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Information Systems:  

Secure Access and Storage in the Age of Cloud Computing 

 
Marcos A Rodrigues 

 

Mohammed M Siddeq 

 

 

Abstract 

 

Given that cloud computing is a remotely accessed service, the connection 

between provider and customer needs to be adequately protected against all 

known security risks. In order to ensure this, an open and clear specification of 

all standards, algorithms and security protocols adopted by the cloud provider 

is required. In this paper, we review current issues concerned with security 

threats to cloud computing and present a solution based on our unique patented 

compression-encryption method. The method provides highly efficient data 

compression where a unique symmetric key is generated as part of the 

compression process and is dependent on the characteristics of the data. 

Without the key, the data cannot be decompressed. We focus on threat 

prevention by cryptography that, if properly implemented, is virtually 

impossible to break directly. Our security by design is based on two principles: 

first, defence in depth, where our proposed design is such that more than one 

subsystem needs to be violated to get both the data and their key. Second, the 

principle of least privilege, where the attacker may gain access to only part of a 

system. The paper highlights the benefits of the solution that include high 

compression ratios, less bandwidth requirements, faster data transmission and 

response times, less storage space, and less energy consumption among others. 

 

Keywords: Cloud computing, Data compression, Encryption, Security, 

Privacy. 
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Introduction 

 

Edward Snowden’s revelations were a political fiasco and an economic 

threat to US based tech companies. The extent of NSA’s data collection drove 

away overseas customers in large numbers over security and privacy concerns 

creating, at the same time, an opportunity for non-US tech companies. Despite 

security concerns over data breaches, the Cloud Computing paradigm (Buyya 

et al., 2009) in which servers, storage and applications are delivered to an 

organization’s computers and devices through the Internet is here to stay. The 

benefits of this model is that it enables data centres to be accessed and shared 

as virtual resources in a scalable manner. For businesses, this is a very 

attractive model as services can expand or shrink as needs change.  

Information systems stored in the cloud need to comply with EU data 

protection and privacy regulations, thus both the stored data and the connection 

between provider and customer need to be adequately protected against known 

security risks. Recent reports (Coles, 2016) indicate that 82% of cloud 

providers encrypt data in transit, protecting against man-in-the-middle attacks 

as data are transmitted. However, only 9.4% of cloud providers encrypt data 

once stored in the cloud, for file sharing convenience. This is a serious issue 

leaving the cloud vulnerable to data breaches and unauthorized access. It is 

important to realise, however, that not all data in the cloud need to be protected 

by encryption, and not all data should be encrypted in the same way. For 

instance, images and video may be encrypted by a lossy method while text and 

other documents need to be lossless. Our algorithms cover both lossless and 

lossy requirements giving the user full control over what and where it is 

compressed-encrypted, either at the local machine or in the cloud. 

We present an algorithmic solution that has been demonstrated for 

compression of image and 3D data structures (Siddeq and Rodrigues, 2016; 

2015a; 2015b; 2014a; 2014b). A unique, data-dependent symmetric key is 

generated as a side effect to the compression method. Without the key, the data 

cannot be decompressed. The method allows us to tackle cloud security 

concerns through high compression ratios, to address data protection and 

privacy issues, cost of storage, reduced access time, and reduced bandwidth 

requirements when data in transit are in compressed format. 

The next section reviews current security threats to Cloud Computing, 

Section “The GMPR Compression-Encryption Methods” describes the 

compression-encryption method, and experimental results are reported in 

Section right after. Finally, the discussion and the conclusions are presented in 

the last section. 

 

 

Security Threats to Cloud Computing  

 

Cloud Computing services are normally referred to as Infrastructure as a 

Service (IaaS), Platform as a service (PaaS), and Software as a service (SaaS) 

(Kepes, 2016). IaaS are the hardware and software that powers the cloud such 
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as operating systems, networks, servers, and storage. PaaS are a set of tools and 

services enabling coding and deployment of applications in a quick and 

efficient manner. Finally, SaaS are applications delivered over the web that are 

designed to satisfy end-user needs. These notions are illustrated in Figure 1 

and, while blurred boundaries exist, it is assumed that IaaS would provide a 

secure environment for the other services of the Cloud Computing stack. 

