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Abstract 

 

Abstract: Quasi-normality hypothesis or zero-fourth cumulant approximation is 

generally applied for the closure of turbulence problems. This hypothesis is due to 

well known scientist M.D. Millionschikov. It has been applied to solve various 

turbulence problems of theoretical and applied interest e.g. Incompressible turbulence 

velocity and temperature fields, hydrodynamic and hydromagnetic pressure 

fluctuations, magneto-hydrodynamic turbulence etc. In this paper, we intend to seek 

further possible improvements of this idea from application points of view. 
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 1.  Introduction 
 

The inherent difficulty with the closure problem of turbulence is well known. In tackling this 
problem, generally some physically based hypotheses are often constructed. Such a 

hypothesis was first forwarded by Chow (1940) and Millionschikov (1941) in which an 

assumption was made that the fourth order velocity correlation is related to second order 

correlation in the same way as for a normal joint probability distribution of the velocity. Final 
version of this statistical hypothesis is named after M.D. Millionschikov.  

Uberoi (1953) conducted extensive measurements for some cases and showed that the 

discrepancy between the measured fourth order moments and the prediction deduced from 
Millionschikov's quasi-normality hypothesis are found to lie within the limits of experimental 

errors.  

Ogura (1963) carried out numerical computation of the turbulence energy spectrum  ,E t  

and showed that it becomes negative over a finite wave number range when Reynolds number 

becomes sufficiently large.  

Mirable (1969) pointed out that the negative energy observed by Ogura is due to the 
assumption that at the initial time t=0 the third order moment of the velocity field is 

identically zero. 

Millionschikov (1941) proposed that probability distributions of the velocities at two different 
points but at one and the same instant of time, are approximately in normal distribution and 

Uberoi (1953) verified this hypothesis experimentally. 

Panchev (1971) discussed that Millionschikov’s hypothesis may be extended further to the 
cases wherein quadruple moments are formed for one and the same instant of time but for 

more than two points.  

Ogura (1963) discovered that the kinetic energy spectrum  ,E t  becomes negative over a 

finite wave number range if the Reynolds number is sufficiently large.  

Proudman and Reid (1954) investigated that the joint probability distribution of fluctuations 

velocity components at three points is approximately normal. They showed that Loitsiansky’s 
integral is not invariant of the motion and the first time derivative of triple correlation 

function, say  K r  is proportioned to for large values of r .  

Mirabel (1969) pointed out that the negative energy, obtained by Ogura (1969) is the outcome 

of the assumption that at the initiation time 0t  , the third moment of the velocity field is 

identically zero. This implies that at the initial time there is no transfer of energy over the 

velocity spectrum.  

Ghosh (1972) investigated the early-period decay process of a general type of turbulence 
using quasi-normality hypothesis and established two lemmas. 

Lemma I: This lemma is concerned with the behavior of correlation tensors in the energy 

space when two or more points under reference coincide. 

Let  , , ,i j t    and  , , , , ,i j t      are spectrum functions which correspond 

respectively to correlation functions  , , ,i j i jF x x t u u   
 and 

 , , , , ,i j i jF x x x t u u u 
     

. When the third point x  merges with the first point x, then we 

have: 

   , , ,, , , , ,i j ik jt d t                        (1.1) 

where      

 

Lemma II: It is concerned with the Millionschikov’s quasi-normality hypothesis. We 

consider additional fluctuation velocity component lu  at the point x , and the spectrum 
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tensor  , , , , , , ,i j l t        which correspond to correlation function 

 , , , , , , ,i j l i j lF x x x x t u u u u 
       

. 

When the fourth point x  coincides with the first point x , we derive the relation 

     

   

   

, , , ,

, ,

,

, , , , , , ,

, , , ,

, , ,

il j i j l

i j j l

il j

t t t d

t t d

t t

 



        

     

  

          

       

   







       (1.2) 

Now, if the third point x  merges with the second point x , the following relation may be 

derived 

     

   

   

, , ,

, ,

,

, , , , , ,

, , , ,

, ,

il j i j l

i j l

il j

t t t

t t d d

t t

 





       

       

 

          


         


 



       (1.3) 

In the next section, we would apply these lemmas to derive briefly, the Proudman-Reid type 

decay equations for the velocity, temperature and hydromagnetic fields. 

