
ATINER CONFERENCE PAPER SERIES No: LNG2014-1176

1

Athens Institute for Education and Research

ATINER

ATINER's Conference Paper Series

LIB2016-1995

Marcos A Rodrigues

Professor

Sheffield Hallam University

UK

Mohammed M Siddeq

Sheffield Hallam University

UK

Information Systems: Secure Access and Storage

in the Age of Cloud Computing

ATINER CONFERENCE PAPER SERIES No: LIB2016-1995

2

An Introduction to

ATINER's Conference Paper Series

ATINER started to publish this conference papers series in 2012. It includes only the

papers submitted for publication after they were presented at one of the conferences

organized by our Institute every year. This paper has been peer reviewed by at least two

academic members of ATINER.

Dr. Gregory T. Papanikos

President

Athens Institute for Education and Research

This paper should be cited as follows:

Rodrigues, M. A. and Siddeq, M. M. (2016). "Information Systems: Secure

Access and Storage in the Age of Cloud Computing", Athens: ATINER'S

Conference Paper Series, No: LIB2016-1995.

Athens Institute for Education and Research

8 Valaoritou Street, Kolonaki, 10671 Athens, Greece

Tel: + 30 210 3634210 Fax: + 30 210 3634209 Email: info@atiner.gr URL:

www.atiner.gr

URL Conference Papers Series: www.atiner.gr/papers.htm

Printed in Athens, Greece by the Athens Institute for Education and Research. All rights

reserved. Reproduction is allowed for non-commercial purposes if the source is fully

acknowledged.

ISSN: 2241-2891

28/09/2016

ATINER CONFERENCE PAPER SERIES No: LIB2016-1995

3

Information Systems:

Secure Access and Storage in the Age of Cloud Computing

Marcos A Rodrigues

Mohammed M Siddeq

Abstract

Given that cloud computing is a remotely accessed service, the connection

between provider and customer needs to be adequately protected against all

known security risks. In order to ensure this, an open and clear specification of

all standards, algorithms and security protocols adopted by the cloud provider

is required. In this paper, we review current issues concerned with security

threats to cloud computing and present a solution based on our unique patented

compression-encryption method. The method provides highly efficient data

compression where a unique symmetric key is generated as part of the

compression process and is dependent on the characteristics of the data.

Without the key, the data cannot be decompressed. We focus on threat

prevention by cryptography that, if properly implemented, is virtually

impossible to break directly. Our security by design is based on two principles:

first, defence in depth, where our proposed design is such that more than one

subsystem needs to be violated to get both the data and their key. Second, the

principle of least privilege, where the attacker may gain access to only part of a

system. The paper highlights the benefits of the solution that include high

compression ratios, less bandwidth requirements, faster data transmission and

response times, less storage space, and less energy consumption among others.

Keywords: Cloud computing, Data compression, Encryption, Security,

Privacy.

ATINER CONFERENCE PAPER SERIES No: LIB2016-1995

4

Introduction

Edward Snowden’s revelations were a political fiasco and an economic

threat to US based tech companies. The extent of NSA’s data collection drove

away overseas customers in large numbers over security and privacy concerns

creating, at the same time, an opportunity for non-US tech companies. Despite

security concerns over data breaches, the Cloud Computing paradigm (Buyya

et al., 2009) in which servers, storage and applications are delivered to an

organization’s computers and devices through the Internet is here to stay. The

benefits of this model is that it enables data centres to be accessed and shared

as virtual resources in a scalable manner. For businesses, this is a very

attractive model as services can expand or shrink as needs change.

Information systems stored in the cloud need to comply with EU data

protection and privacy regulations, thus both the stored data and the connection

between provider and customer need to be adequately protected against known

security risks. Recent reports (Coles, 2016) indicate that 82% of cloud

providers encrypt data in transit, protecting against man-in-the-middle attacks

as data are transmitted. However, only 9.4% of cloud providers encrypt data

once stored in the cloud, for file sharing convenience. This is a serious issue

leaving the cloud vulnerable to data breaches and unauthorized access. It is

important to realise, however, that not all data in the cloud need to be protected

by encryption, and not all data should be encrypted in the same way. For

instance, images and video may be encrypted by a lossy method while text and

other documents need to be lossless. Our algorithms cover both lossless and

lossy requirements giving the user full control over what and where it is

compressed-encrypted, either at the local machine or in the cloud.

We present an algorithmic solution that has been demonstrated for

compression of image and 3D data structures (Siddeq and Rodrigues, 2016;

2015a; 2015b; 2014a; 2014b). A unique, data-dependent symmetric key is

generated as a side effect to the compression method. Without the key, the data

cannot be decompressed. The method allows us to tackle cloud security

concerns through high compression ratios, to address data protection and

privacy issues, cost of storage, reduced access time, and reduced bandwidth

requirements when data in transit are in compressed format.

