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  “Dirk Nowitzki Playing for Dallas in the NBA (U.S.A.)” 
 

Introduction 

 

Mathematical modelling and mathematics are a „Key Technology“. 

Mathematics is one if the core competences in developing reliable and efficient 

simulations for technical, economical and biological systems; thereby, 

mathematics found a new role as a key technology. In order to simulate any 

process, it is necessary to find an appropriate model for it and to create an 

efficient algorithm to evaluate the model. In practice, still one of the main 

restrictions is time: If one wants to optimize the process, the simulation must 

be very fast and, therefore, model and algorithm must be looked as a whole 

and, together, made as efficient as possible. 

Four problems are very important: 

(a) A problem finding competence, i.e. the capacity to discover real world 

problems, which may be solved successfully by simulation (this seems 

not to be well developed in teachers). 

(b) To develop a hierarchy of models, which, together with. 

(c) To construct, for each model, the most efficient evaluation algorithm, 

allows us to reduce the simulation time. 

(d) To check the reliability of the simulation, its limitations and possible 

extensions; there is never an end in modelling a real world problem. 

While modelling a real-world problem, we move between reality and 

mathematics. The modelling process begins with the real-world problem. By 

simplifying, structuring and idealizing this problem, you get a real model. The 

mathematizing of the real model leads to a mathematical model. By working 

within mathematics, a mathematical solution can be found. This solution has to 

be interpreted first and then validated (Blum, 2004). A global cognitive 

analysis yields the following ideal-typical solution, oriented towards the cycle. 

Competence can be regarded as the ability of a person to check and to judge 

the factual correctness and the adequacy of statements and tasks personally and 

to transfer them into action. Similar views can be found in the didactical 

discussion about modelling: “Research has shown that knowledge alone is not 

sufficient for successful modelling: the student must also choose to use that 

knowledge, and to monitor the process being made.” (Tanner & Jones, 1995). 

Based on these concepts, I define the term “modelling competency” as follows: 

Competencies for modelling include abilities of modelling problems as well as 

the will to use these abilities. 

A further important basis is different sub-competencies mentioned (Maaß, 

2004): Modelling competencies contain 

 Competencies to understand the real problem and to set up a model based 

on reality. 

 Competencies to set up a mathematical model from the real model. 

 Competencies to solve mathematical questions within this mathematical 

model. 

 Competencies to interpret mathematical results in a real situation. 
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 Competencies to validate the solution. 

Mathematical modelling is a permanent interaction between reality and other 

matrices. 

“There is no doubt that the translations between mathematics and the real 

situation were abundant and developed in both ways, being the sign of an 

existing flow of modelling connections. The aspects of the real situation 

under analysis changed in the course of students’ activity. Also the 

mathematical elements activated in each phase were diverse. But the main 

issue is that students’ processes throughout their work showed a common 

trace: the dialog mathematics-reality”. (Matos & Carreira, 1995) 

 

 

Mathematical Literacy and Modelling 

 

The “Programme for International Student Assessment” (PISA) gives a precise 

definition of the term mathematical literacy as “an individual’s capacity to 

identify and understand the role that mathematics plays in the world, to make 

well-founded mathematical judgements and to engage in mathematics, in ways 

that meet the needs of that individual’s current and future life as a constructive, 

concerned and reflective citizen.” (Organization for Economic Cooperation and 

Development (OECD), 1999). 

The concept of mathematical literacy connects the development of 

mathematical structures with the treatment of realistic tasks. This connection 

can be considered as analysing, assimilating, interpreting and validating a 

problem – in short, modelling. Within this perspective modelling competencies 

form a part of mathematical literacy and the examination of modelling 

competencies are helpful in clarifying the mathematical literacy of students. 

The OECD/PISA identifies two major aspects of the construct mathematical 

literacy: mathematical competencies and mathematical big ideas (chance, 

change and growth, dependency, relationships and shape). Among others 

modelling is described as one of major competencies that build mathematical 

competence. Mathematical modelling needs an overarching set of abilities 

which can be identified in the well-known modelling cycle. 

