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Abstract 

 

The present study focuses on one activity of a whole course, especially 

designed for third-grade gifted and talented students. The course was designed 

to foster students' mathematical creativity and reasoning in a problem-solving 

context. It included 28 meetings over the course of one academic year and 

interwove problem solving in dyads or small groups, peer argumentation, and 

teacher-led discussion. The activities developed for this course relied on five 

design principles: (a) creation of problems with multiple solutions, (b) creation 

of collaborative learning situations, (c) stimulation of socio-cognitive conflict, 

(d) provision of tools for checking hypotheses, and (e) opportunity for 

reflection upon and evaluation of solutions.  

In the paper we describe how students from three successive years of the 

course solved and justified their solutions to tasks purposefully designed 

according to the above principles. We go on to explore how this design, 

especially the stimulation of socio-cognitive conflict, promote students' 

understanding of the area concept , in particular the fact that geometrical 

figures can have the same area without being congruent. The necessity to 

create multiple solutions to a given problem situation, as well as the 

encouragement of using multiple channels of argumentation, led to the co-

construction of new ideas in geometry, and the emergence of deductive 

reasoning.  

 

Keywords: task design, problem solving, early geometry learning 
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Introduction and Theoretical Framework 

 

The Cognitive Conflict and the Socio-Cognitive Conflict and their Roles in the 

Construction of Knowledge 

Most of the models proposed to explain conceptual change and 

construction of knowledge have emphasized the role of cognitive conflict as a 

necessary condition for achieving it. Cognitive conflict, or cognitive 

dissonance, may occur whenever a learner is confronted by an event which 

varies from what is expected, where the event might be a result, fact, opinion, 

etc. Cognitive conflict is triggered by surprise, uncertainty, curiosity, 

perplexity, and also argumentation. When the newly assimilated information 

conflicts with previously formed mental structures, it may result in 

disequilibrium or a cognitive conflict (Piaget, 1975). Piaget claimed that this 

state of disequilibrium motivates the learner to seek equilibrium. Piaget 

outlined the importance of the imbalanced state for cognitive growth, where a 

balanced state is achieved through accommodation/assimilation towards 

equilibration by meeting the challenges of disequilibration.  

Neo-Piagetians, such as Mugny and Doise (1978), recognized that what 

was missing from Piaget’s theory was the role of social interactions in 

confronting conflict. They referred to conflict in the context of social 

interactions, and labeled it a socio-cognitive conflict: the collective occurrence 

of contradictory claims or understanding in social interactions. They claimed: 

'Socio-cognitive conflict is an important factor in all restructuration, whether 

collective or individual. Progress should therefore be most apparent when 

subjects of different cognitive levels actualize different approaches of the same 

task…' (p. 183).  

Although it stems from Piagetian theories, socio-cognitive conflict 

research is a priori not incompatible with socio-cultural approaches. To the 

contrary, as our findings support, it enriches them.  

 

The Role of Argumentation and Multiple Channels of Communication in 

Learning Geometry 

How can social interaction help resolve cognitive conflict? Quite naturally, 

researchers initially studied forms of talk in the endeavor to answer this 

question. Argumentative forms of talks in particular, which often follow the 

emergence of cognitive conflict, may result in a higher-level understanding of 

the constructed knowledge. In the realm of unguided small group talk, research 

has demonstrated that argumentative talk may lead to conceptual change and 

the construction of knowledge (Asterhan & Schwarz, 2009; Prusak, 

Hershkowitz, & Schwarz, 2012; Schwarz, Hershkowitz & Prusak, 2010; 

Schwarz & Linchevski, 2007). Additionally, the same research has found that 

productive argumentation is not easily triggered and that several conditions 

(e.g., the presence of devices for testing hypotheses, or the timely introduction 

of specific argumentative scripts) are crucial for it to occur. 