The next section reviews current security threats to Cloud Computing,

Section “The GMPR Compression-Encryption Methods” describes the

compression-encryption method, and experimental results are reported in

Section right after. Finally, the discussion and the conclusions are presented in

the last section.

Security Threats to Cloud Computing

Cloud Computing services are normally referred to as Infrastructure as a

Service (IaaS), Platform as a service (PaaS), and Software as a service (SaaS)

(Kepes, 2016). IaaS are the hardware and software that powers the cloud such

ATINER CONFERENCE PAPER SERIES No: LIB2016-1995

5

as operating systems, networks, servers, and storage. PaaS are a set of tools and

services enabling coding and deployment of applications in a quick and

efficient manner. Finally, SaaS are applications delivered over the web that are

designed to satisfy end-user needs. These notions are illustrated in Figure 1

and, while blurred boundaries exist, it is assumed that IaaS would provide a

secure environment for the other services of the Cloud Computing stack.

Figure 1. A Diagram Depicting the Cloud Computing Stack

On behalf of the Cloud Security Alliance (CSA), the Top Threats Working

Group periodically publishes and updates the most relevant perceived threats to

Cloud Computing (CSA, 2016). Their aim is to provide an informed

understanding of cloud security risks and help management making informed

decisions. There has been an observed shift in importance in the list of

perceived top risks since 2010 from abuse and nefarious use, insecure

interfaces and APIs, towards the problem of data breaches. A consistent pattern

since 2012 has been observed towards data breaches being identified as the

most important issue in each of those years. In 2016 the identified top three

were data breaches, access control, and insecure interfaces and APIs (CSA,

2016).

Clearly the purely technical issues such as performance, reliability, and

availability have fully met or exceeded user’s expectations. The focus has

shifted from the IT department to the company’s board as data and information

are normally the most valuable assets a company has. However, it is reasonable

to state that current data handling procedures as implemented by cloud

providers are not fully meeting expectations. Focusing on data breaches, there

are two situations in which a data breach can occur: when data are transferred

to and from the cloud, or when data are at rest in the cloud servers. A recent

report (Coles, 2016) claims that only 9.4% of cloud providers encrypt data at

rest; the main statistics in the report are reproduced in Figure 2 below. The

report has also established that around 21% of the uploaded data contain

sensitive information and that at least 34% of users have uploaded sensitive

data to the cloud.

ATINER CONFERENCE PAPER SERIES No: LIB2016-1995

6

Figure 2. Encryption Practices Vary among Cloud Providers

Computer security professionals can make use of CASBs (Cloud Access

Security Brokers) which are applications acting as a gatekeeper between the

user and the cloud, and can enforce security policies beyond the company’s

structure. CASBs facilitate cloud access management and provide critical

information on cloud services across multiple providers. In order to understand

and assess the risks to the organization, enterprises need to have clear visibility

of which cloud services are in use and by which people, what devices are

accessing the data and from where, how sensitive are the data, and whether or

not access control through encryption and other enterprise policies are being

enforced.

As pointed out above, it is clear that not all data in the cloud need to be

encrypted. If that were the case, it would place heavy constraints on data

sharing as the encryption key would need to be shared with the data. Solutions

to this problem do exist; one of such solutions is proposed in the next sections.

The main argument we put forward is for a data compression utility that

generates a unique symmetric key as part of the compression step. The key can

be kept together with the data in plain text for non-sensitive data. Otherwise,

the key would be encrypted by a symmetric algorithm.

The diagram depicted in Figure 3 represents our proposal for the possible

compression-encryption scenarios for storing data in the Cloud. The diagram

can be used to cover all possibilities by defining whether compression and

decompression are performed at the user machine or in the cloud. The possible

use cases are as follows.

1) Uploading data to the Cloud:

a) Non-sensitive data, compression in the cloud: The Raw Data is

transmitted over a secure connection, and compressed in the Cloud.

Data are stored in the Cloud in compressed format with compression

key in plain text.

b) Non-sensitive data, compression at the user machine: The Raw

Data are compressed by the user and transmitted to the cloud with the

compression key in plain text. Data are stored in the Cloud in

compressed format, with compression key in plain text.

c) Sensitive data, compression in the cloud: The Raw Data is

transmitted over a secure connection and compressed in the cloud. The

compression key is encrypted using the symmetric key defined by the

owner and known to the Cloud Provider. Data are stored in the Cloud in

compressed format together with their encrypted key.

ATINER CONFERENCE PAPER SERIES No: LIB2016-1995

7

d) Sensitive data, compression at the user machine: The Raw Data

are compressed by the user and the compression key is encrypted with a

key only known to the user. Data are stored in the cloud in compressed

format together with their encrypted key. Cloud Provider cannot

decrypt the data.

