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Time Series Trend Analysis of the Singapore  

Monthly Temperature Data 

 

Wai Kwong Cheang 

Lecturer 

National Institute of Education 

Nanyang Technological University 

Singapore 

 

Abstract 

 

According to the Fourth Assessment Report of the Intergovernmental Panel on 

Climate Change in 2007, the world temperatures could rise by between 1.1°C 

and 6.4°C this century. This paper first analyses the overall trend in the 

Singapore monthly mean temperature data (June 1981 to December 2009) 

using time series regression model with autoregressive (AR) noise. The model 

suggests that since 1980, the Singapore temperature is increasing at a rate of 

0.26C per decade. Further analysis of trends in the June and December 

temperatures is then performed using multivariate regression model with vector 

AR(1) noise. Based on conditional least squares (CLS) estimation of the vector 

AR parameters, the rises in the June and December temperatures per decade 

are respectively 0.22C and 0.40C, indicating a steeper rate for the “winter” 

month. 

The length of the bivariate (June, December) temperature series is not long. We 

want to assess the impact of biases in the vector AR estimates on inferences of 

the trend parameters. In Cheang (2000), ‘Issues on estimation of time series 

regression model with autocorrelated noise’, Ph.D. dissertation, University of 

Wisconsin-Madison, it is shown that for multivariate regression with vector 

AR(1) noise, the bias of the maximum likelihood (ML) estimator of the AR 

parameters can be decomposed into two components: one is intrinsic to the 

noise model and the other is attributable to the estimation of regression 

parameters. 

Using the R language (http://www.r-project.org/), a program is written to 

perform CLS estimation of vector AR(1), and to calculate the ML bias 

approximation developed in Cheang (2000). Simulation is performed to check 

the adequacy of the bias approximation for the CLS estimator (which is 

asymptotically equivalent to the ML estimator). For the Singapore temperature 

data, the biases of the AR estimates are not negligible, and the trend estimates 

are less significant after bias correction. 
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Introduction 

 

Trends in temperature have important implications for a government in 

formulating its environment-related policies. An economy may also need to 

adjust its long-term strategies according to these trends. For example, in the 

Singapore National Climate Change Strategy document, the National Climate 

Change Secretariat (2012) outlines Singapore’s initiatives and strategies to 

address climate change through a whole-of-nation approach.  

In this paper, we first examine the overall trend exhibited by the Singapore 

monthly mean (dry bulb) temperature series using univariate time series 

regression model with autoregressive (AR) error. We then compare the trends 

in the June and December temperature series using multivariate regression 

model with vector AR(1) error. As the length of the bivariate (June, December) 

temperature series is not long, we also assess the impact of biases in the vector 

AR estimates on inferences of the trend parameters. 

 

 

Singapore Monthly Temperature Data 

 

Figure 1 displays the monthly mean temperature series {Zt} obtained from 

the Singapore Meteorological Services. It spans over the period June 1981 to 

December 2009. 
 

Figure 1. Singapore Monthly Mean Temperature Series, 1981-2009 

 
Time Series Regression Model 

Consider a univariate time series regression model of the form 
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Figure 2 shows the sample autocorrelation (ACF) and partial 

autocorrelation (PACF) plots of an estimated noise series from ordinary least 

squares fit. Comparing with the n/2  = 0.108 (n = 343) limits, the sample 
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PACF cuts off after lag 2. Based on these plots, {Nt} is modeled using 

stationary AR(2), 

 

. 
221 tttt

NNN 


    (2) 

 

Figure 2. Sample ACF and PACF of Estimated Noise Series 

 
 

In (2), {t} is a white noise process from a normal distribution with mean 

zero and variance 
2

. 

 

Model Estimation 

Using the “arima” function developed by the R Core Team (2012), the 

maximum likelihood (ML) estimates of the AR and trend parameters and their 

standard deviations are given in Table 1. 
 

Table 1. Estimates of Trends and AR Parameters in (1) and (2) 

Parameter ML estimate 
Standard deviation 

of ML estimate 
t-ratio 

1  390.0ˆ
1
  0.053 7.36 

2 213.0ˆ
2
  0.053 4.00 

1 0258.0ˆ
1
  0.0066 3.91 

 

The estimated residual variance is 2̂  = 0.167. The model suggests that the 

upward trend in the Singapore temperature is significant, at a rate of 0.26C per 

decade since 1980. This is consistent with the trend mentioned in the article by 

the National Climate Change Secretariat (2013), ‘Since the 1970s, Singapore 

has experienced an average warming rate of 0.25ºC per decade.’ 
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Trends in Singapore June and December Temperatures 

 

To investigate any difference in trends in Singapore’s “summer” and 

“winter”, we consider the June and December bivariate temperature series 

{(Yt1, Yt2)} from 1981 to 2009. The series is displayed in Figure 3. 