The case of mathematics is special in this endeavor: Recent research has 

revealed the decisive and prominent role of bodily actions, gestures, and the 
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use of artifacts, including technological artifacts, in students’ elaboration of 

elementary, as well as abstract, mathematical knowledge (Arzarello & Robutti, 

2008). Observations of students engaged in solving problems have brought to 

the foreground multiple channels of communication. As Radford (2009) 

claimed: 

 

'The very texture of thinking…cannot be reduced to that of 

impalpable ideas. It is instead made up of speech, gestures, and our 

actual actions with cultural artifacts (signs, objects, etc.)…. 

Mathematical cognition is not only mediated by written symbols, 

but…is also mediated, in a genuine sense, by actions, gestures and 

other types of signs.' (p. 111-112) 

 

Duval explicitly referred to argumentative forms of talk and added that in 

mathematics, more than in other scientific areas, argumentation is necessarily 

multimodal. Duval, Ferrari., Høines, & Morgan (2005) claimed: 

 

'The crucial properties of mathematical language cannot be 

thoroughly investigated without taking into account all the linguistic 

systems adopted in doing mathematics at any level, including written 

and spoken verbal language, symbolic notations, visual 

representations and even gestures.' (p. 790) 

 

Duval (2006) linked argumentation in geometry to the méréological 

decomposition of shapes: division of the whole into parts with the aim of 

reconstructing another figure, allowing for the detection of geometrical 

properties. Duval's méréological decomposition is an excellent example of 

multiple solving strategies in geometry due to the fact that such decompositions 

can be executed materially (by cutting and reassembling), graphically (by 

drawing lines that reorganize the shapes), or by observing visually. Our 

working hypothesis was that it is important to encourage this strategy, namely 

the composing and decomposing of shapes, in students’ mathematical 

activities. Following these theoretical considerations, we exemplify in this 

paper that gestures and actions and the use of artifacts are important 

constituents of early geometrical reasoning, and that they are deployed in 

multimodal argumentation. 

 

 

The Study 

 

The Problem-solving Course 

Three groups of 20 gifted and talented third-grade students participated in 

a special enrichment program in mathematics over three successive years. The 

students in each group attended 28 meetings over the course of one academic 

year. The course was designed to foster mathematical reasoning in a problem-

solving context. The course combined problem solving in dyads or small 
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groups, peer argumentation, and teacher-led discussion. The design of the 

activities was developed specifically for this course by the first author and 

relied on five design principles: (a) creation of problems with multiple 

solutions, (b) creation of collaborative learning situations, (c) stimulation of 

socio-cognitive conflict, (d) provision of tools for checking hypotheses, and (e) 

opportunity for reflection upon and evaluation of solutions.  

About 25% of the activities dealt with issues related to the geometrical 

concepts of area and perimeter and their relationship. Each 75-minute lesson 

typically opened with a teacher-initiated 15-minute discussion to create a 

shared understanding of the activity. Next, the teacher distributed worksheets, 

and student groups (primarily dyads) worked collaboratively on the problem, 

completing a worksheet that scaffolded the reporting process (up to 40-50 

minutes). The teacher circulated among the groups to answer questions and 

help when needed. At the end of the activity, the teacher orchestrated a 

reflective discussion on the activity. Socio-cognitive conflict was an integral 

part of most activities. 

  

Research Goals 

1) To design sequences of problem situations that stimulate 

deliberately planted socio-cognitive conflict leading to the 

production of multiple solutions, multiple types of problem-

solving strategies, and justifications in multi-channeled 

argumentation. 

2) To investigate whether the design is effective within the 

investigated population; to check whether it leads to the 

emergence of new understandings of the area concept ; and to 

identify the mechanisms that lead to these new understandings. 

 

The Designed Activity as the Main Research Tool  

The activity was designed to facilitate an understanding of the area concept 

and, in particular, the fact that shapes may have equal area without being 

congruent. Figure 1 presents a shortened version of the activity.   

