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Abstract 

 

Abstract. A particular case of dichotomy was introduced by J.S. Muldowney 

in [4], for linear differential systems. The aim of this paper is to define and 

characterize the concept of Muldowney dichotomy for skew-evolution 

semiflows. Connections of the new concept with the classic notion of 

exponential dichotomy in the uniform case are also given. We emphasize as 

well the importance of the dichotomy in the study of the solutions of evolution 

equations. Several illustrative examples motivate the approach. Connections 

with the classic notion of exponential dichotomy are also given. The approach 

is motivated by several illustrative examples. The study is performed in the 

uniform case. 
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1. Introduction 

  

  As the state space of some dynamical systems that describe phenomena from 

physics, engineering or economics is of infinite dimension, the approach is 

more appropriate to be done by means of associated operator families. One of 

the most important asymptotic properties for the solutions of evolution 

equations is the exponential dichotomy, studied in the last years from various 

perspectives.  

   The techniques used for stability and instability can be generalized in the 

case of dichotomy, introduced by O. Perron in 1930 in [5], as a starting point 

for many papers on the stability theory, and which has gained importance since 

the works of J.L. Daleckii and M.G. Krein (see [1]), J.L. Massera and J.J. 

Schaffer (see [2]). 

   The study is led in this paper by means of skew-evolution semiflows on 

Banach spaces, defined by evolution semiflows and sevolution cocycles. They 

were introduced by us in [3] as generalizations of evolution operators and 

skew-product semiflows, the major difference consisting in the fact that a 

skew-evolution semiflow depends on three variables, while the classic concept 

of skew-product semiflow depends only on two. The skew-evolution semiflows 

are appropriate to study the asymptotic properties of the solutions for evolution 

equations having the form 

                                             








.u)0(u

0tt),t(u)t(A)t(u

0

0

,

                             (1.1) 

where       



A : R B(V )  denotes an operator with the properties     



DomA(t )V  and 

    



u0 DomA(t0) . 

  Various concepts for the asymptotic properties such as stability, instability, 

dichotomy and  trichotomy are studied in [6] and [7] for case of skew-

evolution semiflows. 

 

 

2. Definitions. Examples 

 

   We will consider a metric space (X, d), a Banach space V and B(V) the space 

of all V-valued bounded operators defined on V. We will denote Y = XV and 

 0st|)s,t(T 2  R . The norm of vectors on V and of operators on B(V) 

is denoted by   and I is the identity operator on V. 

 

Definition 2.1.  A skew-evolution semiflow on Y is a mapping  

YYT:C  , defined by the relation       vx,s,t,x,s,tv,x,s,tC  , 

where XXT:  with the properties: 

(s1) x)x,t,t(  , X)x,t(  R ; 

(s2) )x,t,t())x,t,s(,s,t( 00   , T)t,s(),s,t( 0  , Xx  

is an evolution semiflow on X and )V(BXT:  satisfying the conditions: 

(c1) I)x,t,t(  , X)x,t(  R ; 
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(c2) )x,t,t()x,t,s())x,t,s(,s,t( 000   , T)t,s(),s,t( 0  , Xx  

is an evolution cocycle over  .  

 

Remark 2.2. The mapping YYT:C  ,  defined by  

      vx,s,t,x,s,tv,x,s,tC   , 

where   is an evolution semiflow,   is an evolution cocycle over   

and      x,s,tex,s,t st  


 , is also a skew-evolution semiflow, called 

the -shifted skew-evolution semiflow. 

   In the following example we will give a skew-evolution semiflow that 

depends on all its variables and is generated by an evolution equation, as, for 

example, (1.1). 

 

Example 2.3. Let C = C(R, R) be the metric space of all continuous functions 

RR :x , with the topology of uniform convergence on compact subsets of 

R. We denote by X the closure in C of the set {ft, ft(s) = f(t+s), t,sR+}. Then 

(X, d), where  

|)t(y)t(x|sup1

|)t(y)t(x|sup

2

1
)y,x(d

]n,0[t

]n,0[t

1n
n 












 ,  

is a metric space, and the mapping XXT:  , )x,s,t( = xt-s is an 

evolution semiflow on X. Let 2
RV  with the norm 21 vvv   , where 

    



v  (v1,v2,v3)V . The mapping )(BXT: R  


















 
t

s

2

t

s

1 d)s(x

2

d)s(x

1 ev,evv)x,s,t(


 , 2
21 ),( R , 

is an evolution cocycle over the evolution semiflow   and, hence,   ,C   

is a skew-evolution semiflow. 