2) Downloading data from the Cloud:

a) Non-sensitive data, decompression in the cloud: Decompression is

performed in the cloud and the Raw Data are transmitted to the user

through a secure connection.

b) Non-sensitive data, decompression at the user machine: The

compressed data with their key in plain text are transmitted to the user

through a secure connection. Decompression is performed at the user

local machine.

c) Sensitive data, decompression in the cloud: Compression key is

decrypted by a symmetric key known to the Cloud Provider and to the

owner of the file. Data are decompressed and transmitted as Raw Data

over a secure connection.

d) Sensitive data, decompression at the user machine: Compressed

data and their encrypted key are transmitted to the user. The

compression key is decrypted by a symmetric key only known to the

user followed by data decompression.

Figure 3. Compression-Encryption Scenarios for Storing Data in the Cloud

The most secure form of communication and storage are the (d) cases

above in which compression and decompression can only be performed by the

user as only they are in the possession of the key. However, an enterprise might

be comfortable with the cloud provider having access to the decryption keys

ATINER CONFERENCE PAPER SERIES No: LIB2016-1995

8

and the data being decompressed on the fly on the cloud providers’ servers. In

this situation, options (c) provide adequate level of security. For sharing non-

sensitive data, options (a) and (b) are appropriate where the compression key is

kept in plain text along with the compressed data. In this situation, data can be

decompressed at the user machine or in the cloud and transmitted through a

secure connection, either in plain text or compressed-encrypted.

The GMPR Compression-Encryption Methods

There are two main categories of encryption algorithms namely symmetric

ciphers (also known as private or symmetric key algorithms) and public key

ciphers (public or asymmetric key algorithms). Symmetric ciphers use the

same key for encryption and decryption and all the security is in the key, none

in the algorithm. Symmetric key algorithms are very fast and the primary

problem is in communicating the key securely. Normally it would be easier for

an attacker to intercept the key rather than spending resources to crack the

message. A secondary issue is that for each pair of users wishing to

communicate privately, one separate key is needed, so for users

private keys are required.

The strengths of symmetric key algorithms are in the secrecy of the key

and on the difficulty of guessing the key by trying out all possible

combinations in a brute force attack. There is no way of reversing the

encryption without knowing the key, and there are no back doors or alternative

ways to decrypt the file without knowing the key. Therefore, the length of

symmetric key algorithms is the most important factor to protect against brute

force attack. The length of the key is expressed in bits where is the

number of bits. Currently some of the most popular and used symmetric key

algorithms are Triple DES (3x56 bits), Blowfish (up to 448 bits), Twofish (256

bits) and AES (128, 192 and 256 bits).

On the other hand, public ciphers have one private and one public key.

Algorithms are based on number theory and mathematical equations with

particular properties. The two different keys are used for encryption and

decryption: a public key is used by anyone wishing to encrypt messages to be

sent to a specific user, and a private key which is used by the user (receiver) to

decrypt the messages. It solves the key-exchange problem of symmetric

cryptography as the same public key can be used by anyone, and only the user

in possession of the private key is able to decrypt such messages. For users

we need only keys. The most common used public key algorithms are the

RSA (Rivest et al., 1978) and DSA—Digital Signature Algorithm (DSA,

2013). Because factorization which is the basis of such algorithms is a very

slow process, public key cryptography is only used to exchange symmetric

keys and all messages are then encrypted by symmetric algorithms which are

orders of magnitude faster than public ciphers.

An analysis of 2D image compression and 3D data compression

algorithms developed within the GMPR group is presented here from a

ATINER CONFERENCE PAPER SERIES No: LIB2016-1995

9

compression-encryption perspective. We show that the proposed methods

provide simultaneous efficient compression-encryption of data for both 2D

images and 3D data structures (Siddeq and Rodrigues, 2016; 2015a; 2015b;

2014a; 2014b). In Siddeq and Rodrigues (2014b) we proposed a novel 2D

image compression method based on high-frequency sub-bands. The

complexity of the algorithm and the sequential nature of the solution meant

long execution times at decompression stage. New methods using JPEG were

proposed in (Siddeq and Rodrigues, 2014a) where data decompression was

achieved by a number of parallel threads speeding up the process. In (Siddeq

and Rodrigues, 2015a), further algorithms were developed and tested on

frequency sub-bands of DWT followed by DCT. Fast data decompression was

achieved through multiple threads.

We stress that the main novel aspect of the GMPR methods concerning

security is the automatic generation of a unique symmetric compression-

encryption key that is data dependent. The data are divided into blocks and,

within each block and after a differential operation, triplets of data are

converted into a single value through a weighting factor. This single step

reduces the data by 2/3 and, together with the differential process, are the main

factors driving the high compression ratios that can be achieved. The array

representing the triplets may have repeated values and only one instance of

each is kept resulting in a further reduction of the array. This array is the actual

compression-encryption key enabling data to be decoded.

