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Abstract 

 

The slope of the best-fit line xxhy 10)(    from minimizing a function 

of the squared vertical and horizontal errors is the root of a polynomial of 

degree four which has exactly two real roots, one positive and one negative, 

with the global minimum being the root corresponding to the sign of the 

correlation coefficient. We solve second order and fourth order moment 

equations to estimate the variances of the errors in the measurement error 

model. Using these solutions as an estimate of the error ratio in the maximum 

likelihood estimator, we introduce a new estimator kap
1 . We create a function 

  which relates  to the oblique parameter , used in the parameterization of 

the line from ))(,( xhx  to )),(( 1 yyh , to introduce an oblique estimator lam
1 .  

A Monte Carlo simulation study shows improvement in bias and mean squared 

error of each of these two new estimators over the ordinary least squares 

estimator. In O’Driscoll and Ramirez (2011), it was noted that the bias of the 

MLE estimator of the slope is monotone decreasing as the estimated variances 

error ratio  approaches the true variances error ratio . However for a 

fixed estimated variances error ratio , it was noted that the bias is not 

monotone decreasing as the true error ratio κ approaches . This paper shows 

this anomaly by showing that as κ approaches a fixed , the bias of the MLE 

estimator of the slope is also dependent on the magnitude of .  

 

Keywords: Maximum likelihood estimation, Measurement errors, Moment 

estimating equations, Oblique estimators 
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Introduction 

With ordinary least squares )( xyOLS  regression we have data 

 ),(),...,,( 111 nnnn xXYxxXYx   and we minimize the sum of the squared 

vertical errors to find the best-fit line xxhy 10)(    where it is assumed 

that the independent or causal variable X is measured without error. The 

measurement error model does not assume that X is measured without error, 

has wide interest with many applications and has been studied in depth by 

many, for example, Carroll et al. (2006) and Fuller (1987). As in the regression 

procedure of Deming (1943) to account for both sets of errors  and , we 

determine a fit so that a function of both the squared vertical and the squared 

horizontal errors will be minimized. In Section 2, we outline the Oblique Error 

Method and the measurement error model and introduce second order and 

fourth order equations to estimate  in the maximum likelihood 

estimator. We also introduce two new estimators kap
1  and 

lam
1  and describe 

our Monte Carlo simulations. We report on our findings in Section 3 and 

conclude that that our estimators kap
1 and 

lam
1 greatly reduce the Bias and 

MSE associated with the ordinary least squares estimator
ver
1 . 

 

 

Methodology 

 

Minimizing Squared Oblique Errors  

From the data point ),(
ii

yx  to the fitted line xxhy 10)(   , define 

the vertical length 
iii

xyv
10

   from which it follows that the sum of the 

squares of the oblique lengths from ),( ii yx to 

)))(()),(()(( 11
iiiiii yxhyyhxyh    is  

  ./)1(),,( 222
1

22
10 iio vvSSE      (1) 

In a comprehensive paper by Riggs et al. (1978), the authors state that: “It 

is a poor method indeed whose results depend upon the particular units chosen 

for measuring the variables.” As in O’Driscoll and Ramirez (2011), so that our 

equation is dimensionally correct we consider a standardized weighted model  

  222
1

22
10 /)1(),,( ixxiyyo vsvsSSE   

where 

,  and . 

 

The solution of  = 0 is given by xy 10    and the solutions of  

 = 0 are the roots of the fourth degree polynomial, )(
14

P , 
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.5.0)/(2)1(
1

2)1(3
1

/24
1

5.1)/(2
xx

s
yy

s
yy

s
xx

s
yy

s
xx

s         (2) 

For example, if  , the 

graph of  is 

 
   

From O’Driscoll et al. (2008), the Complete Discrimination 

System },...,{ 1 nDD of Yang (1999) is a set of explicit expressions that determine 

the number (and multiplicity) of roots of a polynomial. This system is used to 

show that the fourth order polynomial )(
14

P  has exactly two real roots, one 

positive and one negative with the global minimum being the positive 

(respectively negative) root corresponding to the sign of .xys  For 

 the graph of )(
14

P is 

 

 
    

With λ = 1 we recover the minimum squared vertical errors with estimated 

slope 
ver
1  and with λ = 0 we recover the minimum squared horizontal errors 
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with estimated slope
hor
1 . The geometric mean estimator xxyy

gm
ss /1   

has the fixed oblique parameter λ = 0.5 and for the measurement error model, 

when both the vertical and horizontal models are reasonable, a compromise 

estimator such as gm
1  is widely used and

 

is hoped to have improved 

efficiency. However, Lindley and El-Sayyad (1968) proved that the expected 

value of gm
1

 

is biased unless  . 

