy data affords teachers an opportunity to 

combine topics from Linear Algebra, Multivariable Calculus and Introductory 

Statistics modules and show students the latent problems that arise from ill 

conditioning and also offer solutions as how to best deal with these problems. The 

method of least squares is commonly used in polynomial fitting to data. The 

standard linear regression model can be written as Y=Xβ+ε with uncorrelated zero 

mean and homoscedastic errors, . Here X is a n x p matrix, which must 

be of full rank to implement ordinary least squares method, containing the 

explanatory variables and the response vector y is n x 1 consisting of the observed 

data. The Ordinary Least Squared (OLS) estimators are given by 

and the Gauss-Markov Theorem states that  is the best linear 

unbiased estimator. However, the OLS solutions require that  be 

accurately computed and the variance-covariance matrix is given by . 

Hence ill conditioning can result in very unstable solutions and high variances for 

the estimators from which it is impossible to determine worthwhile confidence 

intervals. This paper will show how ridge regression is one method to avoid 

overfitting of a data set by a polynomial of too high a degree.  

 

 

Methodology 

 

A set of eleven training data points and eight test data points were generated 

from the quartic polynomial  

 

 
 

in the interval [-0.5,0.5] and noise is added to these data points from a normal 

distribution  

The paper follows the educational idea of the inverted class, where you 

start with a finished product, such as the best fitting polynomial of degree 4 in 

Figure 1 and discuss the mathematics that are required to arrive at the final 

stage. 
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Figure 1. Training and Test Points with Added Noise and Underlying Function 

 
 

Polynomials of size 2, 4, 7, 9 and 10 are fitted to the training data set using 

OLS and the coefficients of these best fitting polynomials are displayed in Table 1. 

 

Table 1. OLS Estimators for Polynomial Coefficients of Different Degrees 
Est/Deg d=2 d=4 d=7 d=9 d=10 

 -0.0054 0.0021 0.0057 -0.0004 0.0092 

 0.0242 -0.0159 0.0276 -0.0822 -0.0822 

 0.1239 -0.13764 -0.4171 0.5133 0.1157 

  0.2250 -0.7675 6.6169 6.6169 

  1.0426 4.1336 -16.9964 0.6882 

   5.8364 -121.9226 -121.9226 

   -8.1931 139.2335 -119.0019 

   -10.0372 771.7755 771.7755 

    -309.7198 1140.9142 

    -1527.6799 -1527.6799 

     -2702.1613 
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Figure 2. Training Data Points, Test Data Points with Added Noise 

 
 

The SSE is first calculated for the training points and then for all data 

points (training and test) for the OLS estimators in Table 1 and the relative 

increase in the size of the errors is recorded in Table 2. 

 

Table 2. Relative Increase in SSE for Training Points and All Points 
Degree  d=2 d=4 d=7 d=9 d=10 

Training SSE_T 0.001252 0.000492 0.000339 0.000005 0.00000 

All SSE_All 0.004071 0.002257 0.000577 0.002975 0.007973 

Rel_Incr  2.25 3.58 0.70 594 N/A 

 

For d = 10, we note that the residual degrees of freedom are recorded as zero 

and over fitting has occurred, that is, the polynomial of degree 10 has fitted the 

data points (including noise) perfectly. However, due to the high oscillations 

between the training data points, it performs poorly in estimating the true 

underlying function as can be seen in Figures 1 and 2. 

The estimators are very large and the polynomial behaves poorly at 

intermediate points and at the end points of the interval.  

On the other hand, for d = 2, the fitted polynomial fails to capture the 

variation in the data and under fitting has occurred. 
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Ridge Regression 

 

Ridge regression trades off some bias in the least squares estimators to 

gain a reduction in the variance of these estimators. Hoerl (1959) in Equation 

(1) limits the admissible size of the estimators to reduce the complexity of the 

model by adding the penalty term to the least squares problem as follows: 

 

Minimize 

 subject to ,     Equation (1) 

 

which is solved with Lagrange Multipliers and yields the biased solution 

 

.                     Equation (2) 

 

Hoerl and Kennard (1970) proved that there always exist  such that 

) < ) and the main problem posed to researchers is to 

determine the optimal value of . 

We illustrate the trade-off between bias and variance by the following 

example. If the unbiased OLS estimator   is found to be N(1,1) and the 

optimal choice for  yields , then the graphs of , 

 and  are illustrated in Figure 3 and the respective density 

functions are shown in Figure 4. 

 

Figure 3. ; ;  

 
Source: O’Driscoll and Ramirez (2016) 
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Figure 4. Density Functions for  and  

 
Source: O’Driscoll and Ramirez (2016) 

 

Writing  the expected value and covariance of  are 

 

  and  

 

As   and as  

 

Hoerl and Kennard (1970) established that the ridge estimators satisfy the 

MSE Admissibility Condition assuring an improvement in Mean Squared Error, 

for some . This result assures that for some positive value 

of k, the ridge model is an improved model. 