Image Compression-Encryption via DWT and DCT Transforms

There are many possible ways to compress-encrypt 2D images using the

GMPR method. The method is characterized by triplet encoding and unique

generation of a compression-encryption key. Many transformations before and

after these main steps are possible including quantization, entropy coding, and

arithmetic coding among others. The example described here uses a double

DWT followed by DCT whose parameters are then encoded by the method.

The example is of lossy compression, as we apply a DWT over the image and

focus on the LL band only, ignoring all high frequency bands. We then apply a

second level DWT over the LL band followed by DCT. Figure 4 below

illustrates the process.

ATINER CONFERENCE PAPER SERIES No: LIB2016-1995

10

Figure 4. An Example of the GMPR Compression-Encryption Method Applied

to a 2D Image

The DWT transform separates a signal into two classes namely

approximation and detail coefficients. The signal is decomposed into various

frequency bands and scales (Al-Haj, 2007; Khashman and Dimililer, 2008) by

two function sets: scaling and wavelet which are associated with low and high-

pass filters. Some of the important properties of the DWT are that many of the

coefficients for the high-frequency components (LH1, HL1 and HH1) are zero

or insignificant (Grigorios et al., 2008; Sadashivappa and Ananda Babu, 2008;

Antonini et al., 1992). Most of the important information in the signal is

contained in the LL1 sub-band. In particular, the Daubechies wavelet transform

has the ability to reconstruct with high degree of accuracy the original signal

through second level sub-bands (LL2, HL2, LH2 and HH2) while others first

level high frequency sub-bands can be ignored leading to high compression

ratios (Gonzales and Woods, 2001; Acharya and Tsai, 2005).

Following a two-level DWT transform, a DCT is applied to each 2x2

block of pixels from the low frequency LL2 sub-band as shown in Figure 4.

The transformed coefficients concentrate energy on the low frequency

coefficients (top left) which rapidly decreases for higher frequency coefficients

at the bottom right of the matrix (Richardson, 2002; Rao and Yip, 1990). It is

safe to discard small value coefficients of the DCT without significantly

affecting the quality of the image since they are de-correlated. Compression

works more efficiently on a compact matrix of de-correlated coefficients than

on a highly correlated matrix (Sayood, 2000; Ahmed et al., 1974).

Without affecting image quality, the high frequency sub-bands in the first

level DWT are set to zero (i.e. discard or ignore all HL1, LH1 and HH1).

However, the high-frequency sub-bands in the second level DWT (HL2, LH2

and HH2) cannot be discarded without significantly affecting image quality. A

quantization can be applied at this stage which depends on the maximum

value in each sub-band as follows:

 (1)

ATINER CONFERENCE PAPER SERIES No: LIB2016-1995

11

where the matrix refers to the high-frequency coefficients in HL2, LH2 and

HH2, the factor refers to the quality affecting the matrix . Thus, image

details are reduced in case quality . The limit range for this factor is

specified by the user in a similar way to other image compression methods

such as JPEG. The sub-bands HL2, LH2 and HH2 are lossless compressed by

arithmetic coding.

Triplets Encoding, Encryption and Decryption Keys

The purpose of this step is to encode an arbitrary matrix of data with

dimension where is the number of rows and is the number of columns.

For computational efficiency at decompression stage, the AC matrix of Figure

4 is divided into blocks where each block is made out of a certain number of

rows by exactly 3 columns which are padded with zeros if required. Each block

is then encoded and afterwards decoded separately by concurrent threads.

The three columns of each row are encoded into a single value by a

generated encryption key which can be generated randomly between

{0…1}. Here, the 3-valued key is directly generated from the data which is the

preferred solution. Let us assume that the three values to be encoded is the

triplet representing a single row from a block of data. If the data is

represented by floating point numbers, it is convenient to convert to integer by

multiplying each value by a shift value ; after decompression, the recovered

data are divided by the same shift value. Thus,

 (2)

In order to reduce the number of bits needed to represent each triplet a

delta or differential process is defined such that only differences are kept after

the first values:

 (3)

where and is the number of rows of each block. Assuming

an integer multiplier factor the parameters required by triplet encoding

are defined as follows:

 (4)

 (5)

 (6)

 (7)

 (8)

Where is the coded triplet. Given that the original data are organized into a

number of blocks, each block contains a number of rows with exactly 3

columns and, to allow reconstruction after compression, we also encode the

minimum and maximum values for each of the 3 columns of data for each

ATINER CONFERENCE PAPER SERIES No: LIB2016-1995

12

block as illustrated in Figure 5 below. The MinMax operation extracts both the

minimum and maximum values of each column of data for each block.