  

 

3. Muldowney type asymptotic behaviors 

 

   The main idea in the definition of the property of dichotomy for evolution 

equations is to obtain, at any moment and by means of properly chosen 

projectors, the decomposition of the state space into two closed subspaces: the 

stable subspace and the instable one. Therefore let us consider first the 

properties of uniform exponential stability and instability defined by us for 

skew-evolution semiflows. 

 

Definition 3.1. A skew-evolution semiflow   ,C   is said to be uniformly 

exponentially stable if there exist some constants N  1, 0  such that the 

relation: 

v)x,t,s(Nv)x,t,t(e 00
)st(  
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holds for all T)t,s(),s,t( 0  and for all Y)v,x(  . 

 

Definition 3.2. A skew-evolution semiflow   ,C   is said to be uniformly 

exponentially instable if there exist some constants N  1, 0  such that the 

relation: 

v)x,t,t(Nv)x,t,s(e 00
)st(    

holds for all T)t,s(),s,t( 0  and for all Y)v,x(  , where Q denotes the 

complementary of the projections family P. 

   In order to introduce the definition of uniform exponential dichotomy, let us 

consider 

 

Definition 3.3. A mapping P: XB(V) with the property that P(x)
2
=P(x),  for 

all xX, is called projections family on V. The mapping Q: XB(V), defined 

by Q(x) = I - P(x), is also a projections family, called the complementary of P. 

 

Definition 3.4. A projections family P: XB(V) is said to be compatible with 

a skew-evolution semiflow   ,C   if the relation:  

)x(P)x,s,t()x,s,t())x,s,t((P    

holds for T)s,t(   and all x  X. 

   We will denote )x(P)x,s,t()x,s,t(P    and  PP ,C  . We have 

   (i) )x(P)x,t,t(P  , X)x,t(  R   

   (ii) )x,t,t()x,t,s())x,t,s(,s,t( 0P0P0P   , for all T)t,s(),s,t( 0  and 

for all Y)v,x(  . 

   In what follows, let us consider a projections family P: XB(V) and let us 

denote by Q the complementary of the projections family P. 

 

Definition 3.5. A skew-evolution semiflow   ,C   is said to be uniformly 

exponentially dichotomic relative to P if: 

   (ued1) P  is uniformly exponentially stable; 

   (ued2) Q  is uniformly exponentially instable. 

   An equivalent definition is given by 

 

Proposition 3.6. A skew-evolution semiflow   ,C   is uniformly 

exponentially dichotomic if and only if there exist some constants N  1, 0  

such that: 

   (ued1)’ v)x(PNv)x,s,t(e P
)st(  

; 

   (ued2)’ v)x,s,t(Nv)x(Qe Q
)st(  

, 

for all T)s,t(  and for all Y)v,x(  . 

Proof.  Necessity. It is immediate if we consider s = t0 in Definition 3.1 

Definition 3.2 and Definition 3.5. 

Sufficiency. According to Definition 2.1 (c2) and to the hypothesis, we have  
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v)x,t,s(Nev)x,t,s())x,t,s(,s,t(v)x,t,t( 0P
)st(

0P0P0P     

and 

  v)x,t,s())x,t,s(,s,t(Nev)x,t,t(Ne 0Q0Q
)st(

0Q
)st(    

v)x,t,s( 0Q  

for all T)t,s(),s,t( 0  and all Y)v,x(  , which shows that C is a unifomlly 

exponentially dichotomic and ends the proof.                                                    

 

Example 3.7. Let us consider the evolution semiflow   on X given as in 

Example 2.3 and V = R
2
. Let 

  RR:f  be a decreasing function with the 

property that there exists 0l)t(flim
t




. We denote )0(f . The mapping 

)V(BXT:  , 

  



( t ,s, x )( v1 ,v2 ,v3 )  v1e
( ts) x( s)d

s

t


,v2e

x( s)d

s

t















 

is an evolution cocycle. We consider the projections families P, Q: XB(V) 

P(x)v = (v1,0), Q(x)v = (0,v2). Following inequalities hold 

  



P( t ,t0 ,x )v  e
[ x( 0 )]( ts)

P( s,t0 ,x )v ; 

  



Q( t ,t0 ,x )v e
l( ts)

Q( s,t0 ,x )v , 

for all T)t,s(),s,t( 0  , Y)v,x(  , which proves that   ,C   is uniformly 

exponentially dichotomic with    



N 1 and   



 max{  x( 0 ),l }. 

