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Abstract 

 

The aim of this paper is to describe some asymptotic properties for the 

solutions of evolution equations by means of cocycles over non-autonomous 

dynamical systems, as generalizations of the skew-evolution cocycles. We 

present some concepts of instability for cocycles on infinite dimensional 

spaces. We give characterizations and establish connections between these 

notions, underlined by examples. 
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Introduction 

 

Several concepts of the control theory, as stability, stabilizability, 

controllability or observability are recently reconsidered, based on the fact that 

the dynamical systems which describe processes from the real world are more 

and more complex. Some asymptotic properties that appear in the theory of 

dynamical systems play an important role in the study of stable and instable 

manifolds, and, hence, in the study of dichotomy. There are remarkable results 

due to J.L. Daleckii and M.G. Krein (see [3]), J.L. Massera and J.J. Schaeffer 

(see [4]) or O. Perron (see [6]).  

The skew-evolution semiflows, defined in [5], are generalizations for 

evolution families and skew-product semiflows. Some researchers, as A.J.G. 

Bento and C.M. Silva (see [2]), P. Viet Hai (see [13] and [14]) have already 

adopted the notion and emphasized its applicability. Some results concerning 

the asymptotic behaviors of skew-evolution semiflows on infinite dimensional 

spaces were published in [7] and [9]. Various stability properties were studied 

in [8] and some trichotomy properties in [10]. A study of multivalued non-

autonomous dynamical system was done, for example, in [12]. 

In this paper we consider the case of skew-evolution cocycles over a non-

autonomous dynamical system. We define various concepts of instability, such 

as uniform exponential instability, exponential instability, ),(  -instability 

(see [1]), and, a more general concept, the )k,h( -instability. Characterizations 

and connections between these notions are also given.  

 

 

Notations and Definitions 

 

Let (X, d) be a complete metric space, P(X) the set of all non-empty 

subsets of X, V a Banach space and B(V) the space of all V-valued bounded 

linear operators on V. We denote Y = XV, idX the identity map on X, I the 

identity operator on V and we define the set  0st|)s,t(T 2  R .  

Definition 2.1. A map )X(PXT:S   with the properties: 

(ds1) Xid),t,t(S  , X)x,t(  R ; 

(ds2) ))x,t,s(S,s,t(S)x,t,t(S 00  , T)t,s(),s,t( 0  , Xx   

is called generalized multivalued non-autonomous dynamical system on X. 

Remark 2.2. We will consider the particular case XXT:u   such that: 

(ds1)’ x)x,t,t(u  , X)x,t(  R ; 

(ds2)’ ))x,t,s(s,s,t(u)x,t,t(u 00  , T)t,s(),s,t( 0  , Xx , 

a mapping that we call semiflow associated to the generalized multivalued non-

autonomous dynamical system S on X. 

Definition 2.3.  A mapping )V(BXT:U  which satisfy the conditions: 

(c1) I)x,t,t(U  , X)x,t(  R ; 

(c2) )x,t,t(U)x,t,s(U))x,t,s(u,s,t(U 000  , T)t,s(),s,t( 0  , Xx  
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is called skew-evolution cocycle over u. 

Example 2.4. We consider C = C(R, R) the metric space of all continuous 

functions RR :f , with the topology of uniform convergence on compact 

subsets of R. Let X be the closure in C of the set {xt / xt(s) = x(t+s), t,sR+}, 

which is a metric space. We consider the Cauchy problem 












.v)0(v

0t),t(v))x,t(u(A)t(v

0

0
,

 

where )V(BX:A   is an operator, DomAv0   and )X(PX:u0 R  is 

defined by t0 x)x,t(u  . We consider a C0-semigroup H defined by 







0n

nn
tn ee,vev)t(H

22 , where  
Nnne , 1e0   and ny2cos2)y(en  , 

)1,0(y , is the orthonormal basis of the separable Hilbert space )1,0(LV 2 . 

Let us define )V(BXT:U0  , by vds)s(xHv)x,t(U

t

0

0 












  . For all v0, 

we have that v(t) = U0 (t, x)v0, t>0, is a strong solution of the Cauchy problem. 

