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Abstract

In this paper, we prove the existence of positive continuous solution
u< Co(D), of the following m -polyharmonic singular problem involving
sublinear nonlinearity: (-2)"u = o(..u) +w(..u) in the complementary p of
the unit closed ball in R", #»n>2m. Our result improve and extend the
corresponding result of [ref: YS] to the polyharmonic case .
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Introduction

The pure singular elliptic equation
Au+p(x)u? =0, y >0 inD, (ref 1.a)

has been extensively studied for both bounded and unbounded domains D in
R" (n=3). Wereferto ( [ BMZ.2, E, LS, LM, MM, MZ, Z2 1 and the
references therein) for various existence and uniqueness results related to
solutions for equation (ref: 1.a) |

In [ref: BK], Brezis and Kamin considered the following sublinear elliptic
equation

Au+gx)u® =0,0<a<1,inR"(nz3), (ref: 1.b)

and proved the existence of a unique positive solution » for (ref: 1.b)

L lim inf 2(x) = 0 . . .
satisfying  px-= provided that ¢ is locally bounded such that vg is

bounded ( ¥ = a1).
On the other hand, in [ref: YS], the authors studied the following
combined elliptic problem

Au+p(x)u” +g(x)u® =0, inR"
u(x) > 0, x € R”,

u(x) - 0as x| » o, (ref: 1.1)

where n>3, 0<y<1 and 0<a<1 aretwo constants. They proved that
problem  (ref: 1.1)  admits a solution «* = C;*(R")  provided that
p.q € Cpro(R™), 0<p<1 arenonnegative functions such that p(x)+g(x) = 0
forall x < R”, and satisfying

Jm t max p(x)df < « and J.m t max g(x)dt < .
0 |t 0 =t (ref: 1.2)

Observe that conditions (ref: 1.2) implies that the functions » and ¢
belongs to the classical Kato class X7(R") defined as follows .

Definition 1.1 [ref: AS, ref:Z1-ref:Z2] . Let Q< R® (»n=3), be an
unbounded domain. A Borel measurable function ¢ in Q belongs to the
classical Kato class &z(Q) if ¢ satisfies the following conditions

lim sup j L)'j r=0,
=0 yeh ¥ (F-y2rnQ |x—y|n_“
lim sup j L)hd} = 0.
Mo yeqy ¥ (Pldn0 Jx— p|" "
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In the present paper, we aim at studying the existence of positive
continuous solutions for the following higher order elliptic problem

(—2)"u = o(.,u) + w(.,u), in D (in the sense of distributions)
u =0,

1 u(x) —

ko1 (x=17

x) = 0as x| - w«,
u(x) el = e (ref: 1.3)

where D = {xeR": x| > 1}, m ISa positive integer with » > 2m, and o¢(.,u)
is a nonnegative singular term, while w(..z) is a nonnegative sublinear term
satisfying some hypotheses related to the Kato class X3.(D) (see definition
1.2 below) . In particular we improve and extend Theorem 1 in [ref: YS]. to
the polyharmonic case. Throughout this paper, we denote by G&,
(respectively G, ) the Green function of (—a)m on D
(onthe unitball BinR")  wijth Dirichlet boundary conditions (& Yu=0,
0=j=m-1. Werecall that from [ref:B, p.126] ( see also [ref: GS, Lemma
2.1]), we have an explicit expression for the Green function G3.(&.¢). for
Ly
GBAE0) = hnglé P [ 2D
1 v
[ - )

where " wmieene and [E0)° = 1€-CP+ (- 1EPA -1

Definition 1.2 A Borel measurable function ¢ in D belongs to the class
KnA(D) if ¢ satisfies the following conditions

Irim)(sxgg [ [%j Gl uylayldy [0,  (ref :14)
lim | sup| £l) G2.(x,y)la(y)|dy |=0, (ref :1.5)
M= ep A0 p(X)
where
p(2) =(;L—|z|_1). forzeD. (ref :1.6)

Note that the class K3.(D) contains any functions ¢ belonging to
L5(D) NLY(D)., Wwith s> 5

In the case m =1, the class XT.(2) has been introduced and studied in
[ref: BMZ.2]. In particular, it has been shown (see [ref: BMZ.2, Proposition 3.8] )
that X7,.(D) properly contains the class x3(Q).

