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Abstract 

 

The aim of the work is to represent quantum particles as composed of some 

sub-quantum units whose existence is discrete and singular in space as well as 

in time. For each quantum particle the sub-quantum units form a standing wave 

discrete flashing on and off singularity sequences in space-time. Using the 

tensor apparatus of relativity theory their discrete singularity distributions are 

introduced. The standing waves of flashing on and off singularities are 

modeled by sequences of pure matter energy-momentum tensors which are 

proportional to specifically ordered sets of 4D δ-functions. The space-time 

locations of the poles of the 4D δ-functions determine where the singularities 

are. Quantum particles are considered as objects appearing as an averaged 

effect of these discrete in space-time sequences of sub-quantum units. 

Averaging the pure matter singularity energy-momentum tensors over space-

time leads to the well-known quantum field theory energy-momentum tensors 

of different particles. Hence, the continuous space-time probability 

distributions of these sequences of sub-quantum units are defined via the 

quantum wave functions. As application of these concepts the case of a 

quantum particle in an infinite cylindrical potential well is considered. The 

energy-momentum tensor of this particle is represented through a sum of 6 

pure matter tensor flows and their scalar density distribution and 4-dimesional 

velocities are found. The behavior of the continual density distribution of these 

standing wave singularities inside the cylindrical potential well is investigated. 

Expressions of the singularity repetition periods in general and particular case 

are given. 
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A brief overview of the atomistic concepts 

 

   The origins of contemporary concepts of atomism rise from ancient Greek and 

Buddhist philosophers. Leucippus [1] and Democritus [2] proposed that all matter 

is composed of small indivisible particles called atoms. They [3] taught that the 

hidden substance in all objects consists of different arrangements of atoms and 

void. The void is infinite and provides the space in which the atoms can pack or 

scatter differently. Plato [4] considered these corpuscles to be the base that makes 

up an unchanging level of reality, and in his view they were geometric shapes like 

tetrahedron, octahedron, cube etc. Diodorus Cronus [5] raised the hypothesis that 

matter and space are finitely divisible into vanishingly small quanta termed 

‘smallest and partless’ bodies and places. He also may be postulated similar 

minima for time as well and offered arguments that there must be not only 

partless bodies but also indivisible magnitudes. According to Aristotle [6] atoms 

are indestructible and immutable and there are an infinite variety of shapes and 

sizes. They move through the void, bouncing off each other, sometimes becoming 

hooked with one or more others to form a cluster. In general, ‘according to the 

atomists, nature exists only of two things, namely atoms and the void that 

surrounds them. Leucippus and Democritus thought that there are many different 

kinds of atoms, each distinct in shape and size and that all atoms move around in 

space.’[7].  

   Buddhist ideas about atoms developed in parallel with ancient Greek’s ones. 

The atom, called anu or aṇor [8] (Bhagavad Gita, Chapter 8, Verse 9), 

connects with things that are ‘smaller than the atom, yet the maintainer of 

everything; whose form is inconceivable, resplendent like the sun and totally 

transcendental to material nature.’ The viewpoint of Jains [9] is more close to 

Democritus by teaching that all atoms were of the same kind, producing 

different effects by diverse modes of combinations. The second phase of 

Buddhist atomism (7th century CE) is quite different from the first. Buddhist 

philosophers Dharmakirti and Dignāga considered atoms to be point-sized, 

durationless, and made out of energy [9]. According to Jains the movement 

consists of momentary flashes of a stream of energy. Existence is pushed up to 

its tinyest, last elements imagined as absolute qualities, or things possessing 

only one unique quality – a kind intra-atomic energies of which the empirical 

things are composed. To every one of these units corresponds a subtle quantum 

of matter which is called guna or "quality", but represents a subtle substantive 

entity. A contemporary interpretation and development of these views is found 

in the works of  Grupp [10] who considers the reality as ‘composed of 

Buddhist atoms that are durationless infinitesimal bits of energy, that flash in 

and out of existence at a pace far too quick for ordinary empirical 

consciousness to be aware of.’ This concept directly indicates that the existence 

of smallest components of matter-energy could be discontinuous in time, i.e. 