 

Figure 3. Singapore June and December Temperature Series, 1981-2009 

 
Multivariate Regression Model 

Consider a multivariate regression model of the form 

 

,,,1,''' TtNBxY
ttt

    (3) 

 

where Yt = (Yt1, , Ytk) is a k-dimensional time series vector of random 

variables, xt = (xt1, , xtr) is a r-dimensional vector of deterministic 

regressors, and B is a r  k matrix of regression coefficients. The noise series 

{Nt} is assumed to be a stationary process following a k-dimensional vector 

AR(1) model, 

 

,
1 ttt

NN 


     (4) 

 

where  is a k  k matrix with all eigenvalues less than one in absolute value, 

and {t} is a vector white noise process with zero mean vector and covariance 

matrix . 

Let Y = [Y1, , YT] and N = [N1, , NT] be the T  k data and noise 

matrices, respectively. Also, let y = vec(Y), n = vec(N),  = vec(B),  = 

vec(), and  = vec(). Define the T  r matrix X = [x1, , xT], and assume 

that X is of full rank r = rank(X). Then the regression model (3) may be 

expressed in matrix form as Y = XB + N, or in “vec” form as 

 

,)( nβIXy 
k

     (5) 

 

where Ik is the identity matrix of order k.  

Let (0) = Cov(Nt) denote the covariance matrix of Nt. From Reinsel 

(1997, p. 135-138), the kT  kT covariance matrix of n can be expressed as 
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where  = IT  Ik  L  , and L denotes the T  T lag matrix that has ones 

on the first sub-diagonal and zeros elsewhere. 

Model Estimation 

Software to perform ML estimation of  = (, , ) is not readily 

available. We consider the conditional least squares (CLS) estimator which is 

asymptotically equivalent to the ML estimator. The CLS estimator of , which 

minimizes the conditional sum of squares function  
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where 
t

N̂  are “residuals” from the regression based on the generalized least 

squares (GLS) estimates of , 
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The CLS estimates can be obtained using the R program given in the 

Appendix. The results are shown in Table 2. In this program, 
C

̂  is calculated 

using a 10-step iteration, beginning with the ordinary least squares residuals 

obtained using .)'()]()'[(ˆ 1
yIXIXIX
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Table 2. Estimates of Parameters in (3) and (4) 

CLS estimate GLS estimate 











181.0108.0

262.0047.0
ˆ

 







0399.08786.25

0221.00085.28
'B̂

 








138.0023.0

023.0213.0
ˆ

 

 

 

The estimated standard deviations of the trend estimates are 0.0101 and 

0.0095. The model suggests that the upward trends in “summer” and in 

“winter” are significant, with t-ratios of 2.18 and 4.19. Since 1980, the rises in 

the June and December temperatures per decade are respectively 0.22C and 

0.40C. 
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ML Bias in Vector AR(1) Noise 

The length of the bivariate (June, December) temperature series is not 

long. Simulation study in Cheang (2012) suggests that for a time series of short 

or moderate length, the bias in the ML estimate of  can be “appreciable” in 

the presence of a linear trend in the series. We want to assess the impact of 

biases in the vector AR estimates on inferences of the trend parameters.  

For a vector AR(1) noise with no regression component (or zero mean), 

Cheang (2000, p. 143-146) derived an approximation for the bias of the ML 

estimator of  = vec(), 
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where 1)0()( I  is the information matrix per observation for , 
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In 
*
, K = Ik  Ik,k  Ik , and Ik,k is the k

2
  k

2
 vec-permutation matrix 

such that vec(A) = Ik,k vec(A) for any k  k
 
matrix A. 

For the multivariate regression model (5) with vector AR(1) noise, Cheang 

(2000, p. 146-147) showed that the bias approximation of the ML estimator of 

 can be decomposed into two components, 

 

),()(
1

)()(
1

)ˆ( 1***1

Μ
    I

T
I

T
E  (7) 

where 

))')(  and  ,|)(|log
2

1
)(

1

kTk
II I(XI(X 










  

 

is the information matrix for . The first component in (7), given by the bias 

expression (6) for vector AR(1) with zero mean, is intrinsic to the vector AR(1) 

noise model. The second bias component can be attributed to the estimation of 

regression parameters. For polynomial regression of degree r  1 with 

 

xt  =  (1, t, , t
r1

), 

 

Cheang (2012) showed that 

 

].)'vec[(I)( 1
k

r  

 

Using the expression (7) and the R program given in the Appendix, the 

biases of the ML estimates of  are 
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












083.0014.0

017.0069.0
. 