The modelling cycle has normally a starting point in a certain situation in the 

real world. Simplifying it, structuring it and making it more precise leads to the 

formulation of a problem and to a real model of the situation. If appropriate, 

real data are collected in order to provide more information on the situation at 

one’s disposal. If possible and adequate, this real model – still a part of the real 

world in our sense – is mathematized, that is the objects, data, relations and 

conditions involved in it are translated into mathematics, resulting in a 

mathematical model. Now mathematical methods come into play, and are used 

to derive mathematical results. The results have to be re-translated into the real 

world, which is interpreted in relation to the original situation, at the same time 

the problem solver validates the model by checking whether the problem 

solution obtained by interpreting the mathematical results is appropriate and 

reasonable for his or her purposes. If need be the whole process has to be 
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repeated with a modified or a totally different model. At the end, the obtained 

solution of the original real world problem is stated and communicated. (Blum 

et al., 2002) 

 

How to evaluate the trajectory of Dirk Nowitzki`s shot? 

Motivation (Real- Situation) 

 

What impresses me most is the shooting accuracy of some professional 

players? Roughly ten years ago Dirk Nowitzki became only the second 

German to play in the NBA (National Basketball Association), the world’s best 

basketball league.  

1960 110 

  

1965 200 

1970 330 

1975 480 

1980 590 

1984 550 

 

In 2004 the magazine DIE ZEIT printed an interview with Nowitzki’s 

advisor, mentor and personal coach Holger Geschwindner, without whom 

Nowitzki arguably would not have been as successful as he is today. In that 

interview Geschwindner, who owns a degree in mathematics, describes how he 

developed an individual shooting technique for Nowitzki: “I took a paper and a 

pen and asked myself: ‘Is there a shot where you can make mistakes but the 

ball still goes through the hoop?’ [...] Then I drew a sketch: The incidence 

angle of the ball must be at least 32 degree, Dirk is 2.13m tall, his arms have a 

certain length and if you know the laws of physics, you find a solution 

quickly.” (Ewers, 2004, translated by the author) 

At first it is surprising to find physics mentioned in a sports article. But after 

a short period of time you start thinking which laws Geschwindner could be 

referring to and how did he hit on the 32 degree angle? I started analyzing and 

comprehending Geschwindner’s statements, especially with regard to 

mathematics in school. Can you discuss the whole topic or side aspects with 

students in school? How can this interdisciplinary reference be utilized in 

physics lessons? These questions are picked out as the central themes of the 

following paper.  

 

 

Mathematical Modelling 

 

According to the Rahmenrichtlinien des Landes Sachsen-Anhalt mathematical 

modelling is a mandatory task in schools. It is also described as one of the 

skills to be trained in the Bildungsstandards (Projektgruppe, 2008). In addition 

to being conform to the guidelines it is also an objective to connect 
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mathematics with reality. The aim is to show the wide ranging meaningfulness 

of mathematics in school which is often questioned by the students. 

The physicist describes motion sequences with formulas; the chemist 

handles reaction equations; the stress analyst calculates the bearing structure of 

a building. They all use mathematical tools although the original problem had 

nothing to do with mathematics. Mathematical modelling works with nearly 

every problem of any complexity.  

Applying this method includes phrasing and solving non-mathematical 

problems using mathematical language. This is done by differentiating between 

real world (non-mathematical) and mathematical world. In every modelling 

task the steps of the following cycle are executed:  

 

Figure 3. Modelling process (NSW, 2006) 

 
 

The starting point is a real-world problem. Then a situation model is created by 

simplifying, idealizing and structuring the task. Now the real-world model has 

to be transferred into mathematics: by generating a mathematical problem 

within a mathematical model. To solve the mathematical problem well-known 

algorithms are used. Then the mathematical results are transferred back into the 

real-world situation to be able to interpret the results with regard to the real-

world problem. Afterwards the results are reviewed and evaluated with respect 

to the real world. If the result is illogical or unrealistic every single step e.g. 

overall proceeding, transfer processes and algorithms have to be checked with 

regard to correctness. 

With this new way of setting a task teachers do have a means at hand to 

spark the students´ motivation and interest in mathematical and everyday life 

problems. In addition students learn how to deal consciously and critically with 

questions which also helps them to get to know the benefits of mathematics on 

their own. In my opinion it is extremely important that students develop 

confidence in their (individual) abilities to solve problems. There is not one 

specific way to handle a certain problem, no calculator replacing the mental 

activity. Students develop their individual solutions; they can differ from one 

another but still end up with the same result - which by the way does not 

necessarily mean a specific numerical value but in fact the interpretation of 

results including the implications in the real world. 