Buddhist atoms appear and disappear periodically in time and space. 

   The ancient atoms now are associated with elementary particles considered 

as objects existing continually in time and discrete or point-like formations in 

3D space. Experimental evidence is that they behave either like corpuscular 
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objects or like waves depending on the conditions of experiment. This is the 

well-known wave-particle dualism in physics.  

   There is well-established model of what a quantum wave in physics is. From 

mathematical point of view, usually it is a function satisfying certain 

differential equations like the ones of Schrödinger or Klein-Gordon normalized 

to unity in Hilbert space.  

   In quantum field theory and special relativity theory the energy-momentum 

or stress-energy tensor is a basic mathematical construct modeling the structure 

of objects [11 – 13]. In relativity a multitude of particles as localized 3D units 

of matter mathematically are described by second rank tensors of the type 

(written in geometric, frame-independent form) [14] 

 
a

aamxxdT 


))((4 . 

   As we see, there is a 4-dimesional delta function as a distribution in the 

above tensor. However, this delta function is defined along the world line of 

the particle depending on the continuous time variable () and integration takes 

place over a small 4D volume. Due to this the above tensor is dependent on 3D 

variables of space and 3D velocities of different particles enumerated by the 

index a.  

   The purpose of this work is to elaborate the Buddhist idea of atoms as 

almost durationless bits of energy-momentum in four-dimensional 

mathematical form and to investigate their averaged distributions in a particular 

case. The essential difference in our suggestion about the structure of particle’s 

energy-momentum tensor is that δ-functions defined over discrete sets of 

events in 4D space-time. This means that we introduce tensor densities of 

singularity sets that are flashing on and off at certain space-time intervals. We 

claim that these 4D δ-function distributions connect with the wave functions in 

a very specific way. Thus, the aim of the work is to propose a possible 4D 

discrete singular representation of the energy-momentum tensor of scalar 

quantum particles and to investigate their average values in the case of scalar 

field in infinite cylindrical potential well.  

 

 

Discrete and singular energy-momentum tensor distribution over 

Minkowski space-time 
 

   In relativity theory, energy-momentum tensor (EMT) is a local 

characteristic of a given material system. Hence, knowing its structure and 

distribution into space-time one has a detailed picture of the properties and 

interactions of the considered system [15]. Here we shall introduce a standing 

wave sequence of 4D singularities and the hypothesis is that it represents the 

corpuscular part of the quantum wave-particle.   

    The notations that will be used below are as follows: a scalar function 

1
n

  defined over the set of natural numbers N (n = 1, 2, 3, …); a discrete 

(finite or countable) sequence [
n

x ] of events in the Minkowski space-time; 
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four-dimensional delta functions )(
nn

xx   with poles in the events 
n

x  and [
n

u ], 

(  n;3,2,1,0 ) – set of four-dimensional vectors in the events 
n

x  defined 

by their scalar product 0,1
nn

uu 
 .  

The hypothesis now is that there is a discrete standing wave sequence of 

flashing on and off singularities represented by a specific type of four-

dimensional energy-momentum tensors. This sequence will be defined by the 

following 4D tensor field singularity distribution considered on the above 

introduced discrete sequence of space-time events, i.e. Nn : 

(2.1) 3,2,1,0,;)()(    
n

n

n

nnnnn

hcuuxxhcx ,  

where h is the Planck's quantum of action [16] and c is the speed of light.  

   This is the main assumption – we represent the flashing on and off indivisible 

magnitudes or quanta by a set of pure matter EMT, whose densities are 4D δ-

functions. We also assume that between all of the different arrangements of the 

discrete sets [
n

x ] there exists one that is natural (internally inherent) to any 

quantum particle. We consider tensors of the type (2.1) as micro-scale energy-

momentum tensors of quantum particles. Below is the specified connection 

between them and the wave characteristics of the quantum objects. 