Figure 5. Each Block of Data is Uniquely Coded by a New Set of K1,K2,K3

Encryption Keys

The decryption key as earlier illustrated in Figure 4 is obtained by entropy

coding the values of the AC matrix. Such values can also be seen as frequency

data and are used at decompression stage: the set of weights are valid if the

error is zero and the triplets are all in the domain search or are members of the

frequency data (details in the subsection below). The remaining operation is to

encode the DC column depicted in Figure 4. It contains the DC values of the

DCT partitioned into -arrays (e.g.). Each of these arrays are

transformed by a one-dimensional DCT, quantized and stored in a temporary

T-matrix. This matrix contains de-correlated values yielding good compression

ratios. Each column of the T-matrix is concatenated into a one-dimensional

array which is then coded by Arithmetic coding (Sayood, 2000). The coding

process of the DC values is illustrated in Figure 6 below.

Figure 6. Encoding the DC Columns from the DCT Transforms

Decoding the Data

In order to decode the data, a number of reverse steps are necessary. First

we reverse the arithmetic coding to recover the T-Matrix of Figure 6. This is

ATINER CONFERENCE PAPER SERIES No: LIB2016-1995

13

followed by inverse quantization and inverse DCT leading to the recovery of of

the DC-column data – the inverse path of Figure 6. The AC-matrix has been

coded as depicted in Figure 5. Applying inverse arithmetic coding, the sum

value defined in Equation 8 for each triplet is recovered together with

minimum and maximum values for each column. The issue here is to recover

the generated key values K1, K2, and K3 – note that for each block we have a

new set of generated keys. We have developed a number of algorithms and this

is currently an active area of research. Here we describe a method based mostly

on a simple search. The value of is constrained by the minimum and

maximum values that are known at this stage, and also is known as it is

saved in the file header. Knowledge of the range minimum and maximum

allow the development of a number of optimized search algorithms where the

goal is zero error:

 (9)

If the error is zero, then the estimated values correspond to the

original values in the AC-Matrix. At this stage then, we have recovered the

DC-column and AC-matrix values depicted in Figure 4. An inverse DCT is

performed on each block recovering the LL2 sub-band. The other sub-bands

HL2, LH2 and HH2 are recovered by reversing the arithmetic code and the

original data are reclaimed.

Compression-Encryption of 3D Data Structures

The approach to 3D data compression is similar to 2D images in the sense

that we look at compressing triplets of data through randomly generated keys

and keeping the minimal information that is required to be able to successfully

reconstruct the data. This minimal information makes part of the compression-

encryption key. We show the steps in the methodology by providing an

example of compressing a 3D structure defined in Wavefront’s OBJ file

format. The OBJ format is very structured with a list of vertices, faces, vertex

normal directions, and texture mapping information. In the description that

follows, we focus on the compression of a list of vertices; the rest of the file is

compressed by the differential process of Equation 3 followed by arithmetic

coding.

First it is very convenient to note that a vertex in 3D is defined by its

triplet coordinates, and that our technique is based on converting each

triplet into a single value, so it is most appropriate for vertex encoding. Figure

7 depicts the method, starting by breaking the data into a number of blocks.

The rationale for doing so is to allow fast decompression by running parallel

threads each operating on a single block. Triplet encoding amounts to a

geometry minimization process and is indicated in the figure by converting

each triplet into a single integer data. The required variables

 are determined by Equations 4 through 8. The domain search

(DS) or frequency data makes part of the decryption key which represents the

ATINER CONFERENCE PAPER SERIES No: LIB2016-1995

14

frequency at which data occurs. It is used in conjunction with the coded data

of equations 8 and 9 to decide whether or not the reconstructed triplet is

accepted (at decompression stage).

Figure 7. Compression-Encryption of 3D Data

The vertex texture mapping represented by the coordinates and the

triangle face indices are subject to the differential process of

Equation 3 applied to each row from left to right and then compressed by

arithmetic coding. Data decompression is achieved by reversing the

compression method. Each block is decompressed independently by a

concurrent thread and a number of search algorithms can be implemented to

recover the differential data followed by recovery of vertex data using

Equation 9. The normal directions, triangulated face indices, and vertex texture

coordinates are recovered by reversing both arithmetic coding and the

differential process.

Experimental Results

Compression-Encryption of Images

Here we use four images as examples. We apply the GMPR compression

and decompression method and compare with the standard image compression

methods JPG and JPEG2000. In all the compared methods one can control the

quality of the image which will result in a larger or smaller compressed file. It

is therefore, necessary that we compress all images to equivalent sizes such

that the perceived quality of the image together with the root mean square

errors can be directly compared. Figure 8 depicts the four images used and

provides information on original and compressed file sizes, and the achieved

compression ratios using the GMPR method. It is noted that compression ratios

around 99% are achieved with good perceived quality of the reconstructed

image comparable to JPEG2000.