It is important to note that at the end of each section (1, 2a, 2b, and 2c) we 

collected the worksheets from the students so that they could not change their 

answers during the following task, when they might discover that they had been 

mistaken in a previous task. This was part of the design and allowed us to identify 

the exact moment that a student constructed a new idea about the area concept. 

 

 

A Priori Analyses and Goals of the Tasks  

  

Task 1 

   The goal of Task 1 was to encourage students to provide diverse solutions for 

the problem and diverse explanations to justify them. Nine grid squares, 

representing the cake, were provided to students on their worksheets in order to 
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encourage them to find many diverse solutions; the grid provided a proper tool for 

checking hypotheses by comparing the area of shapes created.  

 

Figure 1. A Shortened Version of “Sharing a Cake” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We invested efforts in designing Task 2 in order to stimulate socio-

cognitive conflict between students working in dyads. Figure 2 shows how we 

anticipated that the interactions in the dyads would develop in the progression 

of Tasks 2a, 2b, and 2c.  For example, when both students in a dyad remain in 

disagreement through both Tasks 2a and Task 2b, we hypothesized that using 

the counting justification in Task 2c will result in agreement on the correct 

solution. (See the path of bold arrows shown in Figure 2 below.) 

 

Task 2a 

The goal of Task 2a was to create a conflict situation: The four parts do 

not "look" congruent! Danny's solution was designed so that it would appear 

that the area of part D is bigger than the area of part C.   

 

 

Hence Mindy's claim, "Your suggestion is wrong, don't you see? The parts 

cannot be equal!!" aimed at emphasizing the idea that the parts should be 

congruent. In this task, the students might check their claim by visual means 

only. Danny's idea seemed wrong, and in order to realize that his solution was 

in fact correct, one might use composing and decomposing strategies (Duval, 

2006). 
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We assumed that the fact that part A is congruent to part B, and part D 

looks bigger than part C would spark the conflict. 

 

Figure 2. Anticipated interactions while engaging in Tasks 2a, 2b, and 2c 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

The goal of Task 2b was to strengthen the conflict situation and, as a 

result, encourage argumentation processes that allowed the students to decide 

whether the four parts were equal or not, motivated by the influence of Mindy's 

suggestion about how to check if Danny’s solution is correct:   

 

"Let's use our scissors and cut apart the different parts. Then we 

can place them one top of another and you'll see that you're wrong 

and that your answer doesn’t meet the requirements." 

 

As the parts are not congruent, Mindy's proposal to cut apart Danny’s 

solution provided in the appendix had the potential to strengthen Mindy's claim 

that this division is incorrect. But at the same time, it allowed for the possibility 

of continued cutting and rearranging of the parts (composing and 

decomposing). Students could continue cutting apart the pieces and 

reassembling them until they "became" congruent. The provided worksheet 

displaying an enlarged version of Danny’s solution thus functioned as a tool for 

raising and checking hypotheses. The students had the opportunity here to 

figure out that even though the parts were not congruent, their areas were 

equal. 

 

Task 2c 

The goal of Task 2c was to provide the students with an additional and 

more helpful tool for testing hypotheses with the provision of a square grid.  

Danny's second drawing        allowed students to count the square units 

and find that, even though the parts were different in shape, they had equal 

areas. This easier tool (counting) encouraged students who still believed Danny 

is incorrect after Task 2b the opportunity to reassess their understanding. 
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We analyzed 38 worksheets from three successive years and found 

multiple and creative solutions. We identified four main types of solutions (see 

Fig. 2). In Type A, all four shapes were congruent and were created by simple 

partitions: drawing diagonals, perpendicular bisectors, or segments parallel to 

one side. 95% of the students proposed all three Type A solutions. In Type B, 

all four shapes were congruent but they were created with more sophisticated 

partitions. Type C solutions consisted of two different pairs of congruent 

shapes. And in Type D, there were no more than one pair of congruent shapes 

(quite often all four shapes were non-congruent – see Fig. 2). We found that 

84% of the students produced at least three different types of solutions. This 

means that they produced at least one solution in which not all of the four parts 

were congruent. 