The activities of a teacher change if he uses this new way of setting tasks: it 

requires a greater amount of time and tasks are more complex and seem more 
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difficult. Students with poorer performance who used to work with strict 

patterns are challenged. At the beginning it appears that there are going to be 

some complications. The lessons are less predictable and illustrations become a 

lot more important. Both students and teachers are required to be more flexible 

as well as able to follow the train of thoughts of others.  

 

Basketball - Play 

 The Idealized Shot 

 

Incidence Angle = 32° - How did Geschwindner arrive there? 

As mentioned in the first part, mathematician Geschwindner believes that the 

incidence angle of the basketball falling through the basket should not be smaller 

than 32°. The following part shows how he arrived at this result.  

For a basketball shot we assume a trajectory parabola as known from 

physics. The incidence angle represents the slope of the trajectory parabola 

when the ball is falling through the basket in case you make the shot or 

bouncing of the rim in case you miss the shot. 

If you hold the basketball directly above the rim and let fall downwards 

without giving any impulse in either direction, due to gravity the ball will fall 

through the basket. The incidence angle would be 90°. You cannot reach this 

angle with a usual shot which will be explained later (chapter 3.2.).  

As the lowest possible incidence angle we assume 0°. This would represent a 

ball thrown horizontally at the level of the basket. The ball would bounce 

against the front and back off the rim. It is impossible to score with this 

incidence angle.  

We need to look at the incidence angle with respect to the plane in height of 

the basket, which is located 3.05m above the court. This plane is parallel to the 

ground and for this reason parallel to the basketball court, too. To determine 

the lowest possible incidence angle with the basketball still falling through the 

basket we look at the following sketch:  

 

Figure 4. Sketch to calculate the lowest possible incidence angle in case of 

a made shot 

 
Figure 4 shows schematically how to evaluate the lowest possible incidence 

angle. Therefore we assume the basketball is falling directly through the 

basket. It is definitely possible that the ball would hit the rim first, then bounce 

up, and fall down through the basket afterwards. But for the shooter this is hard 

to control. Instead of falling through the basket the ball could fall down beside 

the rim just as well.  
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In the sketch the incident ball is shown by the parallel straight lines crossing 

the bold line representing the basket at both ends. In the case of the lowest 

possible incidence angle the ball neither hits the front nor the back of the rim. 

The distance between the two parallel straight lines represents the diameter of 

the basketball.  

In the triangle in figure 4 the length of two out of the three lines is known. 

The diameter of the basket is 0.45m and the basketball has a perimeter of 

0.75m (University Mainz, 2006). From the perimeter of the basketball we get 

the following diameter: 
                                        du           (1) 

                                    
cm

cmu
d 87,23

14,3

75




                                                      

(2) 
        (2) 

Let α be the incidence angle which can be identified with the help of the following 

trigonometrical  

relation:  

4530,0
45

87,23
)(sin 

cm

cm

basketdiameter

balldiameter

hypotenuse

legopposite


 
(3) 

 04,32  
(4) 

 

To evaluate the incidence angle not more than basic mathematical knowledge 

and tools are necessary: mathematical modelling to get the sketch in figure 4, 

evaluations on perpendicular triangles (trigonometrical relations) as well as 

perimeter evaluations of a circle and a sphere respectively. The lowest possible 

incidence angle of 32° could be validated almost exactly. 

Reconstructing the Trajectory of a Shot 

During the regular NBA season every team plays 82 games. In the following 

playoffs the teams could play up to 28 more games but at least 16 more for the 

team that wins the championship. Consequently a team could play more than 100 

games in one season.  

Looking at professional basketball from this point of view teams and players 

aim at saving forces. Therefore we take a look at how many shots Dirk 

Nowitzki released in the 2009/2010 season: he averages 19 field goal attempts 

and seven free throw attempts which makes 26 shots overall per game. His 

field goal percentage and free throw percentage are 47.5% and 90.8% 

respectively (nba.com, 2010). Since Dirk Nowitzki is taking about 2500 shots 

in one season during games and let alone the shots in practice it appears logical 

to minimize the expenditure of energy for every single shot.  

That is why we model the shortest trajectory of the basketball while shooting 

a free throw with an incidence angle of 32°. As in general mathematic lessons 

the goal is to try to reconstruct a function with the help of three known 

characteristical points.  