 

Figure 1. A Diagram Depicting the Cloud Computing Stack 

 
 

On behalf of the Cloud Security Alliance (CSA), the Top Threats Working 

Group periodically publishes and updates the most relevant perceived threats to 

Cloud Computing (CSA, 2016). Their aim is to provide an informed 

understanding of cloud security risks and help management making informed 

decisions. There has been an observed shift in importance in the list of 

perceived top risks since 2010 from abuse and nefarious use, insecure 

interfaces and APIs, towards the problem of data breaches. A consistent pattern 

since 2012 has been observed towards data breaches being identified as the 

most important issue in each of those years. In 2016 the identified top three 

were data breaches, access control, and insecure interfaces and APIs (CSA, 

2016). 

Clearly the purely technical issues such as performance, reliability, and 

availability have fully met or exceeded user’s expectations. The focus has 

shifted from the IT department to the company’s board as data and information 

are normally the most valuable assets a company has. However, it is reasonable 

to state that current data handling procedures as implemented by cloud 

providers are not fully meeting expectations. Focusing on data breaches, there 

are two situations in which a data breach can occur: when data are transferred 

to and from the cloud, or when data are at rest in the cloud servers. A recent 

report (Coles, 2016) claims that only 9.4% of cloud providers encrypt data at 

rest; the main statistics in the report are reproduced in Figure 2 below. The 

report has also established that around 21% of the uploaded data contain 

sensitive information and that at least 34% of users have uploaded sensitive 

data to the cloud. 
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Figure 2. Encryption Practices Vary among Cloud Providers 

 
 

Computer security professionals can make use of CASBs (Cloud Access 

Security Brokers) which are applications acting as a gatekeeper between the 

user and the cloud, and can enforce security policies beyond the company’s 

structure. CASBs facilitate cloud access management and provide critical 

information on cloud services across multiple providers. In order to understand 

and assess the risks to the organization, enterprises need to have clear visibility 

of which cloud services are in use and by which people, what devices are 

accessing the data and from where, how sensitive are the data, and whether or 

not access control through encryption and other enterprise policies are being 

enforced. 

As pointed out above, it is clear that not all data in the cloud need to be 

encrypted. If that were the case, it would place heavy constraints on data 

sharing as the encryption key would need to be shared with the data. Solutions 

to this problem do exist; one of such solutions is proposed in the next sections. 

The main argument we put forward is for a data compression utility that 

generates a unique symmetric key as part of the compression step. The key can 

be kept together with the data in plain text for non-sensitive data. Otherwise, 

the key would be encrypted by a symmetric algorithm.  

The diagram depicted in Figure 3 represents our proposal for the possible 

compression-encryption scenarios for storing data in the Cloud. The diagram 

can be used to cover all possibilities by defining whether compression and 

decompression are performed at the user machine or in the cloud. The possible 

use cases are as follows. 

 

1) Uploading data to the Cloud: 

a) Non-sensitive data, compression in the cloud: The Raw Data is 

transmitted over a secure connection, and compressed in the Cloud. 

Data are stored in the Cloud in compressed format with compression 

key in plain text. 

b) Non-sensitive data, compression at the user machine: The Raw 

Data are compressed by the user and transmitted to the cloud with the 

compression key in plain text. Data are stored in the Cloud in 

compressed format, with compression key in plain text. 

c)  Sensitive data, compression in the cloud: The Raw Data is 

transmitted over a secure connection and compressed in the cloud. The 

compression key is encrypted using the symmetric key defined by the 

owner and known to the Cloud Provider. Data are stored in the Cloud in 

compressed format together with their encrypted key. 
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d)  Sensitive data, compression at the user machine: The Raw Data 

are compressed by the user and the compression key is encrypted with a 

key only known to the user. Data are stored in the cloud in compressed 

format together with their encrypted key. Cloud Provider cannot 

decrypt the data. 