We define u(t,s,x) = u0(t-s, x) and U(t,s,x) = U0(t-s, x). We have that U is a 

skew-evolution cocycle over u. 

Definition 2.5. A skew-evolution cocycle U has  -decay if there exists a non 

decreasing function 
  RR:  with 


)t(lim

t
  such that: 

v)x,t,t(U)tt(v 00 , T)t,t( 0  , Y)v,x(   

Remark 2.6. If U has  -decay, then the  -shifted skew-evolution cocycle 

denoted U , 0 , and defined by      x,s,tUex,s,tU st
  
  has also  -

decay. 

Remark 2.7. The asymptotic property given by Definition 2.5 is equivalent 

with the property of exponential decay defined in [11]. 

 

 

Various Types of Instability 

 

Let U be a skew-evolution cocycle over u. We define the set E of all 

mappings 
  RR:f  for which there exists R  such that te)t(f  . 

Definition 3.1. U is said to be uniformly exponentially instable if there exist 

some constants 1N   and 0  such that: 

v)x,t,t(UNve 0
)tt( 0 


, T)t,t( 0  , Y)v,x(  . 

Definition 3.2. U is exponentially instable if there exist a mapping 

),1[:N R  and a constant 0  such that: 

v)x,t,t(U)t(Nve 0
)tt( 0 


, T)t,t( 0  , Y)v,x(  . 
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Definition 3.3. U is ),(  -exponentially instable if there exist some constants 

1N   and 0,   such that: 

v)x,t,t(UeNev 0
tt 0 , T)t,t( 0  , Y)v,x(  . 

Definition 3.4. U is )k,h( -instable if there exist a constant 1N   and two 

continuous mappings 
  RR:k,h  such that: 

v)x,t,t(U)t(Nkv)tt(h 00  , T)t,t( 0  , Y)v,x(  . 

Some connections between the previous notions are given by 

Remark 3.5. If we consider Eh and 0 , then the skew-evolution cocycle 

U is uniformly exponentially instable. 

Remark 3.6. If we consider Eh , then the skew-evolution cocycle U is 

exponentially instable. 

Remark 3.7. If we take Ek,h  , then skew-evolution cocycle U is ),(  -

exponentially instable.  

Hence, it follows that the notion of )k,h( -instability generalizes the 

concepts of uniform exponential instability, exponential instability and ),(  -

exponential instability. 

Other connections are given by the following statements. 

Remark 3.8. The property of uniform exponential instability of a skew-

evolution cocycle implies the ),(  -exponential instability, which implies 

further the property of exponential instability. 

The converse statement is not always true, as shown in the next example. 

Example 3.9. Let 
  RR:f  be a decreasing function with the property that 

there exists 0l)t(flim
t




. Let )0(f . We will consider the metric space 

X defined in Example 2.4 and the semiflow XXT:u   defined by 

)(x))(x,s,t(u st   . Let RV . The mapping )(BXT:U R , defined 

by ve
e

e
v)x,s,t(U

t

s

d)s(x

scoss2s3

tcost2t3  








, is a skew-evolution cocycle over u. As 

veeveevev)x,t,t(U s)l1(t)l1()tt(ltt
d)t(xtcost2tcost2t3t3

0
00

t

0t

0000





 

 

hold for all T)t,t( 0   and all Y)v,x(  , it follows that U is ),(  -

exponentially instable with 1N   and l1  . On the other hand, if we 

suppose that U is uniformly exponentially instable, we obtain, according to 

Definition 3.1, that there exist 1N   and 0  such that relation  

vevNe
)tt(

d)t(xtcost2tcost2t3t3

0

t

0t

0000










 

holds T)t,t( 0  , Y)v,x(  . If n2t   and    n2t0 , we obtain  








 )(
d)n2(x

3n4 eeeNe

n2

n2 


 

  
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which, for n  leads to a contradiction. Hence, U is not uniformly 

exponentially instable. 