To be able to operate in our well-known two-dimensional Cartesian 

cooperate plane the basketball is assumed to be a point mass. The basket is at 

3.05m (ten feet high). Now the distance between the basket and the point 

where the ball leaves the shooter’s hands has to be identified. Therefore we use 

the figure 5 of a basketball court. 
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Since the basketball is assumed to be a point mass and the point where the ball 

leaves the shooter’s hands is assumed directly above the free throw line the 

distance between those two points’ matches 13 feet and nine inches as shown 

in figure 5. The lesson can thus also be used to repeat unit conversions. By 

using the following information we can transform the distance into the metric 

system (Brockhaus, 2004): 

1’ = 1foot ≙ 0.3048 meter (5) 

1“ = 1inch = 1/12 feet ≙ 0.0254 meter (6) 

With these data the distance is evaluated as 4.191m. It remains to determine the 

height of the point at which the ball leaves the shooter´s (Dirk Nowitzki’s) 

hands. He is 2.13m tall and the ball leaves his hand just above his head. Since 

the basketball may be assumed as a point mass – we use the center of the 

basketball – the height of the point where the ball leaves Nowitzki’s hands is 

assumed to be at 2.20m. To illustrate the upcoming proceeding we use figure 6. 

Since we assume a basketball shot is like a trajectory a general second order 

equation can be used to start determining the functional equation: 
cbxaxxfy  ²)(  (7) 

From our considerations above we get the following points:  

Height of the basket:   P1 (0 / 3.05) 

Release point:    P2 (4.19 / 2.2)  

Incidence angle:   α = 32.04° 

If that information is inserted into the general equation above we receive the 

following system of three equations and three variables: 
05.30²0)0(  cbafy  (8) 

2.219.4²19.4)19.4(  cbafy  (9) 

baxxf  2)('  (10) 

)32tan(02)0('  baf  (11) 

From equation (8) we get c = 3.05 and from equation (11) follows b = 0.625. It 

only remains to determine variable a with the help of equation (9): 

a
bc

a 








 198.0
5561.17

46875.3

19.4

625.019.405.32.2

19.4

19.42.2
22

. (12) 

From the functional equation above the following holds for the trajectory of the 

basketball: 

05.3625.0²198.0)(  xxxfy . (13) 

This functional equation changes if a different incidence angle or height where 

the ball leaves the shooter’s hands is assumed. The latter naturally depends on 

the height of the shooter. When shooting a jump shot the height where the ball 

leaves the shooter’s hands changes because the shooter is jumping vertically to 

be able to shoot over possible defenders.  

The table 1 shows how parameters a, b and c change if the height when 

dropping the ball is constant but the incidence angle varies. Such tables are 

created with a spreadsheet so the impact of changing one parameter can be 

observed directly.  

Table 1 obviously shows that parameter c remains constant and is independent 

of the chosen incidence angle. Parameter c represents the intersection with the 

y-axis. During a lesson the relevance of this parameter can be discussed with 
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students to increase their understanding. In this particular example the 

parameter represents the height of the basket.  

On the German national team Dirk Nowitzki plays with Heiko Schaffartzik 

(1.83m) and there are also two players on the Dallas Mavericks team with the 

same height –Frenchman Rodrigue Beaubois and Puerto Rican José Juan 

Barea. Though the shot of every single player is different the height of a player 

influences the way of shooting tremendously.  

For a player with height of 1.83m a release point is assumed at 1.85m 

because his arms are not as long as the arms of a player who is 2.13m tall. 

Therefore he does not shoot from as high above his head. The calculation to 

determine the trajectory is similar to the one above resulting in the equations of 

Table 2. 

At this point the length of the trajectory could be compared to those where the 

height when dropping the ball is varied but the incidence angle remains 

constant. Since the length of a trajectory is calculated as follows 

dxxfbaL

b

a

  2))('(1),(
, 

(14) 

the integral to be solved will take the following form: 

dxcbxaxxF

x

x

 

2

1

2)(
 

(15) 

Given that solving these types of integrals is not part of mathematics in school 

the exact length of the trajectory will not be determined during a regular lesson. 

But this task can be picked out as a central topic during a Project Week, a 

workshop for experts in the afternoon or as a preparation for the Mathematical 

Olympiad.  

To be able to evaluate the length of the trajectory nevertheless, the local 

maximum of the functional equation is used. Obviously a trajectory extends if 

and only if its maximum is higher, given a steady distance between starting and 

endpoint.  