2) Downloading data from the Cloud: 

a)  Non-sensitive data, decompression in the cloud: Decompression is 

performed in the cloud and the Raw Data are transmitted to the user 

through a secure connection. 

b)  Non-sensitive data, decompression at the user machine: The 

compressed data with their key in plain text are transmitted to the user 

through a secure connection. Decompression is performed at the user 

local machine. 

c)  Sensitive data, decompression in the cloud: Compression key is 

decrypted by a symmetric key known to the Cloud Provider and to the 

owner of the file. Data are decompressed and transmitted as Raw Data 

over a secure connection. 

d)  Sensitive data, decompression at the user machine: Compressed 

data and their encrypted key are transmitted to the user. The 

compression key is decrypted by a symmetric key only known to the 

user followed by data decompression. 

 

Figure 3. Compression-Encryption Scenarios for Storing Data in the Cloud 

 
 

The most secure form of communication and storage are the (d) cases 

above in which compression and decompression can only be performed by the 

user as only they are in the possession of the key. However, an enterprise might 

be comfortable with the cloud provider having access to the decryption keys 
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and the data being decompressed on the fly on the cloud providers’ servers. In 

this situation, options (c) provide adequate level of security. For sharing non-

sensitive data, options (a) and (b) are appropriate where the compression key is 

kept in plain text along with the compressed data. In this situation, data can be 

decompressed at the user machine or in the cloud and transmitted through a 

secure connection, either in plain text or compressed-encrypted. 

 

 

The GMPR Compression-Encryption Methods  

 

There are two main categories of encryption algorithms namely symmetric 

ciphers (also known as private or symmetric key algorithms) and public key 

ciphers (public or asymmetric key algorithms). Symmetric ciphers use the 

same key for encryption and decryption and all the security is in the key, none 

in the algorithm. Symmetric key algorithms are very fast and the primary 

problem is in communicating the key securely. Normally it would be easier for 

an attacker to intercept the key rather than spending resources to crack the 

message. A secondary issue is that for each pair of users wishing to 

communicate privately, one separate key is needed, so for  users 

private keys are required. 

The strengths of symmetric key algorithms are in the secrecy of the key 

and on the difficulty of guessing the key by trying out all possible 

combinations in a brute force attack. There is no way of reversing the 

encryption without knowing the key, and there are no back doors or alternative 

ways to decrypt the file without knowing the key. Therefore, the length of 

symmetric key algorithms is the most important factor to protect against brute 

force attack. The length of the key is expressed in bits  where  is the 

number of bits. Currently some of the most popular and used symmetric key 

algorithms are Triple DES (3x56 bits), Blowfish (up to 448 bits), Twofish (256 

bits) and AES (128, 192 and 256 bits). 

On the other hand, public ciphers have one private and one public key. 

Algorithms are based on number theory and mathematical equations with 

particular properties. The two different keys are used for encryption and 

decryption: a public key is used by anyone wishing to encrypt messages to be 

sent to a specific user, and a private key which is used by the user (receiver) to 

decrypt the messages. It solves the key-exchange problem of symmetric 

cryptography as the same public key can be used by anyone, and only the user 

in possession of the private key is able to decrypt such messages. For  users 

we need only  keys. The most common used public key algorithms are the 

RSA (Rivest et al., 1978) and DSA—Digital Signature Algorithm (DSA, 

2013). Because factorization which is the basis of such algorithms is a very 

slow process, public key cryptography is only used to exchange symmetric 

keys and all messages are then encrypted by symmetric algorithms which are 

orders of magnitude faster than public ciphers. 

An analysis of 2D image compression and 3D data compression 

algorithms developed within the GMPR group is presented here from a 
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compression-encryption perspective. We show that the proposed methods 

provide simultaneous efficient compression-encryption of data for both 2D 

images and 3D data structures (Siddeq and Rodrigues, 2016; 2015a; 2015b; 

2014a; 2014b). In Siddeq and Rodrigues (2014b) we proposed a novel 2D 

image compression method based on high-frequency sub-bands. The 

complexity of the algorithm and the sequential nature of the solution meant 

long execution times at decompression stage. New methods using JPEG were 

proposed in (Siddeq and Rodrigues, 2014a) where data decompression was 

achieved by a number of parallel threads speeding up the process. In (Siddeq 

and Rodrigues, 2015a), further algorithms were developed and tested on 

frequency sub-bands of DWT followed by DCT. Fast data decompression was 

achieved through multiple threads. 

