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Mazur-Orlicz Theorem and Moment Problems  

on Concrete Spaces 

 

Octav Olteanu 

Professor Dr. 

Department of Mathematics-Informatics 

Faculty of Applied Sciences 

University Politehnica of Bucharest 

Romania 

 

Abstract 

 

In the Introduction, we recall some earlier, as well as recent results that 

represent the background of the present work. Then, applications of Mazur-

Orlicz theorem are presented. Two domain-spaces are involved: spaces of 

analytic functions, and 
1L  spaces. Results on the existence of the solutions of 

some Markov moment problem are stated and respectively proved. On the 

other hand, one uses approximation theorems on unbounded intervals in order 

to point out results on positive polynomials of one real variable to the case of 

several real dimensions. Approximation by sums of tensor products of positive 

polynomials in each separate variable is applied. The last result is a 

generalization of one of our earlier results, from one to several variables. The 

domain-space is a space of analytic functions in a polydisc, and the target one 

is a space of selfadjoint operators. The structure of all the spaces involved is of 

a real ordered space. One of the goals of these applications is to point out the 

relationship between the Markov moment problem and Mazur-Orlicz principle. 

These two results seem to be quite different. 
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Introduction and known results 

 

Applying extension Hahn-Banach type results in existence questions 

concerning the moment problem is a well-known technique: [1], [2], [5], [9]-

[14], [17]-[21]. One of the most useful results is Lemma of the majorizing 

subspace (see [6] Section 5.1.2 for the proof of the lattice-version of this 

lemma; see also [23]). It says that if f  is a linear positive operator on a 

subspace S  of the ordered vector space ,X  the target space being an order 

complete vector lattice ,Y  and for each Xx  there is ,, sxSs   then f  

has a linear positive extension .: YXF   Another geometric remark is that in 

the real case, the sublinear functional from Hahn-Banach theorem can be 

replaced by a convex one. The theorem remains valid when the convex 

dominating functional is defined on a convex subset A  with some qualities 

with respect to the subspace S  (for instance:   AriS  ), where  Ari  is 

the relative interior of .A  Here we recall an answer published in 1978 ([15]), 

without loosing convexity, but strongly generalizing the classical result. The 

first detailed proof was published in 1983 [16]. The proof of a similar result, in 

terms of the moment problem was published in [18]. Here we recall the general 

statement from [15]. One of the reasons is that many other results are 

consequences of this theorem, including Bauer’s theorem [23], Namiokas’s 

theorem and abstract moment problem-results published firstly in [17]. Part of 

these generalizations of the Hahn-Banach principle appears in the present work 

too. For uniqueness of the solution of moment problems see [3], [5], [7], [8], 

[24]. Fixed point theorems and iterative methods in moment problem are used 

in [4]. For constructing the solutions see [12] and [21]. Other main results are 

contained in [22]. Throughout this first part, X  will be a real vector space, Y  

an order-complete vector lattice, XBA ,  convex subsets, YAq :  a 

concave operator, YBp :  a convex operator, XS   a vector subspace, 

YSf :  a linear operator. 

Theorem 1.1. Assume that: .||,|| BSBSASAS pfqf     

The following assertions are equivalent: 

(a) there is a linear extension  YXF :  of the operator f  such that: 

;|,| pFqF BA   

(b) there are YAp :1  convex and YBq :1  concave operators such 

that for all 

      ,,01,0,,,,,,, 222
11 SBAvbbaat   

we have: 

    
              .11

11

1111

11

bpaqvfbqtapt

bavbtat








 

The minus-sign appears to construct a convex operator in the left-hand 

side member and a concave operator in the right side. The idea of sandwich 

theorem on arbitrary convex subsets BA,  is clear. Most of the applications 
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hold for linear positive operators on linear ordered spaces  ,, XX  when we 

take pXBqXA ,,0,    a suitable convex operator (a vector-valued 

norm, a sublinear operator), which “measures the continuity” of the extension 

.F  One obtains the following result related to the theorem of H. Bauer ([23], 

Section 5.4).  

Theorem 1.2. Let X  be a preordered vector space with its positive cone ,X  

YXp :  a convex operator, XS   a vector subspace, YSf :  a linear 

positive operator. The following assertions are equivalent: 

(a) there is a linear positive extension YXF :  of f  such that 

    ;XxxpxF   

(b)    xpxf   for all   XSxx ,  such that .xx   

 

Now we can state the main results on the abstract moment problem [17]. 