Apparently figure 8 shows the direct proportionality of incidence angle and 

y-value of the maximum. Consequently the higher the maximum the longer the 

trajectory and the more power is needed to overcome gravity.  

To be able to evaluate the length of the trajectories in cases of unequal 

heights when dropping the ball the maxima have to be looked at in a different 

way. Figure 9 shows the trajectories of two shooters with different heights, 

both aiming at the same incidence angle. The maxima of both trajectories can 

be evaluated by setting the first derivative of the functional equation to zero. 

This is how the x-value of the maximum is determined. The y-value is 

determined by reinserting this x-value into the functional equation. 

Table 3 shows that the absolute height of the trajectory of the ball shot by the 

shorter player is shorter by four centimeters. But at the same time the absolute 

height differential differs by 29 centimeters. Therefore smaller players who 

usually have less muscles have to use more power to score a basket.  

The larger the incidence angle of the basketball while falling through the 

basket the larger may be the variance of the shot horizontally. It is crucial that 

the center of the basketball falls through the center of the rim when shooting 
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with an incidence angle of 32°. This is not mandatory with larger incidence 

angles. However, the player has to exert more power to reach a larger 

incidence angle. Therefore the need of a specific shooting form for each 

individual player becomes clear.  

Finally the question should be asked how high a shot needed to be to reach 

an incidence angle of 90°. A look at the functional equation leads to the 

conclusion, that it is impossible to let the ball fall upright down through the 

basket while shooting a regular shot: the slope at x=0 would have to be infinite. 

Therefore we assume an incidence angle of 89° as an approximation. The 

functional equation is determined using equations (8) to (13) as follows: 

05.3290.57²721.13)(  xxxfy . (16) 

The maximum of the functional equation is at the height of y=62.85m, a non-

realistic height for a basketball shot. The power and the impulse which are 

required to shoot a basketball with an inertia of 600g 62.85m high can be 

evaluated in a Physics lesson as well as the question how many human beings 

would be able to exert such a shot.  

 

Possible Sources of Error 
 

At the beginning it needs to be mentioned that the model of the basketball being a 

point mass is an idealization. Contrary to the basketball the point mass has no 

volume expansion. Along with this the rotation around the three spatial axes is 

ignored. Many basketball players are shooting with a backspin which means that 

the ball is rotating as if it rolls backwards on a plane. This spin induces stability 

of the trajectory. In this context it has to be discussed whether modelling a 

trajectory is correct or a ballistic curve is more appropriate.  

Due to ball rotation and air friction there is degradation as well as the 

Magnus effect known from Physics. The latter is the reason why soccer players 

are able to do a “banana kick” or table tennis players are able to play a “curve 

ball”.  

In addition the data regarding the different lengths are defective: the exact 

distance between the center of the basket and the point where the ball leaves 

the shooter’s hands is not known but an estimate which varies between 

individuals. The same applies to the height of the point where the ball leaves 

the shooter’s hands which largely depends on the body height of the player. For 

the purpose of pure calculation and the enrichment of the Mathematic lessons 

these deviations are acceptable.  

 

Covered Topics in Mathematics  

 

As mentioned before at the beginning of this or analogical tasks mathematical 

modelling is mandatory. At the same time the height where the ball leaves the 

shooter’s hands needs to be estimated, since it cannot be determined exactly. 

Moreover the height when dropping the ball can differ throughout the game so 

that using a mean is practicable for this task. The expertise of modelling and 

estimating must be trained. It is not an ability which every person is capable of 
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right away. In fact students must be introduced to this challenge through tasks 

with an increasing level of difficulty.  

Another topic which can be dealt with during lessons is the calculation of 

percentages. While evaluating the trajectory of a shot the shooting percentages 

of a player from different positions on the court were mentioned. Students can 

discuss the meaning of a shooting percentage for the next shot. Can players 

deviate from their own percentages during one season? Do they have to miss 

their next shot if their percentage in one game is above their average? Is a 

successful shot guaranteed if a player usually scores 50% of his shots and has 

missed his only shot on that day? In this context the terms absolute and relative 

frequency as well as probability can be addressed and assigned to athletics in 

general.  

To be able to make a quantitative analysis the American unit of length was 

transformed into the European one at the beginning. Thus, the students not only 

learn how to convert units but also understand why the basket is exactly three 

meter and five centimeter high – because it equates to ten feet of the American 

unit of length.  