We stress that the main novel aspect of the GMPR methods concerning 

security is the automatic generation of a unique symmetric compression-

encryption key that is data dependent. The data are divided into blocks and, 

within each block and after a differential operation, triplets of data are 

converted into a single value through a weighting factor. This single step 

reduces the data by 2/3 and, together with the differential process, are the main 

factors driving the high compression ratios that can be achieved. The array 

representing the triplets may have repeated values and only one instance of 

each is kept resulting in a further reduction of the array. This array is the actual 

compression-encryption key enabling data to be decoded. 

 

Image Compression-Encryption via DWT and DCT Transforms  

 

There are many possible ways to compress-encrypt 2D images using the 

GMPR method. The method is characterized by triplet encoding and unique 

generation of a compression-encryption key. Many transformations before and 

after these main steps are possible including quantization, entropy coding, and 

arithmetic coding among others. The example described here uses a double 

DWT followed by DCT whose parameters are then encoded by the method. 

The example is of lossy compression, as we apply a DWT over the image and 

focus on the LL band only, ignoring all high frequency bands. We then apply a 

second level DWT over the LL band followed by DCT. Figure 4 below 

illustrates the process. 
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Figure 4. An Example of the GMPR Compression-Encryption Method Applied 

to a 2D Image 

 

The DWT transform separates a signal into two classes namely 

approximation and detail coefficients. The signal is decomposed into various 

frequency bands and scales (Al-Haj, 2007; Khashman and Dimililer, 2008) by 

two function sets: scaling and wavelet which are associated with low and high-

pass filters. Some of the important properties of the DWT are that many of the 

coefficients for the high-frequency components (LH1, HL1 and HH1) are zero 

or insignificant (Grigorios et al., 2008; Sadashivappa and Ananda Babu, 2008; 

Antonini et al., 1992). Most of the important information in the signal is 

contained in the LL1 sub-band. In particular, the Daubechies wavelet transform 

has the ability to reconstruct with high degree of accuracy the original signal 

through second level sub-bands (LL2, HL2, LH2 and HH2) while others first 

level high frequency sub-bands can be ignored leading to high compression 

ratios (Gonzales and Woods, 2001; Acharya and Tsai, 2005).  

Following a two-level DWT transform, a DCT is applied to each 2x2 

block of pixels from the low frequency LL2 sub-band as shown in Figure 4. 

The transformed coefficients concentrate energy on the low frequency 

coefficients (top left) which rapidly decreases for higher frequency coefficients 

at the bottom right of the matrix (Richardson, 2002; Rao and Yip, 1990). It is 

safe to discard small value coefficients of the DCT without significantly 

affecting the quality of the image since they are de-correlated. Compression 

works more efficiently on a compact matrix of de-correlated coefficients than 

on a highly correlated matrix (Sayood, 2000; Ahmed et al., 1974).  

Without affecting image quality, the high frequency sub-bands in the first 

level DWT are set to zero (i.e. discard or ignore all HL1, LH1 and HH1). 

However, the high-frequency sub-bands in the second level DWT (HL2, LH2 

and HH2) cannot be discarded without significantly affecting image quality. A 

quantization can be applied at this stage which depends on the maximum 

value in each sub-band as follows: 

 

                (1) 
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where the matrix  refers to the high-frequency coefficients in HL2, LH2 and 

HH2, the factor refers to the quality affecting the matrix . Thus, image 

details are reduced in case quality . The limit range for this factor is 

specified by the user in a similar way to other image compression methods 

such as JPEG. The sub-bands HL2, LH2 and HH2 are lossless compressed by 

arithmetic coding. 

 

Triplets Encoding, Encryption and Decryption Keys 

 

The purpose of this step is to encode an arbitrary matrix of data with 

dimension  where  is the number of rows and is the number of columns. 

For computational efficiency at decompression stage, the AC matrix of Figure 

4 is divided into blocks where each block is made out of a certain number of 

rows by exactly 3 columns which are padded with zeros if required. Each block 

is then encoded and afterwards decoded separately by concurrent threads.  