Theorem 1.3. Let YXPYX :,,  be as in Theorem 1.2, 

    YyXx
JjjJjj 


,  

given families. The following assertions are equivalent: 

(a) there is a linear positive operator YXF :  such that 

      ;, XxxPxFJjyxF jj   

(b) for any finite subset JJ 0  and any   ,
0

RJjj   we have: 

 xPyxx j

Jj

jj

Jj

j  
 00

  

A clearer sandwich-moment problem variant is the following one. 

Theorem 1.4. Let    
JjjJjj yxYX


,,,  be as in Theorem 1.3 and 

 YXLFF ,, 21   

 two linear operators. The following statements are equivalent: 

(a) there is a linear operator  YXLF ,  such that 

        ;,21 JjyxFXxxFxFxF jj    

(b) for any finite subset JJ 0  and any   ,
0

R
Jjj 


  we have: 

   .,, 1122

00

2112  FFyXx

Jj

jj

Jj

jj 














 


  

Now we state the following generalization of Mazur-Orlicz theorem [17]. 

Theorem 1.5. Let    
JjjJjj yxYX


,,,  be as in Theorem 1.4, YXP :  a 

sublinear operator. The following statements are equivalent: 

(a) there is a linear positive operator  YXLF ,  such that 

      ;,,, XxxPxFJjyxF jj   

(b) for any finite subset JJ 0  and any   ,
0


 R

Jjj  we have 



ATINER CONFERENCE PAPER SERIES No: MAT2013-0657 

 

8 

 

 .
00

xPyxx

Jj

jj

Jj

jj  


  

We recall the following polynomial approximation results on unbounded 

subsets. 

Theorem 1.6. (see [13] and [14]-Lemma 1.3 (d)) If  ),0[),0[0 C  is a 

nonnegative continuous function with compact support, then there exists a 

sequence  mmp  of positive polynomials on ),,0[),0[   such that 

       mm pZmtttp ,,0  

uniformly on compact subsets of ).,0[),0[   

The idea of the proof is to add the   point and to apply the Stone-Weierstrass 

Theorem to the subalgebra generated by the functions 

  .,,exp 21  Znmntmt  Then one uses for each such exp -function suitable 

majorizing or minorizing partial sums-polynomials. 

We recall that the corresponding statements for uniform approximation on 

compact subsets of ),0[   of functions  ),0[0 C  holds (see [13], [14] for 

the proof and details). The results of the present work are using the statements 

mentioned above. 

Theorem 1.7. Let nRA  be a closed subset and   a positive regular Borel 

determinate measure on ,A  with finite moments of all orders. Then for any 

   ,0  AC  there is a sequence  mmp  of polynomials on 

,A   mm pp ,  in  .1 AL  We have 

 

 
A A

m ddp ,lim   

 

the cone P  of positive polynomials is dense in   
AL1

  and P  is dense in 

 .1 AL  

 

Theorem 1.8. Let 21    be a product of two determinate positive regular 

Borel measures on ,R  with finite moments of all natural orders. Then any 

positive continuous function with compact support is approximated in  21 RL  

by means of sums of tensor products ,21 pp   jp  positive polynomial on the 

real line, in variable .2,1, jt j  

Remark. Theorem 1.8 remains valid when we replace 2R  by .2
R  Moreover, in 

the latter case the convergence is uniform on the compact support of the 

function. 
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Applications of Mazur-Orlicz theorem 

 

Let X  be the space of all analytic functions 

  ,,, bzRzz n

Nn

n
n  



  

the functions   being continuous in the closed disk  .bz   The positive cone 

X  consists of all power series with nonnegative coefficients. On the other 

hand, let H  be a complex Hilbert space,  HB   a selfadjoint operator, 

    .,;,; 111 YVVUUVYUYBUUBHUY                (1) 

It is known ([6], [10]) that Y  is a commutative algebra and an order complete 

vector lattice with respect to the restriction to Y  of the usual order relation on 

the real vector space of all selfadjoint operators. Denote 

  .,,  jbzzz j
j  Let  

jjU  be a sequence in .Y  

Theorem 2.1 Let .0,1,,   bbAYA  Consider the following 

statements: 

(a) there exists a linear positive operator  YXLF ,  such that 

        ;,,,
1

XIAbIbFjUF jj 


   

(b) the following inequalities hold: 

;,  jIAU j
j   

(c) there exists a linear positive operator  YXLF ,  such that 

 