   It is easy to do a macroscopic averaging of the above-introduced micro-scale 

EMT in the following way: let be a given space-time volume element and 

d
 4
x is a differential element in the space-time. Define the tensor 

(2.2a)    



 xdxt 4)(

1
  .    

Thus, this averaging juxtaposes to each physically small space-time region   

a symmetric second rank tensor field t . Having in mind equations (2.1) and 

(2.2a) this tensor field takes the form 

(2.2b)    






p

uuhc

t

p

i

iii

1







.    

The summation in the above expression is over all of the singularities that are 

disposed into the region . Let   be a “physically infinitely small” space-

time volume. If   and '  are two adjacent space-time volumes, then the 

respective tensors )(t  and )'(t  discern “physically infinitely little”. 

Thus, in macroscopic sense the tensor t  appears as a continuous function of 

x. Let us assume that the average value (2.2) of the tensor distribution (2.1) 

over any physically small region in space-time may be represented in the form 

of a pure matter tensor, i.e.   uu , provided that all usual requirements 

of smoothness of the scalar density  and four-vectors u over a certain region 
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of space-time are fulfilled. As we pointed out in the vectors u  are not 

necessarily time-like.  

 

Continual energy-momentum tensor distribution in a cylindrical potential 

well 

 

   There are different types of energy-momentum tensors in relativity theory 

describing pure matter, ideal and real fluid, solid body with tensions, 

electromagnetic field and so on.  

   We shall discuss here the connection between the tensors of pure matter and 

real fluid. Following the idea of an earlier consideration [17],  we search to 

express the real fluid EMT as a sum of six different pure matter tensor fields, 

i.e. via six flows into six different directions. Thus, we aim at a presentation of 

a more complicated structure of an EMT via a combination of the simplest 

EMT type. This is most easily to do in a reference system locally co-moving 

with the fluid.  

   This tensor decomposition is needed in order to make a detailed specification 

of the above introduced discrete singular standing wave sequences connecting 

the general assumption (2.1) with a certain quantum model, namely a scalar 

quantum particle in an infinite cylindrical potential well.  

   In quantum field theory a particle is said to be in an infinite potential well V 

when the following boundary condition on the wave function holds:  = 0 at 

any instant t = x
0
/c over and out of the surface covering the space volume V 

where the particle is. 

   Let the wave function   is a solution of the Klein – Gordon equation   

(3.1)   


,,0 002

00

2

00 where xxk .  

Here


is the 3D gradient operator; cmk 0  is the wave number and m0 is 

the rest mass of the field. We consider a particle confined in an infinite 

potential well, so the function is different from zero inside a 4D cylindrical 

region given by 

(3.2)         .,,2,0,,0,,0  zdrx   

This is a Dirichlet problem, i.e.  = 0 on the boundary  and outside the 

region . Because of the cylindrical symmetry, the solutions of the partial 

differential equation (3.1) possess translational symmetry along z-axis. The 

boundary condition now is  

(3.3)   0:0  drx  

The most convenient frame for the problem is a cylindrical coordinate system 

in which the non-zero metric elements in Minkowski space are  

(3.4) 1;;1;1 2

00  zzrr grggg  . 

The requirement for translational symmetry of the function along z–axes 

means that the solution of equation (3.1) is independent of the coordinate z. 

Hence, the solutions are stationary and constant along z-axes in this case, i.e.  

(3.5) 
0

0),(
xik

er


  . 

Inserting (3.5) into (3.1) and taking into consideration (3.4) we obtain 
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(3.6)   ,0
11 2

2
  

r
r

r
rr

where 22

0

2 kk  . 

Applying the separation of variables method and denoting by m
2
 the separation 

variables constant, one gets the solutions of (3.6) in the form 

(3.7)  im

rm erkAr  )(),( , 

where A is normalization constant and )( rkrm is a Bessel function [18] of the 

first kind integer value order ,....2,1,0 m  as we search for finite solutions at 

the center of the cylindrical well. Translational symmetry along z-axis means 

that the wave number 0zk  and hence 022

0

2  kkkr
.  