The three columns of each row are encoded into a single value by a 

generated encryption key  which can be generated randomly between 

{0…1}. Here, the 3-valued key is directly generated from the data which is the 

preferred solution. Let us assume that the three values to be encoded is the 

triplet  representing a single row from a block of data. If the data is 

represented by floating point numbers, it is convenient to convert to integer by 

multiplying each value by a shift value ; after decompression, the recovered 

data are divided by the same shift value. Thus, 

 

                          (2) 

 

In order to reduce the number of bits needed to represent each triplet a 

delta or differential process is defined such that only differences are kept after 

the first values: 

 

                  (3) 

 

where and  is the number of rows of each block. Assuming 

an integer multiplier factor  the parameters required by triplet encoding 

are defined as follows: 

 

                  (4) 

                               (5) 

                   (6) 

                 (7) 

                (8) 

 

Where  is the coded triplet. Given that the original data are organized into a 

number of  blocks, each block contains a number of rows  with exactly 3 

columns and, to allow reconstruction after compression, we also encode the 

minimum and maximum values for each of the 3 columns of data for each 
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block as illustrated in Figure 5 below. The MinMax operation extracts both the 

minimum and maximum values of each column of data for each block.  

 

Figure 5. Each Block of Data is Uniquely Coded by a New Set of K1,K2,K3 

Encryption Keys 

 
 

The decryption key as earlier illustrated in Figure 4 is obtained by entropy 

coding the values of the AC matrix. Such values can also be seen as frequency 

data and are used at decompression stage: the set of weights are valid if the 

error is zero and the triplets are all in the domain search or are members of the 

frequency data (details in the subsection below). The remaining operation is to 

encode the DC column depicted in Figure 4. It contains the DC values of the 

DCT partitioned into -arrays (e.g. ). Each of these arrays are 

transformed by a one-dimensional DCT, quantized and stored in a temporary 

T-matrix. This matrix contains de-correlated values yielding good compression 

ratios. Each column of the T-matrix is concatenated into a one-dimensional 

array which is then coded by Arithmetic coding (Sayood, 2000). The coding 

process of the DC values is illustrated in Figure 6 below. 

 

Figure 6. Encoding the DC Columns from the DCT Transforms 

 
 

Decoding the Data 

 

In order to decode the data, a number of reverse steps are necessary. First 

we reverse the arithmetic coding to recover the T-Matrix of Figure 6. This is 
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followed by inverse quantization and inverse DCT leading to the recovery of of 

the DC-column data – the inverse path of Figure 6. The AC-matrix has been 

coded as depicted in Figure 5. Applying inverse arithmetic coding, the sum 

value  defined in Equation 8 for each triplet is recovered together with 

minimum and maximum values for each column. The issue here is to recover 

the generated key values K1, K2, and K3 – note that for each block we have a 

new set of generated keys. We have developed a number of algorithms and this 

is currently an active area of research. Here we describe a method based mostly 

on a simple search. The value of  is constrained by the minimum and 

maximum values that are known at this stage, and also  is known as it is 

saved in the file header. Knowledge of the range minimum and maximum 

allow the development of a number of optimized search algorithms where the 

goal is zero error: 

 

                 (9) 

 

If the error  is zero, then the estimated values correspond to the 

original values in the AC-Matrix. At this stage then, we have recovered the 

DC-column and AC-matrix values depicted in Figure 4. An inverse DCT is 

performed on each block recovering the LL2 sub-band. The other sub-bands 

HL2, LH2 and HH2 are recovered by reversing the arithmetic code and the 

original data are reclaimed. 

 

Compression-Encryption of 3D Data Structures 

 

The approach to 3D data compression is similar to 2D images in the sense 

that we look at compressing triplets of data through randomly generated keys 

and keeping the minimal information that is required to be able to successfully 

reconstruct the data. This minimal information makes part of the compression-

encryption key. We show the steps in the methodology by providing an 

example of compressing a 3D structure defined in Wavefront’s OBJ file 

format. The OBJ format is very structured with a list of vertices, faces, vertex 

normal directions, and texture mapping information. In the description that 

follows, we focus on the compression of a list of vertices; the rest of the file is 

compressed by the differential process of Equation 3 followed by arithmetic 

coding. 