In order to introduce the following instability concepts, let us consider that 

U is strongly measurable, which means that, for every Y)v,x,t( 0  R , the 

mapping )x,t,s(Us 0  is measurable on ),t[ 0  . 

Definition 3.10. U is )k,h( -integrally instable if there exist a constant 1D   

and two continuous mappings 
  RR:k,h , where h is a non decreasing 

function which satisfies the property )(h(t)hτ)h(t  ,  R,t , such that: 

v)x,t,t(U)t(Dkdv)x,t,(U)t(h 0

t

t

0

0

  , T)t,t( 0  , Y)v,x(  . 

A particular case is given by  

Definition 3.11. U is said to be integrally instable if there exists a mapping 

  RR:M  such that: 

v)x,t,t(U)t(Mdv)x,t,(U 0

t

0

0   , T)t,t( 0  , Y)v,x(   

 

 

Main Results 

 

An integral characterization for the notion of exponential instability is 

given by means of the shifted skew-evolution cocycle in  

Theorem 4.1. A strongly measurable skew-evolution cocycle U with  -decay 

is exponentially instable if and only if there exists a constant 0  such that 

the  -shifted skew-evolution cocycle U  is integrally instable.  

Proof. Necessity. Let us define 0
2



 , where the existence of the 

constant   is assured by Definition 3.2. We obtain  

 




t

0

0
)t(

t

0

0 dv)x,t,(Uedv)x,t,(U 0  
  

  
t

t

0
)t()t(

0

0 dv)x,t,t(Uee)t(N 
 

  
t

t

0
)t()t()tt(

0

0 dv)x,t,t(Ueee)t(N 
 

v)x,t,t(U
)t(N

dev)x,t,t(U)t(N 0

t

t

)t(
0

0







 


    

for all T)t,t( 0   and all Y)v,x(  . Hence, the shifted skew-evolution cocycle 

is integrally instable. 
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Sufficiency. Let us denote 
1

0

u du)u(eK  , where function   is given by 

Definition 2.5, as, according to the hypothesis, U has  -decay. We obtain 

successively 

 








1t

t

0
)t(

1t

t

000
)t(

0

0

0

0

0

0 dv)x,t,(Uedv)x,t,t(U)t(evK  
 

v)x,t,t(Ue)t(Mv)x,t,t(U)t(M 0
)tt(

0
0

 


  

for all T)t,t( 0   and all Y)v,x(  , function M being given by Definition 

3.11. It follows that U is exponentially instable, which ends the proof. 

Corollary 4.2. In the hypothesis of Theorem 4.1, we have: 

(i) if Ek,h   and are given by tet  , respectively tMet  with 1M  , 

the skew-evolution cocycle U is uniformly exponentially instable; 

(ii) if Eh , the skew-evolution cocycle U is exponentially instable; 

(iii) if Ek,h   and are given by tet  , respectively tMet  with 1M   

and   , the skew-evolution cocycle U is ),(  -exponentially instable.    

   The next result establishes a relation between the properties of )k,h( -

instability and )k,h( -integral instability. 

Theorem 4.2. A )k,h( -integrally instable skew-evolution cocycle U with  -

decay is )k,h( -instable. 

Proof. Let us consider that U has  -decay, which, according to Definition 2.5 

assures the existence of function  . As U is )k,h( -integrally instable, 

following relations hold 

 

1

0

00 dv)x,t,s(U)()st(hv)x,t,s(U)st(Dh   

 
1

0

0

1

0

0 dv)x,t,s(U)()(h)t(hdv)x,t,s(U)()s(h)t(h   

 
 t

0

0

1s

s

00 duv)x,t,u(U)su(hduv)x,t,s(U)su()tu(h   

v)x,t,t(U)t(Dk 0 , 

for all 0s1st   and all Y)v,x(  . On the other hand, for )1s,s[t   

v)x,t,s(U)1(v)x,t,s(U)st(v)x,t,t(U 000   , Y)v,x(  . 

Hence, it follows that U is )k,h( -instable, which ends the proof. 
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