ATINER CONFERENCE PAPER SERIES No: LIB2016-1995

15

Figure 8. Images Showing their Original and Compressed Sizes

Image1:

39MB to 300KB

Compression:

99.2%

Image2:

9MB to 92KB

Compression:

98.9%

Image3:

10MB to 120KB

Compression:

98.8%

Image4:

19.3MB to 193KB

Compression:

99.0%

Table 1 provides a comparison between the GMPR method, JPEG and

JPEG2000. We observe that both JPEG2000 and the GMPR method have an

equivalent, superior perceptual quality when compared with JPEG for the same

high compression ratio. When we consider an objective measure of quality

such as 2D RMSE, then the GMPR method is superior to both JPEG and

JPEG2000 methods.

Table 1. 2D Compression-Encryption of Sample Image Files and Comparative

Analysis with JPEG and JPEG2000

Image

Original

size

(MB)

GMPR Method JPEG JPEG2000

Compressed

size (MB)

2D

RMSE

Compressed

size (MB)

2D

RMSE

Compressed

size (MB)

2D

RMSE

Image1 39.4 0.300 2.85 0.300 8.33 0.300 5.32

Image2 9.0 0.092 3.14 0.096 7.39 0.092 6.33

Image3 10.0 0.120 4.68 0.122 11.20 0.120 11.38

Image4 19.3 0.193 2.83 0.197 5.80 0.193 4.45

Compression-Encryption of 3D Data Structures

We demonstrate 3D compression-encryption methods through two

examples, with and without texture mapping (Figure 9). Both models are

publicly available from (David, 2016) in several file formats. Here we use the

OBJ file format as the original file and the purpose is to compress, decompress

and evaluate both the perceived quality of the reconstruction and calculate an

objective measure of 2D RMSE for texture mapping and 3D RMSE for vertex

locations. Two experiments were carried out. The first experiment involved

lossy compression, in which the GMPR methods were applied using shift

values of 2 and 10. In the second experiment, all floating point vertices were

defined as integers and a lossless compression was applied.

ATINER CONFERENCE PAPER SERIES No: LIB2016-1995

16

Figure 9. 3D Models Angel (left) and Face (right)

Table 2 illustrates typical achieved compression rates for lossy

compression: there are two observed peaks, for a large number of tested files

compression rates are around 90% while most of the remainders are around

98%. The quality value used to convert from floating point to integer according

to Equation 2 allows the user to control data loss after the decimal point and

thus, the overall quality of the mesh in terms of 3D RMSE. If the model is

defined in millimetres it may be safe to round off vertex coordinates to the

nearest integer as, at this level of detail, humans may not perceive such small

differences.

Table 2. 3D Lossy Compression-Encryption of Files from OBJ Format

Image

or

Model

OBJ

Original

size

(MB)

Quality

value, S

Compressed

size (MB)

Compression

Ratio

No. of

Vertices

No. of

triangles

3D

RMSE

2D

RMSE

Angel 24.7
10 2.670 89% 307,144 614,287 2.022 N/A

50 3.090 87% 307,144 614,287 2.023 N/A

Face 14.4

2 0.290 98% 105,819 206,376 1.283 5.7E-4

10 0.378 97% 105,819 206,376 1.285 5.7E-4

A comparison in terms of compression ratios was made with standard

compression algorithms available on Unix/Linux environments, namely

Lempel-Ziv-Welch, xz, gzip and bzip2. The Lempel-Ziv-Welch (LZW)

algorithm is a widely used lossless Unix compression utility based on creating

a dictionary for the sequences existing in the data as it is encoded. When the

next character is added to the current sequence and it makes a new sequence

that it is not in the dictionary, it is added. The algorithm provides fast

compression and fast decompression but it is not very efficient in terms of

compression ratios.

xz is also a lossless compression algorithm that incorporates the LZMA-

Lempel-Ziv-Markov chain algorithm. It shares the same compression format as

7-Zip, a popular compression algorithm on Windows. It provides a relatively

very slow compression and fast decompression.

ATINER CONFERENCE PAPER SERIES No: LIB2016-1995

17

gzip is both a file format and a compression algorithm used in Unix systems. It

was developed to replace LZW and it contains a combination of the LZ77

algorithm and Huffman coding. The algorithm allows the concatenation of

multiple files although its normal use is for compression of single files. The

algorithm provides slow compression and fast decompression.

bzip2 is an open source file compression utility. It is more efficient than LZW

and there are parallel implementations with multiple threads but these are not

available on the standard version of the algorithm. Similar to gzip, bzip2 is a

file compressor and provides no means to compress multiple files. It provides

relatively slow compression and fast decompression.