First it is very convenient to note that a vertex in 3D is defined by its 

triplet  coordinates, and that our technique is based on converting each 

triplet into a single value, so it is most appropriate for vertex encoding. Figure 

7 depicts the method, starting by breaking the data into a number of blocks. 

The rationale for doing so is to allow fast decompression by running parallel 

threads each operating on a single block. Triplet encoding amounts to a 

geometry minimization process and is indicated in the figure by converting 

each triplet  into a single integer data. The required variables 

 are determined by Equations 4 through 8. The domain search 

(DS) or frequency data makes part of the decryption key which represents the 
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frequency at which data occurs. It is used in conjunction with the coded data  

of equations 8 and 9 to decide whether or not the reconstructed triplet is 

accepted (at decompression stage). 

 

Figure 7. Compression-Encryption of 3D Data 

 
 

The vertex texture mapping represented by the  coordinates and the 

triangle face indices  are subject to the differential process of 

Equation 3 applied to each row from left to right and then compressed by 

arithmetic coding. Data decompression is achieved by reversing the 

compression method. Each block is decompressed independently by a 

concurrent thread and a number of search algorithms can be implemented to 

recover the differential data followed by recovery of vertex data using 

Equation 9. The normal directions, triangulated face indices, and vertex texture 

coordinates are recovered by reversing both arithmetic coding and the 

differential process. 

 

 

Experimental Results  

 

Compression-Encryption of Images 

 

Here we use four images as examples. We apply the GMPR compression 

and decompression method and compare with the standard image compression 

methods JPG and JPEG2000. In all the compared methods one can control the 

quality of the image which will result in a larger or smaller compressed file. It 

is therefore, necessary that we compress all images to equivalent sizes such 

that the perceived quality of the image together with the root mean square 

errors can be directly compared. Figure 8 depicts the four images used and 

provides information on original and compressed file sizes, and the achieved 

compression ratios using the GMPR method. It is noted that compression ratios 

around 99% are achieved with good perceived quality of the reconstructed 

image comparable to JPEG2000. 
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Figure 8. Images Showing their Original and Compressed Sizes 

    

Image1:  

39MB to 300KB  

Compression: 

99.2% 

Image2:  

9MB to 92KB 

Compression: 

98.9% 

Image3:  

10MB to 120KB 

Compression:  

98.8% 

Image4:  

19.3MB to 193KB 

Compression:  

99.0% 

 

Table 1 provides a comparison between the GMPR method, JPEG and 

JPEG2000. We observe that both JPEG2000 and the GMPR method have an 

equivalent, superior perceptual quality when compared with JPEG for the same 

high compression ratio. When we consider an objective measure of quality 

such as 2D RMSE, then the GMPR method is superior to both JPEG and 

JPEG2000 methods. 

 

Table 1. 2D Compression-Encryption of Sample Image Files and Comparative 

Analysis with JPEG and JPEG2000 

Image 

Original 

size 

(MB) 

GMPR Method JPEG JPEG2000 

Compressed 

size (MB) 

2D 

RMSE 

Compressed 

size (MB) 

2D 

RMSE 

Compressed 

size (MB) 

2D 

RMSE 

Image1 39.4 0.300 2.85 0.300 8.33 0.300 5.32 

Image2 9.0 0.092 3.14 0.096 7.39 0.092 6.33 

Image3 10.0 0.120 4.68 0.122 11.20 0.120 11.38 

Image4 19.3 0.193 2.83 0.197 5.80 0.193 4.45 

 

Compression-Encryption of 3D Data Structures 

 

We demonstrate 3D compression-encryption methods through two 

examples, with and without texture mapping (Figure 9). Both models are 

publicly available from (David, 2016) in several file formats. Here we use the 

OBJ file format as the original file and the purpose is to compress, decompress 

and evaluate both the perceived quality of the reconstruction and calculate an 

objective measure of 2D RMSE for texture mapping and 3D RMSE for vertex 

locations. Two experiments were carried out. The first experiment involved 

lossy compression, in which the GMPR methods were applied using shift 

values of 2 and 10. In the second experiment, all floating point vertices were 

defined as integers and a lossless compression was applied. 
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Figure 9. 3D Models Angel (left) and Face (right) 