 

These bias estimates are then used to obtain the bias-corrected estimates 

shown in Table 3. After bias correction, the estimated standard deviations of 

the June and December trend estimates are 0.0108 and 0.0105, resulting in 

smaller t-ratios of 2.08 and 3.79. Thus, the bias-corrected trend estimates are 

less significant. In fact, against the critical value of t24
(0.025)

 = 2.06, now the 

June trend estimate is only marginally significant. 
 

Table 3. Bias-corrected Estimates for (3) and (4) 

CLS estimate GLS estimate 









265.0094.0

245.0022.0
ˆ

 







0398.08806.25

0225.00029.28
'B̂

 








140.0023.0

023.0214.0
ˆ

 

 

 

Simulation of Empirical Biases 

To check the adequacy of the ML bias approximation (7) for the CLS 

estimator, a simulation is performed to estimate its empirical bias. The R 

program to perform such simulation is available in Cheang (2012). Taking the 

estimates of (, ) in Table 2 as the “true” parameter values, 10,000 

replications of bivariate AR(1) noise with T = 29 are generated. Without loss of 

generality, we take the regression coefficients as  = 0 in generating the 

simulated data. 

The empirical biases (i.e., the average of the estimates over the 10,000 

replications minus the true values) of the CLS estimates of  are 

 

.
086.0015.0

019.0071.0












 

 

These empirical biases are in reasonable agreement with the theoretical 

biases given by (7). 

 

 

Concluding Remarks 

 

According to Meehl et al. (2007, p. 749), the world temperatures could rise 

by between 1.1°C and 6.4°C this century. For Singapore, if the current trend 

persists, the average rise in temperature by 2080 could be 2.6°C, and the rise 
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would be more pronounced in the “winter” months. It would be interesting to 

compare the summer and winter temperature trends for temperate countries and 

the polar regions. 

Further regressors can be introduced to the time series regression model 

(1) to assess the effectiveness of the government’s strategies in moderating the 

upward temperature trend. Cheang and Reinsel (2000) showed that the 

restricted maximum likelihood (REML) estimates of the AR parameters are 

generally much less biased than the ML estimates. Consequently, the REML 

approach leads to more accurate inferences for the regression parameters. With 

more regressors added, it is of interest to compare the trend estimates obtained 

using the ML and REML estimation procedures. 
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Appendix: R Program for Estimation of Multivariate Regression Model With 

Vector AR(1) Noise, and Calculation of ML Bias 

 

Yt1 <- data[1:29,7]   # Jun, 1981-2009 

Yt2 <- data[1:29,13]  # Dec, 1981-2009 

n <- length(Yt1) 

k <- 2 

r <- 2 

iter <- 10    # No. of iterations for CLS 
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Y <- cbind(Yt1,Yt2) 

Y <- matrix(t(Y),k*n,1) 

 

#### User-defined functions 

covinvVAR1 <- function(Phi,Sigma,n,k) 

{ L <- matrix(0,n,n) 

  L[row(L)-col(L)==1] <- 1 

  Theta <- kronecker(diag(n),diag(k)) - kronecker(L,Phi) 

  vecGamma0 <- solve(diag(k^2) - kronecker(Phi,Phi)) %*% 

matrix(Sigma,k^2,1) 

  Gamma0 <- matrix(vecGamma0,k,k) 

 

  V1 <- matrix(0,k*n,k*n) 

  V1[1:k,1:k] <- solve(Gamma0) 

  V1[(k+1):(k*n),(k+1):(k*n)] <- kronecker(diag(n-1),solve(Sigma)) 

  V1 <- t(Theta) %*% V1 %*% Theta 

  V1 

} 

 

vec <- function(A) 

{ m <- nrow(A) 

  n <- ncol(A) 

  B <- as.matrix(A[,1]) 

  for (j in 2:n) B <- rbind(B,as.matrix(A[,j])) 

  B 

} 

 

# Vec-permutation matrix: For any m x n matrix A, vec(A) = I(m,n) vec(A') 

vecp <- function(n) 

{ Sn <- diag(n^2)  # Sn = I(n,n) 

  per <- matrix(1:(n^2),n,n) 

  per <- matrix(t(per),n*n,1) 