The boundary conditions for the wave functions  

(3.8) 0)( 
drrm rk  

establish the connection between the radial component of the wave vector kr, 

the quantum (integer) number m and size d of the well. Assuming kr is such 

that 0)( dkrm is the first zero of the Bessel function, then according to 

Bateman & Erdélyi [18] for m > 0 there is the following solution 

(3.9)    ),( 131

2

31

1

  mOmCmCmdkr
 

where 21,CC are numerical constants and )( 1mO is a small quantity of first 

order. 

   Next, we shall consider a representation of energy-momentum tensor (EMT) 

of a scalar field  trapped inside this infinite cylindrical potential well. In 

general, the Noether’s theorem [11] states that the conserved EMT densities of 

any scalar field are  

(3.10)    LgcBT   , 

where B is a normalization constant and the Lagrangian L of the scalar field is 

(3.11)   



 xgkcBL   ,,2 .  

The constant B is derived from the requirement the integral from the energy 

density T00 over the 3D volume of  to be the total energy of the particle 0ck , 

hence it depends on the Bessel functions order and size of the potential well. 

Using the solutions (3.5) and (3.7) one gets that the Lagrangian and the 

components of the of the symmetric EMT are as follows 

(3.12) )(,][
2

2

2

2
2

1

2222

0

rk
r

m

rk

m
kkB

k

c
L rmmmmm

r

rmr  







 


, 

 

(3.13a)  

,0,
2

,0

,][)2(
2

00

22

0

0000

2

2

2
2

1

22222

0

00











 

zzmrr

mmm

r

rmr

TTmB
k

c
TTTT

r

m

rk

m
kkkB

k

c
T











 

(3.13b)    ,0,0,][
2 2

2
2

1

2222

0









  zrrzrrmmm

r

rmrrr TTTT
r

m

rk

m
kkB

k

c
T 

  
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(3.13c)      ,0,22
2

2

1

22

1

222222

0

    zzmrmmrmrm TTkrmrkkrmB
k

c
T


 

(3.13d) .][
2

2

2

2
2

1

2222

0









  mmm

r

rmrzz
r

m

rk

m
kkB

k

c
T 


 

The above given expressions show that the Lagrangian and the components of 

EMT quantize since ,...2,1,0),(and)( 00  mmkkmkk rr
. In addition, the 

analysis of the above components shows that this EMT appears as a tensor of a 

real fluid with energy density equal to T00, energy flux equal to 0T , momentum 

density equal to 0T , without shear stress and momentum flux and specific 

pressure densities participating in Trr, T and Tzz.  

   Having the explicit expressions of the EMT components we shall search to 

represent them via 6 streams of pure matter energy-momentum tensors, i.e. we 

shall search a local representation of Tα  from (3.13a-d) in the form 

(3.14) 



6

1

,,,0,,
6

1

a

a
zrtT   . 

Here we propose that  is the average density distribution of the singularities 

and the tensors in the sum are defined as follows 

(3.15) 6,...,2,1,  a
aaa uhcut  . 

   The non-zero components of EMT Tα  (3.13) give a hint to consider the 

following normalized to unity linearly independent four-vectors, suggesting 

that their definition region coincides with the one of Tα.  

(3.16) 

.6,5),,0,0,(),,0,0,(

4,3),0,,,(),0,,,(

2,1),0,0,,(),0,0,,(

00

00

00







awwww

a

auuuu

zz

rr

rr

   

   The use of these four-velocities and the relations (3.14) and (3.15) leads to an 

algebraic, quadratic and non-linear system of equations for their components 

(3.17) )(
3

1
00000000 wwuuhcT   , 

 00
3

1
hcT   

(3.18) )(
3

1
rrrrrr uuhcT   , 

 hcT
3

1
 , 

zzzz wwhcT 
3

1
  

 (3.19) 122

0  ruu , 1
1 2

2

22

0  
r

r
, 122

0  zww . 