    
 

Table 2 illustrates typical achieved compression rates for lossy 

compression: there are two observed peaks, for a large number of tested files 

compression rates are around 90% while most of the remainders are around 

98%. The quality value used to convert from floating point to integer according 

to Equation 2 allows the user to control data loss after the decimal point and 

thus, the overall quality of the mesh in terms of 3D RMSE. If the model is 

defined in millimetres it may be safe to round off vertex coordinates to the 

nearest integer as, at this level of detail, humans may not perceive such small 

differences. 

 

Table 2. 3D Lossy Compression-Encryption of Files from OBJ Format 

Image 

or 

Model 

OBJ 

Original 

size 

(MB) 

Quality 

value, S 

Compressed 

size (MB) 

Compression 

Ratio 

No. of 

Vertices 

No. of 

triangles 

3D 

RMSE 

2D 

RMSE 

Angel 24.7 
10 2.670 89% 307,144 614,287 2.022 N/A 

50 3.090 87% 307,144 614,287 2.023 N/A 

Face 14.4 

2 0.290 98% 105,819 206,376 1.283 5.7E-4 

10 0.378 97% 105,819 206,376 1.285 5.7E-4 

 

A comparison in terms of compression ratios was made with standard 

compression algorithms available on Unix/Linux environments, namely 

Lempel-Ziv-Welch, xz, gzip and bzip2. The Lempel-Ziv-Welch (LZW) 

algorithm is a widely used lossless Unix compression utility based on creating 

a dictionary for the sequences existing in the data as it is encoded. When the 

next character is added to the current sequence and it makes a new sequence 

that it is not in the dictionary, it is added. The algorithm provides fast 

compression and fast decompression but it is not very efficient in terms of 

compression ratios.  

 

xz is also a lossless compression algorithm that incorporates the LZMA-

Lempel-Ziv-Markov chain algorithm. It shares the same compression format as 

7-Zip, a popular compression algorithm on Windows. It provides a relatively 

very slow compression and fast decompression. 
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gzip is both a file format and a compression algorithm used in Unix systems. It 

was developed to replace LZW and it contains a combination of the LZ77 

algorithm and Huffman coding. The algorithm allows the concatenation of 

multiple files although its normal use is for compression of single files. The 

algorithm provides slow compression and fast decompression. 

 

bzip2 is an open source file compression utility. It is more efficient than LZW 

and there are parallel implementations with multiple threads but these are not 

available on the standard version of the algorithm. Similar to gzip, bzip2 is a 

file compressor and provides no means to compress multiple files. It provides 

relatively slow compression and fast decompression. 

 

Table 3. Lossless and Lossy Compression: Comparative Analysis with 

Standard Unix Compression Utilities 

File 
Original 

size (MB) 

GMPR 

Method 

(MB) 

Lempel-

Ziv-Welch 

(MB) 

xz 

(MB) 

gzip 

(MB) 

bzip2 

(MB) 

Angel 

(floating point) 
24.7 2.670 7.3 3.1 5.5 5.3 

Face 

(floating point) 
14.0 0.290 4.7 1.2 3.3 2.6 

Average compression ratio 
94% 

(lossy) 
69% 90% 78% 81% 

Angel 

(integer) 
19.1 3.35 6.3 2.7 4.6 4.8 

Face 

(integer) 
12.0 0.556 4.1 0.723 2.7 2.1 

Average compression ratio 
89% 

(lossless) 
66% 90% 77% 79% 

 

Note that the GMPR method operates most efficiently on integers, so 

normally floating point data are converted to integers by shifting the decimal 

point to the right and then shifting it back after decompressing. A small shift to 

the right means that numbers after the decimal point may be truncated and this 

will result in information loss. For most applications a small shift is acceptable 

as it would not be possible to discern small decrease in quality when data are 

visualized. 