   

  .,

,,

XIA

FjUF

n

n

n
n

n

n

jj












 

 

Then      abc   

Proof. To prove that    ,ab   we apply    ab   of Theorem 1.5. Verifying 

the conditions  b  of the latter theorem, and using Cauchy’s inequalities, one 

deduces: 
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   

          .,1

11

,

,0,0,

11

1

000

0

0

XPIAbIbIAbIb

I
b

A
II

b

A

I
b

A
UJj

b

nIAU

n
n

n

Jj

j

Jj
j

j

Jj

jjjjj

n
j

jj

n

nnj

Jj

j
























































































 

 

Now the first conclusion follows via Theorem 1.5. On the other hand, the 

implication    bc   is almost obvious, since 

    .,  jIAIAFU j
j

j
j

j   

It remains to prove the converse, that is    .cb   To this end, we apply 

   ab   of Theorem 1.5 once more. We have the following implications: 

       .:

,

,,

0

0

0

0









PIAIA

IAU

JjIAIAU

JjR

n

n

n

n

n
n

n

nj

Jj

j

j
j

jj
j

jjj

jn

n

nj

Jj

j







































 

Application of Theorem 1.5 yields the existence of a linear operator F  

with the properties mentioned at point (c). This concludes the proof.          □                                   

Using similar arguments, one proves the following variant of Theorem 2.1 

in several dimensions (see also [12]). Let X  be the space of all absolutely 

convergent power series in the polydisc  ,
1






n

k

kkz   with real coefficients, 

continuous up to the boundary, nAA ,...,1  positive commuting selfadjoint 

operators, such that 

.,...,1,1, nkA kkk    

 

One denotes: 

  

 .,;

,,...,1,;

11

1

YVVUUVYUY

nkUAUAHUY kk




                                (2) 

Let       .,,...,,,..., 1
1

11 
 YBjjjzzzz njj

n
n

nj
n

j
nj   
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Theorem 2.2 Consider the following statements: 

(a) there exists a linear positive operator  YXLF ,  such that 

      ;,,

1

1
XAIFjBF

n

k

kkk
n

jj  


   

(b) the following inequalities hold 

  ;,...,, 1
1

1
n

n
nj

n
j

j jjjIAAB    

(c) there is a linear operator  YXLF ,  such that 

        .,,...,,...,,, 1 XIIAAFjBF n
n

jj    

Then      .abc   

We consider an application to the space    ,,1 RYMLX   being a 

  finite positive measure on the measurable space .M  The result is valid for 

not necessary positive functions ., Jjj   Note that all such statements do not 

involve polynomials. 

Theorem 2.3. Let  

       ,,,0,1 RyXMLX
JjjJjj 


 

being a   finite measure. Assume that the intersection of the supports of two 

different functions 
ljkj

   have measure zero. The following statements are 

equivalent: 

(a) there exists  MLh    such that 

  ;,.,.10 Jjydheaxh

M

jj     

(b) the following inequalities hold 

., Jjdy

M

jj  
   

Proof. The implication    ba   is almost obvious, because of the qualities of 

.h  For the converse, let JJ 0  be a finite subset and    RJjj 0;  such 

that .

0

 


j

Jj

j  Using the hypothesis on the supports, we deduce 
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 .

000

00







Pdd

ddy

MM

M

j

Jj

j

M

j

Jj

jj

Jj

j

j

Jj

jj

Jj

j







































 























 

 

We have used the fact that the scalars 0, Jjj   are nonnegative. 

Applications of Theorem 1.3 to  
1

 P  leads to the existence of a linear 

positive form F  of norm at most one, such that   ., JjyF jj   This 

functional has a representation by means of a function h  with the qualities 

stated at point (a). This concludes the proof.                 □ 

 

 

Markov Moment Problems on Concrete Spaces and Approximation 

 

The first result of this section is a variant of Theorem 6 [20], having a 

similar proof. One dimensional variant of lemma 1.6 stated above, as well as 

Stone Weierstrass and Luzin’s theorems are used along the proof. The form of 

positive polynomials on ),0[   [1] is also applied. This make possible to prove 

the following result, similar to that from the one-dimensional case, although in 

several dimensions, positive polynomials on ,2,  nRn  have not a simple 

representation involving sums of squares. The idea is to approximate positive 

continuous functions with compact support by sums of tensor products of 

positive polynomials on ),,0[   in each separate variable. For details, see [1], 

[3], [14], [20]. An improved proof will be published soon. Notice that this 

method works for measures with unbounded support too (see Theorem 3.2). 