  This system of equations is well determined since the number of equations is 

equal to the number of the arguments. Taking into account that the components 

of Tα are determined by the quantum field through (3.13) we find the solutions 

for the density distribution and 4D vector components. 

(3.20) 

 T
hc

1
 , 

(3.21) 













 TT

T

T

T

rT

T
u rr

2

0

2

2

2

0

3313
 ,













 TT

T

T

T

rT

T
u rr

r

2

0

2

2
331

1
3

 , 
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(3.22) 








TT

T 2

02

0

3
 ,













TT

T

T

T

r
r

2

0

2

2
331

1  , 






T

T3
2  , 

(3.23) 

T

T
w zz3

12

0  , 

T

T
w zz

z

32  . 

   Here T

 denotes the trace of the EMT (3.13) that is a scalar quantity. Hence, 

the density distribution of the singularities is a scalar function.  

   Note that we have chosen the simplest possible representation, i.e. we take a 

system of vectors that gives the easiest solvable algebraic system of equations. 

In this way, we proved the existence of at least one combination of 4D vectors 

that after summing up their tensor products with suitable weight  can model 

the EMT of a particle in cylindrical potential well. 

The explicit expressions for the continual density distribution of standing 

wave singularities (rkr) and 4D vectors (3.16) trough the solutions for the 

field function  in the considered case of cylindrical potential well are 

(3.24)  








  1

2

1

22

2

2
222

0

2)(),(
2

1
)( mmrmrmrrm

r

m
kk

r

m
kkdmC

k
rk 


 , 

(3.25)  

 
,

)(

2)(2

2

3

)(

2)(2

2

3

)(

2

2

3

1
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where  

(3.32)   
1
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m
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m
kkrk  . 

 

  

Continual scalar density distribution function of standing wave 

singularities  
 

   We shall use a suitable representation of Bessel functions of integer order 

[18] in order to investigate the continual density distribution of standing wave 

singularities m(rkr) in the definition region (3.2), namely  

(4.1)    




















0

2

2!)!(

)1(
)(

n

nm

r

n

rm

rk

nnm
rk  

   A significant part of the density m(rkr) (3.24) and all of the above tensor and 

vector components is the term )( rm rk
r

m
 . It is equal to zero if m = 0 and in 

general is different from zero if m 
 
0. Since by the assumption (3.2) Bessel 

functions differ from zero in the region  dr ,0  it is necessary to investigate 

the behavior of this term in the limit r  0. Having in mind (4.1) it is obvious 

that 0)(
0


rrm rk

r

m
  if 1m . If m = 1 then 

2
)(

0

r

rrm

k
rk

r

m



 . In case 

of negative m (m < 0), as m is an integer, the following relationship [18] is 

valid 

(4.2) )()1()()( |||| rm

m

rmrm rkrkrk    . 

Hence for negative values of m  –1 this ratio is 0)(
0|| 

 rrm rk
r

m
 , while 

for m = –1 one has that 
2

)(
1

01
r

rr

k
rk

r



 . Hence, due to these evaluations, 

we conclude that all the quantities of interest have finite values at the origin of 

the chosen coordinate system.  

   For clarity, we shall investigate the continual scalar distribution of standing 

wave singularities m(rkr) separately in several different cases, holding in mind 

the boundary conditions 0)( dkrm where ,....2,1,0 m .  



ATINER CONFERENCE PAPER SERIES No: MAT2012-0258 

 

14 

 

   A) Let m = 0. Having in mind the representations of Bessel functions (4.1) in 

this case if r = 0, then 0))(,0(
2

1
)0( 222

0

0  rkkdC
k

  and if r = d, 

then 0)(),0(
2

1
)( 2

1

22

0

0  dkkdC
k

dk rrr 


 .  