 

Figure 3. The Four Types of Solutions and their Subtypes 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition to the solutions drawn on the worksheets, scrutiny of the 

videotapes revealed that these solutions were the result of rich interactions 

during which children justified their solutions and convinced their peers in 

various ways.  

In the analysis of the students' worksheets we identified three types of 

justifications: (1) congruency-based (2) compose and decompose, and (3) 

counting. We analyzed the written justifications and found that 46% of the 

justifications were congruency-based, 42% were counting justifications, and 

only 12% were compose-and-decompose justifications. The solutions and the 

solution processes of the first task were described elsewhere (Prusak, 

Hershkowitz, & Schwarz, in press). In light of the findings gathered from Task 

1, we turn to analyzing the findings of Task 2. 

 

Task 2 

To begin, we share one dialogue that represents one type of interaction 

between dyads in Task 2. In the second stage, we analyse the worksheets to find 

whether our design led to the resolution of conflicts and to new understandings 

of the concept of area, and in particular the fact that non-congruent shapes can 

have equal area. 
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Ofaz and Jonathan: From Initial Disagreement to, after some Convincing, 

Eventual Agreement on a Correct Solution 

Ofaz and Jonathan were in disagreement in Task 2a. They were in socio-

cognitive conflict: Ofaz initially claimed that Danny was wrong and Jonathan 

claimed the opposite. We depict here the multimodal argumentation that led 

them to jointly reach the correct solution only in Task 2c. Nonverbal actions 

are in brackets. 

 

Table 1. Task 2a   

 Ofaz looks at Danny's drawing and writes: No! Danny is not right! I 

measured with my ruler and it is wrong. 

  Jonathan 1: Now I'll tell you what I think in a second [waiting till 

Ofaz finishes writing his claim on the dyad’s 

worksheet]. I'll show you that I'm right! [Takes the 

worksheet.] This part and this part [draws a partition in 

the bold segment that divides the narrow rectangle of 

part 4 into two congruent parts] – if we cut this and 

move it there [draws the arrow to show what he means], 

this is the same part as this one [pointing at the square 

in part 1, marking it in light gray in part 2]. So this 

moves to this spot and becomes a square as well 

[finishes the drawing of the squares]. Then we make an 

"X" on the extra piece [pointing at part 4 with an 

encompassing gesture] and the same with the now 

changed piece 4 [pointing at part 4]. This is right! 

[Compose and decompose of shapes 3 and 4.]  

Ofaz 3:      But it’s impossible to take away parts and move them 

somewhere else. What if I cut the piece of cake and 

took it away? 

Jonathan 4:  No! But the parts are equal! [Taps with his pencil on the 

drawing.] Let's imagine that this part was here. Let's say 

it is.  

Ofaz 5:       But now it is not somewhere else [pointing with 

the ruler at part 3]. 

 

We should pay attention to the way Jonathan expressed himself. We may 

recognize that he is well accustomed to the culture of arguing, convincing, and 

backing claims with gestures, drawings, diagrams (arrows), etc. His words 

were intended to convince his peer, and he tried to be as clear as possible in his 

explanations. It is clear that he was able to imagine the composing and 

decomposing transformation as an ongoing process, so he used arrows and 

gestures to demonstrate the dynamic nature of his solution. Ophaz was not 

convinced and it seemed that he could not grasp the idea of cutting and 

rearranging parts of a figure (Ofaz 5) 
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Table 2. Task 2b 
    Here the dyad continues to be in disagreement, and they try to convince 

each other by using the appendix worksheet and cutting its parts apart.  

 Jonathan 8:  Okay, let's begin with the parts that are equal (1 and 2). 

[Jonathan continues cutting apart parts 3 and 4 and folds 

the narrow rectangle of part 4 over on itself. He cuts and 

reassembles as in the drawing. He sees that something is 

wrong, so he looks at his sketch and tries to figure out 

what's wrong.] 