 

Measurement Error Model; Second and Fourth Moment Estimation  

We now consider the measurement error model as follows. In this paper it 

is assumed that X and Y are random variables with respective finite 

variances 2

X
 and 2

Y
 , finite fourth moments and have the linear functional 

relationship .10 XY   The observed data { ),(
ii

yx , ni 1 } are subject to 

error by 
iii

Xx   and 
iii

Yy    

where it is also assumed that  

 
 

 and j. 

 

It is well known, in a measurement error model, that the expected value for 
ver
1 ( )|( xyOLS ) is attenuated towards zero by the attenuating factor 

)/( 222

 
XX called the reliability ratio by Fuller (1987); and similarly the 

expected value for hor
1  ( )|( yxOLS ) is amplified towards infinity by the 

amplifying factor 222 /)(
YY

  .  

From Gillard and Iles (2009), second moment equations are 

 

  (3) 

and fourth moment equations are 

(4) 

 

These equations yield the estimators 

    

      (5) 

the Frisch hyperbola of Van Montfort (1987) 

 

     (6) 

and the fourth order equation 
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                (7)                  

 

We use equations (6) and (7) to find estimators for  and , namely   

and   , imposing  suitable restrictions on the possible solutions;  

firstly the variances must be positive; secondly the kurtosis of the 

underlying distribution must be significantly different from the kurtosis of the 

normal distribution to assure the validity of Equation (4) and thirdly the sample 

sizes must be adequately large. We then use these solutions as estimates for the 

ratio   in the maximum likelihood estimator as described in Section 2.3. A 

typical graph of equations (6) and (7) is 

 

                          True Ratio    :     Solution    

 
 

The Maximum Likelihood Estimator  

If the ratio of the error variances 22 /    is assumed finite, then 

Madansky (1959), among others, showed that the maximum likelihood 

estimator for the slope is  

              

yyxx

yyxxxxyyxxyymle

ss

ssssss






2

4)()(
)(ˆ

22

11


 .   (8) 

For finite  it also follows that the moment estimator agrees with the MLE. 

If   = 1 in Equation (8) then the MLE (often called the Deming Regression 

estimator) is equivalent to the perpendicular estimator, ,1

per first introduced by 

Adcock (1878). In the particular case where   then 
mle
1  has a 
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fixed λ value of 0.5.  

If the researcher knows the true error ratio  then  

( )(ˆ1           (9) 

and there are no bias problems. We will discuss the more realistic situation 

when κ is an unknown parameter and must be estimated by .  
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Monte Carlo Simulation  
    

The Bias of the MLE for an Incorrect Choice of κ 

We set the estimated ratio of the error variances  The X data was 

generated from a uniform distribution on to set  The 

linear regression model had slope  and sample size n = 50. For 

the measurement error model, we used normal errors with mean equal to zero 

and variances  varying over  1,2, , ,5,  }. We used Minitab for our 

simulation study setting the number of runs N = 5000. The results for the bias 

are recorded in Table 1.  

 

Table 1. with . 

     
3 9 0.333 −6.0 −0.0298 

5 9 0.555 −4.0 −0.0201 

2 4 0.500 −2.0 −0.0100 

1 3 0.333 −2.0 −0.0089 

1 2 0.500 −1.0 −0.0048 

2 1 2.000 1.0 0.0047 

3 1 3.000 2.0 0.0103 

4 2 2.000 2.0 0.0107 

9 5 1.800 4.0 0.0204 

9 3 3.000 6.0 0.0318 

    

The rows of Table 1 are sorted in ascending order of the theoretical bias, 

,  displayed in Column 5. We make the following observations. Firstly, 

with , the ranking for the bias concurs with the ranking of the differences 

in the error variances  but does not concur with the ranking for 

 in terms of its  closeness to  . The value for κ = 0.555 in Row 2 is 

closer to the assumed value than the value for κ = 0.500 in Row 3 is. 

However the absolute value for the bias 0.0201 in Row 2 is approximately 

double the absolute value for the bias 0.0100 in Row 3; that is, the magnitude 

of the bias for the MLE estimator  is not monotone in κ.  

Secondly, for equal  = 3/1 in Row 7 and κ = 9/3 in Row 10, the respective 

biases 0.0103 and 0.0318 are approximately proportional to the respective 

differences of the error variances   and . 

 

The Efficiency of Different Slope Estimators 

Using the solutions 
2~
  and 

2~
  from equations (6) and (7) as estimates 

for   in 
mle
1 , we introduce a new estimator 

kap
1  which performs very well 

in our Monte Carlo simulation. 