Table 3. Lossless and Lossy Compression: Comparative Analysis with

Standard Unix Compression Utilities

File
Original

size (MB)

GMPR

Method

(MB)

Lempel-

Ziv-Welch

(MB)

xz

(MB)

gzip

(MB)

bzip2

(MB)

Angel

(floating point)
24.7 2.670 7.3 3.1 5.5 5.3

Face

(floating point)
14.0 0.290 4.7 1.2 3.3 2.6

Average compression ratio
94%

(lossy)
69% 90% 78% 81%

Angel

(integer)
19.1 3.35 6.3 2.7 4.6 4.8

Face

(integer)
12.0 0.556 4.1 0.723 2.7 2.1

Average compression ratio
89%

(lossless)
66% 90% 77% 79%

Note that the GMPR method operates most efficiently on integers, so

normally floating point data are converted to integers by shifting the decimal

point to the right and then shifting it back after decompressing. A small shift to

the right means that numbers after the decimal point may be truncated and this

will result in information loss. For most applications a small shift is acceptable

as it would not be possible to discern small decrease in quality when data are

visualized.

Results are depicted in Table 3 for both lossy and lossless compression

providing a comparative analysis with standard Unix compression utilities. It is

noted that the GMPR method compares favourably against all major algorithms

in terms of file size without perceived degradation of quality which was

verified through careful visual inspection and RMSE measures depicted in

Table 2. For lossless compression, the xz algorithm shows a slightly higher

compression ratio than the GMPR method.

ATINER CONFERENCE PAPER SERIES No: LIB2016-1995

18

Discussion and Conclusions

In this paper, we review recent security threats to cloud computing and

focus on threat prevention through cryptographic methods that, when properly

implemented, are virtually impossible to break directly. We pointed out that

consistent reports indicate data breaches as the most significant threat as

perceived by end users. While most cloud providers encrypt data in transit, data

at rest are not encrypted for convenience of data sharing. While it is accepted

that most cloud providers implement adequate access control the danger

remains that an attacker can gain access to sensitive data stored in raw format.

The best solution from a security and privacy perspective would be that

sensitive data be compressed at the user machine and their compression key be

encrypted with a key only known to the user before depositing the file in the

cloud. The cloud provider would not be able to decompress the data. This is the

principle of least privilege. Note that the compressed data would not need to be

encrypted, only the compression key. This situation however, can create issues

when data need to be shared as users would also have to share their key.

Therefore, this is only a solution for non-shareable sensitive data.

In many instances, the user might be comfortable with the cloud provider

having access to the key to facilitate data sharing. In this case, we propose that

the compression key be encrypted by a symmetric key of the user choice,

which is exchanged with the cloud provider through public key infrastructure.

The cloud provider then would be able to decrypt the key and decompress the

data before allowing access to authorized users over a secure connection. This

solution would protect the data against data breaches as, if data are stolen, their

compression key is encrypted, so there is no way the actual data can be

accessed. The solution however, does not protect the data in the case of a rogue

employee having access to users’ keys. In any case, the solution provides

protection in depth as for an attacker to succeed, first it would need access to

the data, then access to the symmetric key to finally enable data

decompression.

The GMPR method yields a per-file compression-encryption as the

generated key from triplets is entirely data-dependent. All data in the cloud are

stored in compressed format, where the compression key is encrypted for

sensitive data and kept in plain text for non-sensitive data. Furthermore, the

size of the compression-encryption key also depends on the data. To ensure

strong encryption, the key can be tested for a minimum of 128 bits, padding if

necessary.

Compression of 2D images and 3D structures were reported in the

experimental results for both lossy and lossless compression. For 2D data, the

method provides compression ratios up to 99% outperforming JPG and being

of equivalent perceptual quality of JPEG2000. For 3D data structures, the

method yields average compression ratios of 94% for lossy compression and

89% for lossless compression, comparing very favourably to a number of

popular data compression utilities available on Unix/Linux environments.

ATINER CONFERENCE PAPER SERIES No: LIB2016-1995

19

The main advantage of the GMPR methods as presented here are to ensure

security and privacy of sensitive data. Given the superior compression ratios of

the techniques, a number of further advantages can be listed for deployment in

a cloud environment. First, the method requires less storage space than current

techniques and this can be even more significant when we consider that cloud

providers have to implement file redundancy to guarantee integrity and

accessibility of user data. Redundancy imposes hard limits: if the data are to be

duplicated, storage space needs to be duplicated there is no alternative way.

Second, sensitive data whose compression key is encrypted do not need to be

further encrypted for transmission and this can save significant bandwidth

obtained from the high compression ratios. This will lead to faster transmission

and faster response times. Third, because of less physical space and less

bandwidth requirements there will also be corresponding energy savings to be

made so it is a green solution to cloud access and storage.