Jonathan 10: Let's say it is like that… [Looks for the drawing he made 

before on the worksheet, then takes the "new" part 4 and 

places it on top of part 2.] And say they are the same. 

[Tries to put the third part above without changing its 

shape and fails.] 

Jonathan 11:  So they do not have exactly the same shape but they do 

have the same area. 

Ofaz 12:       No! That’s wrong! [Shows that the parts do not coincide.]  

Jonathan 13: No, it’s not wrong! [Fails at juxtaposing the parts.]  

Ofaz 14:       So I was right all along. 

 

The initial situation of Task 2b was again based on disagreement! At this 

point, Jonathan was unable to prove his claim because he failed to do what he 

imagined so clearly was possible: Although he was able to envision the correct 

transformation and even show a correct decomposition of shapes, he failed to 

implement the concept when he cut apart the appendix worksheet (Jonathan 8).  

He was very confident in his solution and, as a result, the fact that he was not 

able to demonstrate the idea in a concrete way did not alter his claim; he stated 

confidently that the shapes were equal in area even if they were not congruent 

(Jonathan 11). Ofaz firmly insisted that the shapes must be congruent, and the 

fact that Jonathan failed to prove his claim gave Ofaz the resolve to declare: 

“So I was right all along” (Ofaz 14). 

 

Task 2c 

The dyad finally reached an agreement on the correctness of Danny's 

solution; they succeeded in doing so by using the counting justification, as the 

design of the task led them to do. Ofaz wrote on their group worksheet: 

'Jonathan was right from the beginning, but I changed my mind because in 

each part there are 4 square'. Yet it is worth noting that they also indicate the 

compose and decompose transformation that should be done on parts 3 and 4. 

Here, the interaction involved rich multichannel argumentation processes.  

 

 

Analysis of all Students' Worksheets 

 

We analyzed 38 worksheets from three successive years of the year long 

program. On the answers given for Task 2a and found that about 64% of the 

students claimed in 2a that Danny's solution is correct (the right answer). 
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About 16% of the dyads were in disagreement and almost 20% of the dyads 

claimed that Mindy was right (which was incorrect).  

Students who claimed that Danny was correct didn't change their claim in 

Task 2b, even though this subtask was designed to strengthen the conflict. 

These findings may indicate that for those students, the area concept had 

already been consolidated in Task 1.  

After performing Task 2c, all dyads reached agreement that Danny’s 

solution was correct without any need for intervention or discussion guided by 

the teacher. This finding suggests that the meticulous design of the task and the 

existence of testing tools planted in the task itself "forced" the students to use 

these testing tools during the solving and argumentation processes. 

We found that almost 25% the justifications given for the correct answer 

were incorrect or incomplete: most of them involved an incorrect use of 

counting; none were of the compose and decompose type. Consequently, a first 

impression of the high percentage of students that claimed Danny was right 

might be misleading because 25% of the justifications given with the correct 

answer at this stage were incorrect. The dyads who claimed that Mindy was 

right (incorrect answer) accompanied their claim with two types of 

justifications: 20% used counting as an explanation and 80% used the compose 

and decompose justification. 

Half of the dyads who disagreed in Task 2a reached a consensus that 

Danny’s solution was correct after finishing Task 2b in which they cut the 

appendix worksheet apart as a tool for testing their hypotheses.  As for the 

other dyads, they continued agreeing on the incorrect answer, or, as in the case 

of Ophaz and Jonathan, they continued disagreeing until Task 3, where the 

"wrong" student rallied the right one. It is worth noting that all the socio 

interactions we hypothesized would take place during the design phase (see the 

schema in Figure 2) actually took place, with the exception of the transition 

from agreement on the incorrect solution in Task 2a to disagreement in Task 

2b.   