7
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For the sake of simplicity we set 7., the m -harmonic function defined
in D by

_ ljm_l

K (42
() 5= G0, 0) = o [ d,

vn—l

(ref :1.7)

where j:D - B j(x) =[x is the inversion . We also define the potential
kernel 7% by

Vh(x) = V() = [ GRalx.0)b()dby. forx € D, (ref -1.8)

and ¢ € B(D) the set of nonnegative Borel measurable functions in 2-
To Study problem (ref: 1.3), we assume the following hypothesis:

(H;) o isanonnegative Borel measurable function on D x (0.») , continuous

and nonincreasing with respect to the second variable.
PLEAR) _

H) ¥V ¢>0, —dm =2 € KnnD). where
_ (g[=D"

(H;) w is anonnegative Borel measurable function on D x (0.=) , continuous
with respect to the second variable such that there exists a nontrivial

nonnegative functions p < LL.(D) and g = K5.(D) satisfying for x b and
t>0,

p(x)A(1) = w(x,1) < q(x)hma(x)f(7), (ref :1.9)
where % is a measurable nondecreasing function on [0,«) satisfying
. h(1)
lim —< = w
S0 1 : (ref :1.10)

and t is a nonnegative measurable function locally bounded on [0,=)
satisfying

lim sup f(Tf) < 1

e 1V(ghmn) N (ref :1.11)

Using a fixed point argument, we prove the following main result.
Theorem 1.3 Assume (H;) - (H;)- Then the problem (ref:1.3) has at
least one positive continuous solution « = cy(D) satisfying for each x < p

aA(x) < u(x) < V(. ,al(x))(x) + bV(ghnn)(x) < %

where a.b and c¢ are positive constants.
Hypotheses (H;) - (H#3) are fulfilled with:

o(x. 1) = () hna(x)(A(x)) 77, for y >0,

and
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w(x,t) = g(xX)hma(x)t®, foro < a < 1,

where ¢ is a nontrivial nonnegative function in Ka(2)-
Our plan is organized as follows. In section 2, we collect some properties

of functions belonging to X%.(D). In particular, we prove that if s> 3, and
h L°(D), thenfor i <2m- 2 < pu, the function

5

NN 165

b2~ 1)

—, I8 In K3 2 (D).

In section 3, we prove Theorem 1.3.

In order to simplify our statements, we define some convenient notations.
We let B(D) the set of Borel measurable functions in D . As usual, we denote
Co(D) will denote the set of continuous functions s in D vanishing
continuously on ép and satisfying flx) - 0 as |x| - =, within D. Note that

Co(D) is a Banach spaces with respect to the uniform norm Il = i‘éB'*‘("‘)"
For xy D, we let

] = = + (= D (P - 1),

plx) = 1 -k,
= D"

A(’"’) - =

J(x) = 7

Note that for each (x,y) € D2, we have
(b=1) = kl(l-1) = [xy]

(ref :1.12)
Forany ¢ < B(D), we let
L P_(J) m D ; v
lgl = fueg ID( ) )" Gun(x.1)lg(v) ldy. (ref :1.13)

Throughout this paper, for two nonnegative functions / and g defined on
aset s the notation flx) ~ g(x), xe S means that there exists ¢ >0 such
that L1Alx) < g(x) < efix), forall xes.

We can see that

hmn(x) ~ p™(x), x € D. (ref :1.14)

Finally, the letter ¢ will denote a generic positive constant which may
vary from line to line.
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Properties of the Green function and the Kato class &3 .(D)

We collect in this section some properties of GZ2,. (»>2m) and

functions belonging to the Kato class &3.(2). which are useful for the
statements of our existence results.