However, Jensen and Ramirez (2010b) have shown the existence of cross-

over values for which, if then > . 

 

The condition number of X is defined as . 

 

A high condition number indicates that the matrix is ill conditioned and 

suggests a high level of collinearity between the columns in the design matrix.  

 

If we reduce the degree of the polynomial to six then the condition number 

of X is reduced to  

=  

 

and the OLS estimator is 

 

]. 
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However, due to the high condition number of X, the 95% confidence 

intervals for the 7 estimators are wide and each interval contains 0. In 

particular, the 95% confidence interval for  is (-27.4741, 11.0879). 

The sixth order polynomial is sketched in Figure 5 along with the training 

data points and test data points. 

 

Figure 5. OLS Polynomial of Degree 6  

 
 

For a polynomial fit of degree 6, the SSE for the training data alone is 

0.000345 which increases to 0.000668 when the test data are added to the fit, a 

relative increase of 0.94. 

 

Ridge Regression and Penalty Term 

 

To reduce the width of the confidence intervals we examine the ridge trace 

plots of the seven estimators. From Figure 6, we see that  (yellow) and  

(green) change sign over the interval [0.00001, 0.00010], which indicates that 

the OLS solutions are unstable. 
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Figure 6. Ridge Plots for the Seven Ridge Estimators 

 
 

From the ridge trace plots in Figure 5, we estimate that a steady state value 

for the  parameter is approximately .  

For this value of , the ridge estimator is given by 

 

] 

and 

 

 is reduced to  

 

The instability of the solution vector combined with the fact that the 95% 

confidence interval for  is (-27.4741, 11.0879) would suggest that the order 

of the polynomial might be reduced further. 

 

Correlation Matrix 

 

The correlation matrix is also a good indicator of collinearity between the 

columns of the design matrix. For this data set, the correlation matrix for the 

best fitting polynomial of degree 6 (excluding the constant column) is 
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It is clear that there is a high correlation between each pair of columns, but 

it is not good practice to simply identify the pair of columns with the highest 

correlation and remove one of the columns. It is best to proceed and examine 

the ridge trace plots and the variance inflation factors of the design matrix. 

 

Variance Inflation Factor 

 

In general design matrices, the variance inflation factor for the k
th

 predictor 

is defined as 

 

where   is the R
2
-value obtained by regressing the k

th
 predictor on the 

remaining predictors. 

 

VIF is a measure of how much the variance of the estimated regression 

coefficient is "inflated" by the existence of correlation among the predictor 

variables in the model. A VIF of 1 means that there is no correlation among 

the k
th

 predictor and the remaining predictor variables, and hence there is no 

inflation of the variance of . There is no agreed acceptable value of VIF in 

the literature but values higher than 10 are considered to show that there is high 

collinearity in the design matrix. 

Following O’Driscoll and Ramirez (2015), we view the design matrix 

 with  the  column of X and  the matrix formed by the 

remaining columns. The variance inflation factors measure the effect of adding 

column  to . For notational convenience, we demonstrate with the last 

column p. An ideal column would be orthogonal to the previous columns with 

the entries in the off diagonal elements of the row and  column of  

all zeros. 

 

We denote  as the idealized moment matrix 

     

 
from which it follows that 

 

Equation (3) 

The variance inflation vector for the seven parameters is given by 
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In the interval [0.00, 0.0001], the maximum variance inflation factor is 

given by .As can be seen in Figure 7, by choosing  the 

VIF for is reduced to 10.0 and reduced variance inflation vector becomes 

 

 
 

withassociated ridge estimator vector  

 

 
 

Figure 7. Variance Inflation Factor for Beta_2 

 
 

The resultant polynomial is illustrated in Figure 8. 
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Figure 8. OLS Polynomial of Degree 6 and Ridge Polynomial for  

 
 

Singular Value Decomposition and Surrogate Estimators 

 

The singular value decomposition (SVD) of the  design matrix X can 

be written in the form 

 
 

where U is an  orthogonal matrix, V is a  orthogonal matrix and D 

is an  diagonal matrix with ordered diagonal entries 

, known as the singular values of X. 

 

To alleviate the problems inherent with a singular value, say , whichis 

indicating collinearity in X, the surrogate estimators of Jensen and Ramirez 

modify the design matrix X on both sides of the OLS equation  

 
 

by perturbing the singular values of X as 

 

 
and thus moving the singular value away from zero. 