Results are depicted in Table 3 for both lossy and lossless compression 

providing a comparative analysis with standard Unix compression utilities. It is 

noted that the GMPR method compares favourably against all major algorithms 

in terms of file size without perceived degradation of quality which was 

verified through careful visual inspection and RMSE measures depicted in 

Table 2. For lossless compression, the xz algorithm shows a slightly higher 

compression ratio than the GMPR method. 
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Discussion and Conclusions  

 

In this paper, we review recent security threats to cloud computing and 

focus on threat prevention through cryptographic methods that, when properly 

implemented, are virtually impossible to break directly. We pointed out that 

consistent reports indicate data breaches as the most significant threat as 

perceived by end users. While most cloud providers encrypt data in transit, data 

at rest are not encrypted for convenience of data sharing. While it is accepted 

that most cloud providers implement adequate access control the danger 

remains that an attacker can gain access to sensitive data stored in raw format.  

The best solution from a security and privacy perspective would be that 

sensitive data be compressed at the user machine and their compression key be 

encrypted with a key only known to the user before depositing the file in the 

cloud. The cloud provider would not be able to decompress the data. This is the 

principle of least privilege. Note that the compressed data would not need to be 

encrypted, only the compression key. This situation however, can create issues 

when data need to be shared as users would also have to share their key. 

Therefore, this is only a solution for non-shareable sensitive data. 

In many instances, the user might be comfortable with the cloud provider 

having access to the key to facilitate data sharing. In this case, we propose that 

the compression key be encrypted by a symmetric key of the user choice, 

which is exchanged with the cloud provider through public key infrastructure. 

The cloud provider then would be able to decrypt the key and decompress the 

data before allowing access to authorized users over a secure connection. This 

solution would protect the data against data breaches as, if data are stolen, their 

compression key is encrypted, so there is no way the actual data can be 

accessed. The solution however, does not protect the data in the case of a rogue 

employee having access to users’ keys. In any case, the solution provides 

protection in depth as for an attacker to succeed, first it would need access to 

the data, then access to the symmetric key to finally enable data 

decompression. 

The GMPR method yields a per-file compression-encryption as the 

generated key from triplets is entirely data-dependent. All data in the cloud are 

stored in compressed format, where the compression key is encrypted for 

sensitive data and kept in plain text for non-sensitive data. Furthermore, the 

size of the compression-encryption key also depends on the data. To ensure 

strong encryption, the key can be tested for a minimum of 128 bits, padding if 

necessary.  

Compression of 2D images and 3D structures were reported in the 

experimental results for both lossy and lossless compression. For 2D data, the 

method provides compression ratios up to 99% outperforming JPG and being 

of equivalent perceptual quality of JPEG2000. For 3D data structures, the 

method yields average compression ratios of 94% for lossy compression and 

89% for lossless compression, comparing very favourably to a number of 

popular data compression utilities available on Unix/Linux environments. 
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The main advantage of the GMPR methods as presented here are to ensure 

security and privacy of sensitive data. Given the superior compression ratios of 

the techniques, a number of further advantages can be listed for deployment in 

a cloud environment. First, the method requires less storage space than current 

techniques and this can be even more significant when we consider that cloud 

providers have to implement file redundancy to guarantee integrity and 

accessibility of user data. Redundancy imposes hard limits: if the data are to be 

duplicated, storage space needs to be duplicated there is no alternative way. 

Second, sensitive data whose compression key is encrypted do not need to be 

further encrypted for transmission and this can save significant bandwidth 

obtained from the high compression ratios. This will lead to faster transmission 

and faster response times. Third, because of less physical space and less 

bandwidth requirements there will also be corresponding energy savings to be 

made so it is a green solution to cloud access and storage. 

Finally, data protection and privacy legislations are not similar across the 

globe. It is demonstrated that our solution addresses security and privacy 

concerns to the highest standards according to current European legislation on 

data protection whether the servers are located or not in the EU. Future work is 

focused on implementing a set of Linux utilities as system calls for 

compression encryption that automatically recognise all types of data (image, 

3D formats, video, text, audio, etc.) applying the algorithms accordingly. Also, 

work is under way on increasing the speed of decompression through high 

performance computing techniques and will be reported in the near future. 
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