Proposition 2.1 [ref: BMZ]
i) On D2, we have

(= D)™ (> - 1)" _
| x—y "yl (ref :2.1)

GRn(x.y) ~

it) There exists Cw. >0 suchthatfor each x.,y.z < D,
s DFle) <, [ (20 )ep (29 62,09 |
Ggﬂ(x,y) = Cun (,O(t) Gmﬂ(x,Z)‘f' () Gmﬂ(),z) .
(ref :2.2)

Next we give some example of functions belonging to & (D).

I

Proposition 2.2 Let s > 5, and § <L°(D). Thenfor i <2m- 2% <pu. the
D(y) = _ b
function pF2m(y - 1) belongs to K (D).
Proof Let s> 55 A<2m-2 <u and § <L°(D). First, we claim that
the function @ satisfies (ref: 1.4).
From Proposition 2.1, we deduce that

(85 ) GRton - e (s )ﬂ: on

(ref : 2.3)

Put A* = max(1,0) andlet 0 <» < 1. Sinceif x—y <r. wehave x|~
then by using (ref:2.3) | (ref: 1.12) and the Holder inequality , there exists a
constant ¢ > 0, such that

ol 22 R0

e (0 DI 1C P

T PEID ey T

<ef (=D )

B(x.rinD |3: _ y|n—2m+?_'bf_|y—}\
bl dy

= IB(XJ‘)QD |’.’. _ y|i‘1—2m+;_—

< ([ o) x ([, i@ Ea) T

2m—E_27
< criM e

10
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which tends to zero as » - o.

Now, we shall prove that @ satisfies (ref:1.5). Put /= -5~ Let xeD
and A > 1, sufficiently large. Since for [y = M. we have (y—1)=~ . then
using again (ref:2.3), (ref: 1.12) and the Holder inequality we obtain

P " N
I(D-EM}( p(x) ) GRalx,y)[0(y)|dy

= CUD'F-’(J’)'%’)? * U(mzm md})_
In addition, we have
P —

iz oy

1 ;
- C(IU‘KDI‘IA =M e ‘lI(”"" [l @+ I(L‘lli‘»ﬂﬁ(lx—rlib'l} oy Oy d})

. 71 7
( T Ll aﬁ)

I

1 1 s
C( =yl " I(WIA —yI=bl) b 1|°"’" i+ bt J(Ik ~ylEMly]) pe-y| Oy aﬁ)

I

L : L '
C( eyl " I (Mzfe-plly]) ] 0w v+ £ (e-pleMly]) pe-y| 02 aﬁ)
M
< 1 1 @m-z)i-1
- C( Ty Iu NS ’*} -1 dH I g dr)

-
- ‘u«(u—’%—lm}u' ?

which tends to zero as A7 — .
Hence @ satisfies (ref:1.5) and the proof of the proposition is

completed. ®
Proposition 2.3 [ref: BMZ] Let ¢ be a function in &3 ,(D) . Then we have
(D lall <.
(= D"

(i) Thefunction '~ ~ w7 4% isin z1(D).

Next, we prove a sharp estimates on the potential function #(|glnx), for
g € Ka(D).

Proposition 2.4 Let g € K5,.(D). Then there exists a constant ¢ > 0, such
that for each x € D, we have

(|x| D" = Wglhmn)(x) = C(|‘{||T_|1)m

| |n—m

(ref : 2.4)
Proof Since

GRn(x.y) = Ky GE () (1)

it follows that

m G%n(zs}’) _ hmﬂ(z)
b Gaa(xy)  Ama(x)

11
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Using this fact, Fatou's lemma and (ref: 2.2), we deduce that
Gaa(*.2)GR (2.)