  Sn <- Sn[per,] 

  Sn 

} 

#### 

X <- cbind(rep(1,n),1:n) 

X <- kronecker(X,diag(k)) 

Xt <- t(X) 

XtX1 <- solve(Xt %*% X) 

A <- XtX1 %*% Xt 

H <- diag(k*n) - X %*% A 

 

# Residuals from OLS regression 

N <- H %*% Y 
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N <- t(matrix(N,k,n)) 

 

Nt <- array(t(N),c(k,1,n)) 

Gamma0 <- matrix(0,k,k) 

Gamma1 <- matrix(0,k,k) 

for (j in 2:n) 

{ Gamma0 <- Gamma0 + Nt[,,j-1] %*% t(Nt[,,j-1]) 

  Gamma1 <- Gamma1 + Nt[,,j-1] %*% t(Nt[,,j]) 

} 

Phat <- t(Gamma1) %*% solve(Gamma0) 

e <- N[2:n,] - N[1:(n-1),] %*% t(Phat) 

Shat <- (t(e) %*% e)/(n-1-k-r) 

 

# CLS estimation 

for (h in 1:iter) 

{ V1 <- covinvVAR1(Phat,Shat,n,k) 

  B <- solve(Xt %*% V1 %*% X) 

  glsbeta <- B %*% (Xt %*% V1 %*% Y) 

  N <- Y - X %*% glsbeta 

  N <- t(matrix(N,k,n)) 

 

  Nt <- array(t(N),c(k,1,n)) 

  Gamma0 <- matrix(0,k,k) 

  Gamma1 <- matrix(0,k,k) 

  for (j in 2:n) 

  { Gamma0 <- Gamma0 + Nt[,,j-1] %*% t(Nt[,,j-1]) 

    Gamma1 <- Gamma1 + Nt[,,j-1] %*% t(Nt[,,j]) 

  } 

  Phat <- t(Gamma1) %*% solve(Gamma0) 

  e <- N[2:n,] - N[1:(n-1),] %*% t(Phat) 

  Shat <- (t(e) %*% e)/(n-1-k-r)     

 

  cat("\n iter =",h,fill=T) 

  print(round(Phat,6)) 

  print(round(Shat,6)) 

} 

 

V1 <- covinvVAR1(Phat,Shat,n,k) 

B <- solve(Xt %*% V1 %*% X) 

glsbeta <- B %*% (Xt %*% V1 %*% Y) 

se <- sqrt(diag(B)) 

tratio <- glsbeta/se 

out <- cbind(glsbeta,se,tratio) 

print(round(out,6))  # GLSE of beta 

 

alpha <- 0.05 
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cvalue <- qt(alpha/2, n-1-k-r, lower.tail=F) 

print(cvalue)  # Critical value at alpha 

 

# Calculation of ML bias 

Phi <- Phat 

Sigma <- Shat 

phi <- vec(Phat) 

sigma <- vec(Shat) 

 

lambda <- eigen(Phi)$values 

print(round(lambda,6))  # Eigenvalues of Phi 

print(round(abs(lambda),6)) 

 

Delta <- diag(k^2) - kronecker(Phi,Phi) 

Dinv <- solve(Delta) 

gamma0 <- Dinv %*% sigma 

Gamma0 <- matrix(gamma0,k,k) 

 

G0inv <- solve(Gamma0) 

Sinv <- solve(Sigma) 

vecSinv <- vec(Sinv) 

Iinv <- kronecker(G0inv,Sigma) 

Kmat <- kronecker(diag(k),vecp(k)) 

Kmat <- kronecker(Kmat,diag(k)) 

 

B1 <- kronecker(diag(k),Sigma) 

B2 <- kronecker(t(Phi),diag(k)) %*% (diag(k^2) + vecp(k)) %*% t(Dinv) 

B3 <- kronecker(diag(k^2),vecSinv) 

bias0 <- -(1/n)*Iinv %*% kronecker(t(vec(B1)),diag(k^2)) %*% 

kronecker(B2,Kmat) %*% vec(B3) 

 

out <- matrix(NA,k^2,3) 

dimnames(out) <- list(rep("",k^2),c("ML bias","Due to AR(1)","Due to reg")) 

out[,2] <- bias0 

out[,3] <- -(r/n)*kronecker(G0inv,Sigma) %*% vec(solve(diag(k) - t(Phi))) 

out[,1] <- out[,2] + out[,3] 

print(round(out,6)) 

 