 

Definition 3.8. A skew-evolution semiflow   ,C   is said to be 

Muldowney exponentially stable if there exist some constants N  1 and a 

mapping   RR:  such that following relation: 

v)x,t,s(Nev)x,t,t( 0

d)(

0

t

s 


 ; 

holds for all T)t,s(),s,t( 0  and for all Y)v,x(  . 

 

Definition 3.9. A skew-evolution semiflow   ,C   is said to be 

Muldowney exponentially instable if there exist a constant N  1 and a mapping 

  RR:  such that following relation: 

v)x,t,t(Nev)x,t,s( 0

d)(

0

t

s 


 , 

holds for all T)t,s(),s,t( 0  and for all Y)v,x(  . 

 

Definition 3.10. A skew-evolution semiflow   ,C   is said to be 

Muldowney exponentially dichotomic relative to P if: 

   (Med1) P  is Muldowney exponentially stable; 
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   (Med2) Q  is Muldowney exponentially instable. 

 

Remark 3.11. (i) If Q = 0, we obtain the asymptotic property of Muldowney 

exponential stability; 

(ii) If P = 0, we obtain the asymptotic property of Muldowney exponential 

instability. 

 

Proposition 3.12. A skew-evolution semiflow   ,C   is Muldowney 

exponentially dichotomic if and only if there exist a constant N  1 and a 

mapping   RR: such that: 

   (Med1)’ v)x(PNev)x,s,t(

t

s

d)(

P






 ; 

   (Med2)’ v)x,s,t(Nev)x(Q Q

d)(
t

s 


 ,1 

for all T)s,t(  and for all Y)v,x(  . 

Proof.  Necessity. It is immediate if we consider s = t0 in Definition 3.8 

Definition 3.9 and Definition 3.10. 

Sufficiency. According to Definition 2.1 (c2) and to the hypothesis, we have  

v)x,t,s(Nev)x,t,s())x,t,s(,s,t(v)x,t,t( 0P

d)(

0P0P0P

t

s 


  

and 


 

v)x,t,s())x,t,s(,s,t(Nev)x,t,t(Ne 0Q0Q

d)(

0Q

d)(
t

s

t

s 


 

v)x,t,s( 0Q  

for all T)t,s(),s,t( 0  and all Y)v,x(  , which shows that C is unifomlly 

exponentially dichotomic and ends the proof.           

   A connection between the notions of uniform exponential dichotomy and 

Muldowney exponential dichotomy is given by                                          

 

Proposition 3.13. If   ,C   is uniformly exponentially dichotomic, then it 

is Muldowney exponentially dichotomic.  

Proof. As C is uniformly exponentially dichotomic, then, according to 

Definition 3.5, there exist some constants N  1, 0 such that relations (ued1) 

and (ued2) hold for all T)t,s(),s,t( 0  , Y)v,x(  .We have 

. 

v)x,t,s(Nev)x,t,s(Nev)x,t,t( 0P

d

0P
)st(

0P

t

s 





   

and 

v)x,t,t(Nev)x,t,t(Nev)x,t,s( 0Q

d

0Q
)st(

0Q

t

s 
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for all T)t,s(),s,t( 0  and all Y)v,x(  , which proves the statements (Med1) 

and (Med2) of Definition 3.10 and which shows that C is Muldowney 

exponentially dichotomic.                                                                                   

   The converse is not true, as shown in 

 

Example 3.14. Let us consider the elements defined in Example 2.3 and 

Example 3.7. We consider the functions RR :w,u , given by 

tsintt2e)t(u   and tcost2t3e)t(w   

We define the mapping )V(BXT:   by 


















 
t

s

t

s

d)s(x

2

d)s(x

1 ev
)s(w

)t(w
,ev

)t(u

)s(u
v)x,s,t(



 , 

which is an evolution cocycle over the evolution semiflow  , whjch is 

Muldowney dichotomic but is not uniformly exponentially dichotomic. 
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