Theorem 3.1 Let   RKRK 21 ,  be compact subsets and .21 KKK   

Let  
  2,, kjkjy  be a sequence of real numbers. Let   be the product of two 

regular positive Borel   finite M  determinate measures on ),,0[   with 

finite moments of all orders. 

The following statements are equivalent: 

(a) there exists 

        ;,,,,1,0, 2
,212121|

 
 kjydtthtttthKLh kj

k

K

j
K

  

(b) for any finite subsets ,, 21 JJ  and any     ,,
21 JkkJjj 

  

we have: 
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 

 

 

  







dtty

dtty

dtty

dtty

lk

K

ji
lkj

Jlk
Jji

ilkjilkj

Jlk
Jji

i

lk

K

ji
lkj

Jlk
Jji

ilkjilkj

Jlk
Jji

i

lk

K

ji
lkj

Jlk
Jji

ilkjilkj

Jlk
Jji

i

lk

K

ji
lkj

Jlk
Jji

ilkjilkj

Jlk
Jji

i

1
2

1
1

2,
,1,

1,1

2,
,1,

1
21

2,
,1,

1,

2,
,1,

2
1

1

2,
,1,

,1

2,
,1,

21

2,
,1,

,

2,
,1,

0

;0

;0

;0

























































 

 

Using approximation results stated in the end of Section 1, one can prove 

the following general result involving 1L  norm. Let ,21    where 

2,1, jj  are positive Borel regular M  determinate measures on ,R  with 

finite moments of all natural orders. Let 

      .,,,,, 2
21

2
2121, Rttkjtttt kj

kj   

Let Y  be an order complete Banach lattice with solid norm, and 

 
  2,, kjkjy  a sequence in .Y  Assume that the convergence with respect to 

the order relation implies the convergence in the topology of ,Y  for sequences 

in .Y  

Theorem 3.2. Let   YRLF 21
2 :   be a positive linear bounded operator. The 

following statements are equivalent: 

(a) there exists a unique linear operator   ,: 21 YRLF   such that 

           ;,,0,,, 2
21

2
2

,, FFRLFFkjyF kjkj  

 

(b) for any finite subsets ,, 21 JJ  and any 

    ,,
21

RR JkkJjj  
  we have: 

   .0 ,2

2,
,1,

,

2,
,1,

lkjilkj

Jlk
Jji

ilkjilkj

Jlk
Jji

i Fy 









    

 

The last result is the multidimensional variant of the one-dimensional case 

proved in [11], Theorem 3. It seems to be a corresponding form of )()( bc   

from the Theorem 2.2 stated above. 
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Let X  be the space of all absolute convergent power series in the closed 

polydisc  ,1

1






n

k

kz  with real coefficients, and nAA ,...,1  commuting 

selfadjoint operators acting on a Hilbert space, such that .,...,1,1 nkAk   

Let Y  be the space defined by (2),   YB njj 


 and .0  The positive 

cone X  consist of all power series with all nonnegative coefficients. One 

denotes 

    .,...,,,..., 1
1

11
n

n
nj

n
j

nj jjjzzzz    

Theorem 3.3. With the above notations, the following statements are 

equivalent: 

(a) there exists a linear operator  YXLF ,  such that 

 
          ;,,...,,...,,...,,...,

,,

11 



XIIAAFIIAA

jBF

nn

n
jj





 

in particular, it follows that:     ;,1,...,1  XF   

(b) the following relations hold: 

 

  .,...,, 1
1

1
1

1
n

n
nj

n
j

j
nj

n
j

jjjIAABIAA     

 

 

Conclusions 
 

The aim of the present work was to show the relationship between two 

apparently close topics: Mazur-Orlicz theorem (Theorem 1.5) and respectively 

the moment problem (Theorems 1.3, 1.4). We realize this aim by application of 

the above-mentioned general theorems to a few main types of concrete spaces. 

The reader can deduce easily the conclusion: the statements and the way of 

applying the two mentioned results are quite different. Approximation results 

are also briefly recalled, as well as their applications to the classical Markov 

moment problem. We considered the space of continuous functions on a 

product of compact subsets of R  and a 1L  space, with respect to a product of 

measures on .R  These measure are not assumed to have compact support. 

Characterizations of the existence of the solution in terms of products of 

quadratic forms have been stated. 
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