 

 

Some Conclusions 

 

The design of activities such as Tasks 1, 2a, 2b, and 2c aims at stimulating 

collaboration and the creation of cognitive and/or socio-cognitive conflict and 

resolution. Conflict was resolved in diverse ways: through agreement on 

incorrect solutions, disagreement and subsequent persuasion regarding the right 

solution, disagreement based on incorrect and incomplete justifications, etc. As 

opposed to (neo-) Piagetian theories of development, the different interactions 

shared above suggest that the resolution of conflict is not only attainable, but 

can materialize in many ways. Resolution was always accompanied by 

nonverbal actions that palliated the difficulty to articulate verbal justifications. 

With the help of these multiple channels, we also observed seeds of deductive 

considerations. When the young students adopted a composing and 

decomposing strategy, its implementation was embodied in nonverbal actions 
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produced in multiple channels, all of them with an interactional character. This 

is what Duval meant when he suggested that méréological decomposition can 

be done materially (by cutting and reassembling), graphically (by drawing lines 

that reorganize the shapes), and by looking. The Interactions we presented in 

table 1 and 2 exemplify these actions, and the intentionality of these actions 

was both cognitive and social. 

An additional contribution of this study was to show how nonverbal 

actions are "signs" that are intertwined in strategies that help orchestrate 

reasoning in rich argumentative processes (as was seen in the three 

interactions). We suggest that through these actions, between the material 

(seeing, touching, and modifying) and the mental, children were able to 

function at an intermediate level to monitor, and especially regulate, their 

solutions.  
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Table 1: Task 2a   

Figure 1. A shortened version of “Sharing a cake” 

Figure 3. The four types of solutions and their subtypes 

Figure 2. Anticipated interactions while engaging in Tasks 2a, 2b, and 2c 
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 Ofaz looks at Danny's drawing and writes: No! Danny is not right! 

I measured with my ruler and it is wrong. 

  Jonathan 1: Now I'll tell you what I think in a second [waiting 

till Ofaz finishes writing his claim on the dyad’s 

worksheet]. I'll show you that I'm right! [Takes the 

worksheet.] This part and this part [draws a 

partition in the bold segment that divides the 

narrow rectangle of part 4 into two congruent 

parts] – if we cut this and move it there [draws the 

arrow to show what he means], this is the same 

part as this one [pointing at the square in part 1, 

marking it in light gray in part 2]. So this moves to 

this spot and becomes a square as well [finishes the 

drawing of the squares]. Then we make an "X" on 

the extra piece [pointing at part 4 with an 

encompassing gesture] and the same with the now 

changed piece 4 [pointing at part 4]. This is right! 

[Compose and decompose of shapes 3 and 4.]  

Ofaz 3:      But it’s impossible to take away parts and move 

them somewhere else. What if I cut the piece of 

cake and took it away? 

Jonathan 4:  No! But the parts are equal! [Taps with his pencil 

on the drawing.] Let's imagine that this part was 

here. Let's say it is.  

Ofaz 5:       But now it is not somewhere else [pointing 

with the ruler at part 3]. 

Table 2: Task 2b  

 Here the dyad continues to be in disagreement, and they try to 

convince each other by using the appendix worksheet and cutting 

its parts apart.  

 Jonathan 8:  Okay, let's begin with the parts that are equal (1 and 

2). 

[Jonathan continues cutting apart parts 3 and 4 and 

folds the narrow rectangle of part 4 over on itself. He 

cuts and reassembles as in the drawing. He sees that 

something is wrong, so he looks at his sketch and 

tries to figure out what's wrong.] 

Jonathan 10: Let's say it is like that… [Looks for the drawing he 

made before on the worksheet, then takes the "new" 

part 4 and places it on top of part 2.] And say they 

are the same. [Tries to put the third part above 

without changing its shape and fails.] 

Jonathan 11:  So they do not have exactly the same shape but they 

do have the same area. 

Ofaz 12:       No! That’s wrong! [Shows that the parts do not 

coincide.]  
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Jonathan 13: No, it’s not wrong! [Fails at juxtaposing the parts.]  

Ofaz 14:       So I was right all along. 

 

 
 

 