Nmn(2)
| Ghnx2) = )IQ(Z)Idz <11L51|1_;nf [ @k
< 2Cmallgll-

Hence the right inequality in (ref: 2.4). follows from Proposition 2.3 (i)
and (ref: 1.14).

Next, we prove the left inequality in (ref: 2.4). Using Proposition 2.1 and
the fact that [x.»] < c(x|+ 1)(ly/+1). there exists a constant «; > 0 such that
for each x,y €D,

1)) = Gralx.y).

Hence

Wlglhm)(x) = arh(@) | A0)Na0)lma()dy.

Thus, the required results follows from (ref: 1.14) and Proposition 2.3 (ii)

Proof of Theorem 1.3

_ (d-=-D"™
We recall that *®? = 7= > foreach x < D.

Proof of Theorem 1.3. Assuming (#;) - (Hs). we shall use the Schauder
fixed point theorem. Let k¥ be a compact of D such that

0<a:= J.Ki(y)p(}-')dy < o,

We put B :=min{i(x) : x € K}. As in the proof of Proposition 2.4, there
exists a constant «; > 0 such that for each x,y € D,

i AX)AY) = GRa(xy). (ref : 3.]_)
From (ref: 1.10), we deduce that there exists « > 0 such that
a1ah(ap) = a. (ref :3.2)

Using (ref: 2.4) |, there exists a constant «, > 0 such that
arA(x) £ Vghma)(x), ¥x € D. (ref 33)

On the other hand, since ¢ = K7.(D), then by Proposition 2.4, we have
) lim sup ﬂ ) <0 < ﬁ,
I7(ghma)ll,. <. Sotaking . Mahl-" e deduce that there

12
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. y =sup f5).
exists p >0 such that for 7= p we have fir) <6 Put Ost<p So we
have that
0<flt)y =dt+y, t= 0. (ref : 3_3a)

Furthermore, from (H>) and Proposition 2.4, we have that
I7(..ai))ll,. <= Put
x=o6(Ve(..al) |, + bl A ghmn)ll.) + 7
and
o Vo(..ad)ll, + 7 N
1= 8] ahmn)].. (ref :3.4)

b= max{o%,

Let
A ={uesCo(D):al(x) = u(x) < Vo(.,art(x))(x) + bV (ghmn)(x), ¥Vx € D}.

Then A is a nonempty closed bounded and convex set in cy(D) . We
define the integral operator 7 on A by

Tu(x) = ID Gan(x3) o, u() +v(.u()ldy, Vx € D.

We claim that 7A is relatively compact in ¢o(D) and TA c A .
First we prove the equicontinuity of ZT{A) on DU {w=}.
From the hypotheses and (ref: 3.3a), we have that for each u = A,
(., u) < o(.,al) = gahmn and (., u) = yqhmn. (ref : 3_5)
Let ¢ > 0, such that
lAmnll, < co.
Let xo,e D and e>0. Since 7 = ga+ xq € K5x(D), then by [ref: BMZ,
Proposition 4.2 ] there exist » >0 and A > 1 such that

Rz hma IOy < -

1
S1
zeII), Nmn(2) ¥ By 2D

(ref :3.6)
and

sup

1 D . R TR £
N S G Nma(WDFW)dy = =&,
e jmzm PGy < 45

(ref :3.7)
where B(xq.7) Iis the open ball of center x, and radius r.

Foreach xx' € B(xo.r)ND and u< A, we have u € A,

ITu(x) = Tu(x")| < [||GRa(x.3) = GRAX' ) hmaWIT ey
< 2¢g sup e J'B(X_D:Erm GRnlz.)mn(NG()| dy
+2e0 swp 5t [ GRA@ ) hma)TW)ldy

zeD

13
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+ [, |GRA(.) = GRnx' ) hmn )y,
where Qi = (ko -3/ =2 N1 <y < M)

and Q2 = (ro—yz21) N =z M).Q
Hence

|Tu(x) - Tu(x")| < e+ IQIIG§=n(X=J’) = Gan(x Wm0 )ely.