Relation between Kappa and Lambda 
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With  estimated as in Section 2.2, the invertible function 

]1,0[],0[:  defined by 
yyxx ssccc /),1/()(   , creates a new 

estimator 
lam
1 . This proposed oblique estimator also performs very well in our 

Monte Carlo simulation. Since the range of κ includes infinity, we do not 

compute its average value in our simulation. Instead, we compute the average λ 

value for 
lam
1 , and use )(

_
1  

 as the effective average ~  for κ. To determine 

the efficiency of the six estimators {
ver
1 , gm

1 , 
hor
1 , per

1 , kap
1 , 

lam
1 }, we 

conducted a set of Monte Carlo simulations for varying values of the true slope 

1 . 

   We report in Tables 2-5 the MSE, the Bias, the associated parameter  and 

the associated oblique angle   for each of the six estimators above. The 

orientation for   is chosen such that for 
ver
1 , 0 <  <   and for 

hor
1 , 

 < . 

 

Table 2. X is UD(0,20), 1 = 1.0, 0 = 0, N =1000, n =100,  = 1,  = 3 

 MSE 310  %Bias λ  
ver
1  46.569 -21.189 1 51.76 
gm

1
 11.897 -9.947 0.500 95.99 

hor
1  4.402 2.957 0 134.17 
per

1
 15.130 -11.246 0.556 89.93 

kap
1

 4.625 -1.382 0.169 118.37 
lam
1  4.442 -0.029 0.237 123.49 

 

Table 3. X is UD(0,20), 1 = 1.25, 0 = 0, N = 1000, n = 100,  = 1,  = 3 

 MSE 310  %Bias λ  
ver
1  70.809 -20.929 1 45.33 
gm

1
 18.425 -10.036 0.500 83.29 

hor
1  5.708 2.413 0 127.99 
per

1
 15.081 -8.546 0.434 89.90 

kap
1

 6.304 -1.180 0.171 114.70 
lam
1  5.847 0.092 0.145 116.62 

 

In the cases represented by Tables 2 and 3 we can see that 
kap
1  and 

lam
1  

make significant improvement in (MSE, Bias) over the estimator 
ver
1  and 

each of the ‘compromise’ estimators gm
1  and per

1 . Of course 
hor
1 performs 

well in each of these cases but its use would have been based on prior 

knowledge that 22
   . 
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Table 4. X is UD(0,20), 1 = 1.0, 0 = 0, N = 1000, n =100,  = 2,  = 2 

 MSE 310  %Bias λ  
ver
1  13.403 -10.688 1 48.23 
gm

1
 2.117 0.0989 0.500 89.94 

hor
1  18.146 12.232 0 131.70 
per

1
 2.672 0.126 0.500 89.92 

kap
1

 4.432 0.295 0.495 90.38 
lam
1  5.962 0.425 0.497 90.14 

 

Table 5. X is UD(0,20), 1 = 0.75, 0 = 0, N =1000, n =100,  = 2,  = 2 

 MSE 310  %Bias λ  
ver
1  7.791 -10.518 1 56.13 
gm

1
 2.603 4.196 0.500 103.99 

hor
1  28.487 21.417 0 137.68 
per

1
 2.041 0.169 0.640 89.96 

kap
1

 4.233 0.725 0.590 95.55 
lam
1  5.402 -0.029 0.615 92.97 

 

   In the cases represented by Tables 4 and 5 we again see that kap
1  and 

lam
1  make significant improvement in (MSE, Bias) over the estimators

ver
1  

and 
hor
1 . With 1 , per

1  performed very well in each case as expected 

since . The condition of Lindley and El-Sayyad (1968) of   

is satisfied in the case represented by Table 4 but not by Table 5 and hence 
gm

1  performed very well in Table 4 but not as well in Table 5. Riggs et al. 

(1 78) state that “no one method of estimating the true slope is the best method 

under all circumstances.”  Tables 2-5 show that kap
1 and 

lam
1  perform well in 

all of the above four cases where no prior knowledge of the errors is assumed.  

Table 6 reports the effective average for~ , as described in Section 3.3, for 

( 2
 , 2

 )  }9,4,1{}9,4,1{  . 

Table 6. Effective ~  average;X is UD(0,20), 1 = 1, 0 = 0, N =1000, n = 100 

 2
 =1 

2
 = 4 

2
 = 9 

2
 =1 1.1781 3.3975 6.1251 

2
 =4 0.3185 0.9169 1.9514 

2
 =9 0.1701 0.4090 1.1658 

Conclusion  
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Our simulation study in 3.1 illustrates that the bias of the MLE estimator 

of the regression slope is dependent on the magnitude of , the variance of the 

errors in x. 

Our simulation studies in 3.3 support the claim that our estimators 
kap
1 and 

lam
1 , under the conditions outlined in 2.2, greatly reduce the Bias 

and MSE associated with the ordinary least squares estimator
ver
1 .  
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