Finally, data protection and privacy legislations are not similar across the

globe. It is demonstrated that our solution addresses security and privacy

concerns to the highest standards according to current European legislation on

data protection whether the servers are located or not in the EU. Future work is

focused on implementing a set of Linux utilities as system calls for

compression encryption that automatically recognise all types of data (image,

3D formats, video, text, audio, etc.) applying the algorithms accordingly. Also,

work is under way on increasing the speed of decompression through high

performance computing techniques and will be reported in the near future.

References

Acharya, T. and Tsai, P.S. 2005. JPEG2000 Standard for Image Compression:

Concepts, Algorithms and VLSI Architecture. New York: John Wiley & Sons.

Ahmed, N., Natarajan, T. and Rao, K.R. 1974. Discrete cosine transforms, IEEE

Transactions Computer, Vol. C-23, pp. 90-93.

Al-Haj, A. 2007. Combined DWT-DCT Digital Image Watermarking, Science

Publications, Journal of Computer Science 3 (9): 740-746.

Antonini, M., Barlaud, M., Mathieu, P. and Daubechies, I. 1992. Image coding using

wavelet transform, IEEE Trans. on Image Processing, Vol. 1, No. 2, pp. 205-220.

Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J. and Brandic, I. 2009. Cloud

computing and emerging IT platforms: Vision, hype, and reality for delivering

computing as the 5th utility, Future Generation Computer Systems, 599-616.

Coles, C. 2016. Only 9.4% of Cloud Providers Are encrypting Data at Rest, Skyhigh

Report, [online] http://bit.ly/2dgmyrk.

CSA 2016. The Treacherous 12 CSA’s Cloud Computing Top Threats in 2016. CSA

Top Threats Working Group. [online] https://cloudsecurityalliance.org/group/top-

threats/.

 David 2016. David 3D Scanner, [online] document available for download from

http://www.david-3d.com/en/support/downloads.

DSA 2013. FIPS PUB 186-4: Digital Signature Standard (DSS), [online] July

2013. csrc.nist.gov.

ATINER CONFERENCE PAPER SERIES No: LIB2016-1995

20

Gonzalez, R.C. and Woods, R.E. 2001. Digital Image Processing, Addison Wesley

publishing company.

Grigorios, D., Zervas, N.D., Sklavos, N. and Goutis, C.E. 2008. Design Techniques

and Implementation of Low Power High-Throughput Discrete Wavelet

Transform Tilters for JPEG 2000 Standard, WASET , International Journal of

Signal Processing, Vo. 4, No.1.

Kepes, B. 2016. Understanding the Cloud Computing Stack: SaaS, PaaS, IaaS.

Rackspace US Inc. [online] http://bit.ly/1SLp35B.

Khashman, A., Dimililer, K. 2008. Image Compression using Neural Networks and

Haar Wavelet, WSEAS TRANSACTIONS on SIGNAL PROCESSING, Vol. 4,

No.5.

Rao, K.R. and Yip, P. 1990. Discrete cosine transform: Algorithms, advantages,

applications, Academic Press, San Diego, CA.

Richardson, I.E.G. 2002. Video Codec Design, John Wiley & Sons.

Rivest, R.L., Shamir, A., and Adleman, L. 1978. A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems, Communications of the ACM, Vol 21,

No. 2, February 1978, p. 120-26.

Sadashivappa, G. and Ananda Babu K.V.S. 2008. Performance Analysis of Image

Coding using Wavelets, IJCSNS International Journal of Computer Science and

Network Security, VOL. 8 No.10.

Sayood, K. 2000. Introduction to Data Compression, 2nd edition, Academic Press,

Morgan Kaufman Publishers.

Siddeq, M.M. and Rodrigues, M.A. 2014a. A new 2D image compression technique

for 3D surface reconstruction. Advances in information sciences and application:

Proceedings of 18th International Conference on Computers (part of

CSCC'14). Recent advances in computer engineering series, 1 (22). 379-386.

Siddeq, M.M. and Rodrigues, M.A. 2014b. A novel image compression algorithm for

high resolution 3D reconstruction. 3D research, 5 (7), 17 pages.

Siddeq, M.M. and Rodrigues, M.A. 2015a. A novel 2D image compression algorithm

based on two levels DWT and DCT transforms with enhanced minimize-matrix-

size algorithm for high resolution structured light 3D surface reconstruction. 3D

Research, 6 (3), p. 26.

Siddeq, M.M. and Rodrigues, M.A. 2015b. Applied sequential-search algorithm for

compression-encryption of high-resolution structured light 3D data. In:

BLASHKI, Katherine and XIAO, Yingcai, (eds.) MCCSIS: Multiconference on

Computer Science and Information Systems 2015. IADIS Press, 195-202.

Siddeq, M.M. and Rodrigues, M.A. 2016. Novel 3D Compression Methods for

Geometry, Connectivity and Texture, 3DR Express, 3D Research, June 2016

7:13.