 



ATINER CONFERENCE PAPER SERIES No: MAT2018-2661 

 

12 

The surrogate estimators greatly reduce the width of the confidence intervals 

for the estimators. Similar to ridge regression and writing  the 

expected value and covariance of the surrogate estimator  are 

 

  and  

 

Using the surrogate estimator for a polynomial fit of degree6 to the 

training data and with the same steady state value for  found in 

ridge regression, 

 

] 

 

and 

 is reduced to  

 

The 95% confidence for estimator    is further reduced from (-27.47, 

11.08) to  but still contains zero and there is not enough evidence 

to reject the null hypothesis that  

The resultant polynomial is illustrated in Figure 9. 

 

Figure 9. Polynomial of Degree Six using Surrogate Estimator 

 
 

Based on the lack of evidence to reject the null hypothesis that  and 

the sketches of the ridge and surrogate polynomials in Figures 8 and 9, our 
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analysis suggests that a less complex modelof degree 4 may capture the true 

underlying function. 

The condition number for the design matrix for a model of degree 4 

reduces to  

=  

 

and the OLS estimator vector is 

 

] 

 

with respective 95% confidence intervals of  (-0.0092,0.0134), (-0.0641, 

0.0323), (-0.3873, 0.1138), (-0.0243, 0.4744) and (0.0768, 2.0084) for each of 

the parameters. 

The variance inflation factor vector in this case is 

 

 
 

To reduce the confidence limits further and to reduce the maximum variance 

inflation factor to 10, asteady state value for . The associated 

reduced variance inflation factor vector is  

 

 
 

Figure 10. Variance Inflation Graph for  

 
The surrogate estimator for the training data is  

 

] 



ATINER CONFERENCE PAPER SERIES No: MAT2018-2661 

 

14 

with respective confidence intervals  

 

(-0.0072, 0.0106), (-0.0533, 0.0218), (-0.2111, -0.0324), (0.0400, 0.4082) and 

(0.7234, 1.2424). 

 

The polynomial of degree 4 associated with this surrogate estimator is shown 

in Figure 11. 

 

Figure 11. Polynomial of Degree 4 using Surrogate Estimator 

 
 

In this case, there is enough evidence to reject the null hypothesis that  

Using the F test with numeratordf = 4 and denominator df  = 6, 

 

 
 

we conclude that there is not enough evidence that either  or  differ from 0. 

The SSE4 for the surrogate modelis 0.000518 and the SSE6for the OLS 

model of degree 6 is 0.000345. 
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Findings/Results 

 

When there is collinearity in the design matrix in polynomial fit, the 

confidence intervals for the parameters are very wide and it is difficult to make 

worthwhile predictions from the estimators. The ridge and surrogate estimators 

help to reduce the width of the confidence intervals with the surrogate estimator 

performing better than the ridge estimator in estimating the underlying function.  

As the ridge parameter  increased, it was found that the norm of ridge 

estimator tended to zero more rapidly than the norm of the surrogate estimator.  

For ,  in the case of ridge estimation while 

 in the case of surrogate, the true parameter being 1.0. The respective 

confidence intervals were (0.23,1.61) and (0.723,1.24). The coefficients for the 

true underlying function and the ridge parameters and surrogate parameters are 

shown in Table 3. 

 

Table 3. True Parameters; Ridge and Surrogate Parameters 
Parameters      
True 0.0024 -0.014 -0.13 0.2 1 

OLS 0.0021 -0.0159 -0.1367 0.2250 1.0426 

Ridge 0.0013 -0.0156 -0.1077 0.2250 0.9268 

Surrogate 0.0017 -0.0157 -0.1218 0.2241 0.9829 

 

Table 4. 95% Confidence Intervals for OLS, Ridge and Surrogate Parameters 
 OLS Ridge Surrogate 

 LC        UC LC        UC LC        UC 

  -0.01        0.01    -0.01        0.01 -0.01        0.01 

 -0.07     0.04 -0.07    0.04 -0.07  0.04 

 -0.42    0.15 -0.25   0.03 -0.32    0.07 

 -0.06      0.51 -0.04   0.49 -0.05    0.49 

 -0.05     2.13     0.45        1.41      0.26         1.71 

 

The ridge graphs in Figure 6 also show how, in some cases, the OLS solutions 

are unstable, especially when the estimators change sign over a small interval. 

 

 

Discussion 

 

The purpose of this paper was to merge topics from different modules into 

a single topic. It follows the educational idea of the inverted class, where you 

start with a finished product, such as the best fitting polynomial of degree 4 

and discuss the mathematics that are required to arrive at the final stage. 
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Conclusions 

 

The surrogate estimators perform better than each of the OLS estimator and 

the ridge estimator in finding the polynomial of best fit to a given set of data. Since 

perturbation procedures are designed to improve the regression model, one would 

expect that  as but this is not always the case as shown by 

Jensen and Ramirez (2010a). However, in the case of the surrogate estimator, 

Jensen and Ramirez (2010a) proved that  as resulting inless 

collinearity between the surrogate estimators than exists between the 

OLSestimators. 
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