Moreover, the relevant expressions for the fluctuating pressure fields under hydrodynamic 
and hydromagnetic conditions will also be stated for the sake of completeness.  

 

2.  Applications of quasi-normality hypothesis 
a) Early-period decay process of turbulence 

Ghosh (1972) showed that equation      
2

, 1 22
, , , , , ,i j t I t I t

t
     


    


 is of the 

form for the general type of turbulence stated above and represents the early-period decay 

process. Here  1 , ,I t   and  2 , ,I t   have the requisite expressions. He derived the 

Proudman-Reid equation in this case. 

b) Decay process of turbulence at large Reynolds and Peclet numbers: 

Mazumdar (1976) studied the fluctuating temperature field considered to be superimposed on 
a general field of eddy turbulence by employing the quasi-normality hypothesis. In this 

investigation Mazumdar approached phenomenologically that the region under consideration 

is such that the variations of the mean temperature and mean velocity may be neglected 
because the transportation of thermal energy from place to place is very rapid. He derived the 

Proudman-Reid type equation of this case The equation is read as, 

     
2

2 2 2

2

0 0 0

4
, , ,

3
E t d E t d F t d

t
         

  


 
     

c) Mazumdar (2010) also derived the Proudman-Reid type decay equations for the magneto 

hydro-dynamic (MHD) turbulence when both eddy Reynolds number and the magnetic 
Reynolds number are very large. 

d) Mazumdar (1979, 1984) applied the Millionschikov’s quasi-normality hypothesis, 

respectively to the fields of hydro-dynamic and hydro magnetic turbulence and derived the 
expressions for the spectra of respective pressure fluctuations. 

 

3.  Refinement of Millionschikov’s quasi-normality hypothesis: 
The applications of Millionschikov’s quasi-normality hypothesis are found to fail in some 

cases. For example, in case of convective boundary layer turbulence (Gryanik et.al. 2005) 
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found that the probability density functions of temperature and vertical velocity fluctuations 

are skewed. 
Losch (2004) devised parametrizations of fourth-order moments according to a universal 

model presented by (Gryanik et.al. 2005) and found to be more accurate than their 

corresponding Gaussian parametrizations which are based on Millionschikov’s hypothesis. 

Mirabel (1969) solved numerically, the system of moment equations e.g. 

   
'

2

0 '

2 , , ', '', '' 'v E t F t d d
t

 

 

      
 



 
  

 
   

and 

         

           

2 2 2

1

2 3

' '' , ', '', , ', '' , ',

, ', '' '', , , ', '' ', '',

v F t E t E t
t

E t E t E t E t

           

           

 
      



(3.1) 

where v is the kinematic viscosity, based on a finite difference method with proper initial 

conditions.  

 

Conclusions 
i) Millionschikov’s quasi-normality hypothesis is considered to be very useful for 

closure of homogeneous and isotropic turbulence as such a hypothesis has been 

proved to be valid within the limits of experimental errors. 

ii) To gain more insight into the closure problems of turbulence, data from recent and 
advanced level measurements are to be brought into account in developing the 

appropriate models. 

iii) As and when necessary, modification of this hypothesis is welcomed, as Ogura (1963) 

has pointed that tentatively, the errors that arise from finite difference approximations 
in numerical integration of the main equation of turbulence are not responsible for the 

generation of the negative energy spectrum but are the consequences of the quasi-

normality hypothesis itself. 
iv) Third-order moments of the velocity field should not be assumed zero and it should 

be taken into account into the calculation even at the initial evolution of spectral 

energy of turbulence. 

v) It is to be noted that the measured values of fourth-order mixed velocity-temperature 
moments in the atmospheric surface layer agree well with the quasi-gaussian 

assumption. Further, Schwarz inequalities, commonly used in the clipping 

approximation in turbulence modeling, are found to provide counts for third-order 

moments of  ,   that are too conservative. These types of approaches are to be 
encouraged. 
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