On the other hand, using (ref: 2.1), there exists a constant ¢ > 0 such that
forevery y< Q; and x e B(xp,7) ND,

6B (x,y) < c-PEPIN™

[ x—y [

So we deduce that

|Gg=ﬂ(x:y) - Ggm(xr:y)' E Ggm(x:y) + Ggﬂ(x[:y)

< C[ O EO) | (P e0)" ]

|x_:l.|n—1m |X'I—_:l' | n-lm

= C[ R }(p(y))’"

< e(l- 1y
(- 1)"
=T

Now since G5, is continuous outside the diagonal,we deduce by
(ref: 1.14) |

Proposition 2.3 (ii) and the dominated convergence theorem that

IQ Gan(x.) = Gian(x . )ma(G()ldy — 0 as [k —x'| - 0.
1

Hence |Tu(x) - Tu(x')] - 0 as k—-x'| -0 uniformly forall #< A.
i : lim |Tu(x)| = 0
To establish compactness we claim that s =0
ue A
Indeed, Let ar>1 and x< D suchthat |x[=ar+1. Then from (ref:3.7),

we deduce that (ref: 3.7).

[Tu(x)| =

uniformly for all

% * I(1<L1'|SM} Gaal. ) ma(WNG ()| dy

Since for y € B(0.M)ND, we have [x—y/ =1, then by (ref:2.1)  we get
(ref: 2.1)

@l s £ e, PO

(A<pisd) | — y|2m

£, ___c o .
=1 @ Japman 1= D" a0 e

e e [ D
E (|x| = My I(1<L1'|SM} N P (V)G () ely.

14
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Again using (ref: 1.14) and Proposition 2.3 (ii), we obtain

lim |Tu(x)| =0, .
|x|lfa1c| () uniformly forall « < A.

Moreover, the family 7A is uniformly bounded. It follows by Ascoli's
theorem that 7A is relatively compact in Co(D).

Next, we prove that 7A < A.

Indeed, let < A and x < D, then from the hypotheses and (ref: 3.4) ,
we have

Tu(x) < Vo(.,ak(x))(x) + [, GRAlx.3)g() hma(y ) u(y))dy
< Vo(..at)(®) + [ GRA(x 7)) hma(y)[6u(y) + y]dy

< Vo(..al)(x) + 1 [ , GRn(x.2)a0) a3y
< Vo(..al)(x) + bV(ghmn)().

Moreover from the monotonicity of 4, (ref:3.1) and (ref:3.2) , we have
Tu(x) = [, GRalx.y)y(y,u(y))dy
> a1A(x) [, AP H(ai(y))dy

> a1 A(x)h(aB) [ APy
> al(x).

SO TA c A.

We claim that, 7 is continuous .To this end, we consider a sequence
(ux)r In A, which converges uniformly to a function = in A. Since ¢ and
v are continuous with respect to the second variable, we deduce by (ref:3.5) ,
Proposition 2.4 and the dominated convergence theorem that

Yx €D, Tui(x) — Tu(x) as k - «.

Since 7TA is relatively compact in ¢o(D), then we have the uniform
convergence. Hence 7 is a compact operator mapping from A to itself. So
the Schauder fixed point theorem leads to the existence of a function ue A
such that

u() = [ ORa(x)p0ru()) +vu()dy, Vi € D. (ref :3.8)

Finally, using (ref: 3.8), (ref:3.5). (ref: 1.14) and Proposition 2.3 (ii), one
can check that « is the required solution. m

Example Let y >0, 0<a<1 and ¢ < Kn.(D) with ¢z 0. Then the
problem

(—2)"u = (X)) [(A(x)) ' u +u*], inD
ux>0
u(x)

kel (L™

3
u(x) - 0 as x| - o=,

has at least one positive continuous solution « e Cy(D) satisfying

15
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where ¢ is a positive constant.
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