   B) Let m  0. Then from the explicit expression (3.24) of (rkr) and the 

representation of Bessel functions through power series (4.1) and relation (4.2) 

we conclude that: 

    a) When 1m , then 0),1(
8

)(
)0( 2

0

2

1 


 dC
k

kr


 , and  

 0)(),1(
2

)( 2

11

2

0

2

1   dkdC
k

k
dk r

r
r 


 . 

   b) When m  0 and 1m , then from the explicit expressions of )( rm rk , 

(4.1) and (4.2) we conclude that  

0)0( m  and 0)()|,|(
2

)( 2

||1

2

0

2

  dkdmC
k

k
dk rm

r
rm 


 .  

The same statements are valid for the denominator in the velocities (3.32). It is 

straightforward to see that in all cases 02/),()(/)( 0

2  kdmCdkdk rmrm  . 

  

Singularity repetition period 

 

   Let TSRP be the period of time during which there is only one singularity in 

the restricted 3D volume of (3.2). Knowing the density distribution of 

singularities, the following condition determines the region where only one 

singularity exists  

(5.1)      },,2,0,,0,{where,1)( 


zdrcTdrk SRPrm  . 

In general, using the trace T

 the EMT (3.9), the Klein-Gordon equation and 

the Gauss theorem one can prove that [19] 

 (5.2)  
2

02

k

k
cTSRP


 . 

Having in mind that 0222

0  kkk r
 and equation (3.9), in the considered case 

of infinite cylindrical potential well this singularity repetition period will be 

(5.3)   213/1

2

3/1

12

2

2
)(

12
)(   mOmCmCm

d
k

k
mcTSRP

 . 

Hence, this period takes on discrete values. The last expression shows that 

when a quantum particle is in an infinite cylindrical potential well the period of 

the singularity sequences depends not only on the rest field mass ( cmk 0 )  

but also from the size of the well d and the quantum number m.  
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Conclusions 

 

   Here we elaborated a possible mathematical representation of the main 

assumption that each quantum particle is composed of some sub-quantum units 

whose existence is discrete and singular into both space and time. We consider 

the quantum particles as objects stemming from averaging of certain discretely 

existing in space-time sequences of singular sub-quantum units. For each 

quantum particle, these sub-units form a specific standing wave sequence of 

singularities in 4D space-time. The wave function defines the space-time 

probability distribution of the latter. For the 3D human mind and physical 

apparatuses, they appear as flashing on and off (glimmering or appearing and 

disappearing) with a certain frequency, determined via the wave function of the 

quantum particle, over the region where the wave function is given. Thus, there 

is a dispersion of flashing on and off sub-quantum units over the whole space-

time volume where the quantum particle is. Hence, one can say that the 

quantum particle is an object resulting as space-time average of new types of 

objects existing on a discrete space-time lattice or sequence, which is inherent 

to each one of the quantum species – electrons, protons, etc. The space-time 

itself is a continuum. These flashing on and off sequences of singularities 

possess the property of replication and these replications happen at specific 

space-time intervals connected with the type of the quantum object. 

One probable interpretation of the transition from singularities into waves and 

vice versa may be the following suggestion. When a singularity reaches its 

peak (critical density of mass or energy) it sparks and emits a wave that 

propagates into surrounding space-time. When this wave reaches the next place 

(region) in the sequence of singularities it collapses into that region to get the 

critical density and sparks again to create a new wave. This process of quantum 

jumps from event 
n

x  to the next event 
1n

x  and waves (vibrations/oscillations) 

spreading between the two consecutive events (δ-function poles) perpetually 

repeats in the same way. If we consider an electron in the well then the 

calculations show the period of these jumps is of order of 10
–21 

s.
 
The duration 

of a single singularity may be considered to be of the order of Planck time that 

is approximately 5.3910
–44 

s and its space dimensions may be taken to be of 

the order of Planck length, i.e. 1.616210
–35 

m [20].  

The considered representation of quantum EMT (3.13) through the six pure 

matter tensor flows along the 3D space axes simulates the averaged flows of 

the standing wave singularity sequences over the six directions in 3D space.  
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