Furthermore the students learn to draw a sketch to illustrate and understand 

problems as well as being able to explain them to their classmates. Beyond that 

they learn to extract information from their classmates’ sketches or other 

illustrations.  

The whole task is designed to deal with aspects of analysis which is also 

covered in regular classes. At this point new aspects are reasonably combined 

with the old ones to complement each other. Of course quadratic equations are 

focused on. Students evaluate derivatives, maxima and minima and reconstruct 

a functional equation with the help of a few known points. They do so by 

evaluating systems of equations and implementing their knowledge about 

trigonometrical functions.  

 

 

Summary 
 

Mathematical modelling can greatly enrich math lessons in school. Like every 

other didactical method, too, it may not be the only way of teaching. It is a 

reasonable addition to many other didactical methods. Besides, it has to be 

introduced slowly and with caution e.g. just like team work. Students do not 

learn how to work together gainfully overnight – as well as they cannot 

construct a mathematical model ad hoc.  

The greatest benefit of this type of setting a task is being able to adjust the task 

to the interests of the class and single students respectively. If students are not 

interested in sports this particular example should not be used because the 

intrinsic motivation will not be raised.  

In addition this particular example shows that mathematical modelling can 

be introduced early. It is the teacher’s task to single out aspects going along 

with relevant considerations and evaluations: to range from converting units to 
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dealing with trigonometrical functions in combination with a second order 

equation. It is an instrument to enrich lessons at every single class level.  
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Figures 

Figure 1. Modelling cycle 

 
 

Figure 5. Dimensions of a NBA basketball court in American unit of 

length 
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Figure 6. Schematical sketch of a free throw 

 
 

Figure 7. Trajectory of the basketball according to equation (13) shown 

with the help of the algebraic computer software Maple®; the bold red 

circles mark the basket and the point where the ball leaves the shooter’s 

hands 
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Figure 8. Illustration of the trajectory of the ball with an incidence angle 

of 32°, (blue), 40° (green), 50° (brown) and 60° (black) according to table 1 

with the red circles marking the basket and the release point 

 



ATINER CONFERENCE PAPER SERIES No: MAT2012-0244 

 

20 

 

Figure 9. Illustration of the trajectory of a shot with the same incidence 

angle of 32° but from players with a different height (blue – height where 

the ball leaves the shooter’s hands 2.20m, black – 1.85m) 

 
 

Tables 

 

Table 1. Impact of changing the incidence angle on parameters a, b and c 

if the height when dropping the ball (2.20m) as well as the distance of the 

shooter from the basket (4.19m) remains constant 

incidence angle α [°] a [1/m] b c [m] 

32 -0.198 0.6249 3.05 

34 -0.209 0.6745 3.05 

36 -0.222 0.7265 3.05 

38 -0.235 0.7813 3.05 

40 -0.249 0.8391 3.05 

42 -0.263 0.9004 3.05 

44 -0.279 0.9657 3.05 

46 -0.296 1.0355 3.05 

48 -0.313 1.1106 3.05 

50 -0.333 1.1918 3.05 

52 -0.354 1.2799 3.05 

54 -0.377 1.3764 3.05 

56 -0.402 1.4826 3.05 

58 -0.430 1.6003 3.05 

60 -0.462 1.7321 3.05 

62 -0.497 1.8807 3.05 

64 -0.538 2.0503 3.05 

66 -0.584 2.2460 3.05 

68 -0.639 2.4751 3.05 

70 -0.704 2.7475 3.05 

 



ATINER CONFERENCE PAPER SERIES No: MAT2012-0244 

 

21 

 

Table 2. Functional equations if the incidence angle is varied and the 

dropping point (1.85m) as well as the distance between shooter and basket 

(4.19m) remain constant 

 incidence angle α [°] functional equation  

 32 05.3625.0²217.0)(  xxxfy  (17) 

 40 05.3839.0²269.0)(  xxxfy  (18) 

 50 05.3192.1²353.0)(  xxxfy  (19) 

 

Table 3. Maximum of the trajectories of shooter’s with different height but 

their shot having the same incidence angle of 32° 

body 

height 

release 

point 

x-value of the 

maximum 

y-value of the 

maximum 

absolute height 

differential 

2.13m 2.20m 1.58m 3.54m 1.34m 

1.83m 1.85m 1.44m 3.50m 1.65m 

 

  


