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Abstract 

 

In many hospital systems, new technologies that influence patient data 

require extensive technical testing before implementation into production.  

Therefore, to implement, an existing High Performance Computing (HPC) 

Linux node clusters via WestGrid were used to represent a simulation of 

patient data benchmarked and cross-referenced with current metadata 

profiles in operational hospital systems at the Vancouver Island Health 

Authority (VIHA), Victoria, Canada. Over the tested cross-platform, the 

data were generated, indexed and stored over a Hadoop Distributed File 

System (HDFS) to noSQL database (HBase) that represented three billion 

patient records. The study objective to establish an interactive Big Data 

Platform (BDA) was successful implemented in that Hadoop/MapReduce 

technologies formed the framework of the platform distributed with HBase 

(key-value NoSQL database storage) and generated desired hospital-specific 

metadata at very extremely large volumes. In fact, the framework over 

generated HBase data files took a week or a month for one billion (10TB) 

and three billion (30TB), respectively. Further performance tests retrieved 

results from simulated patient records with Apache tools in Hadoop’s 

ecosystem. At optimized iteration, HDFS ingestion with HBase exhibited 

sustained database integrity over hundreds of iterations; however, to complete 

the bulk loading via MapReduce to HBase required a month. Inconsistencies 

of MapReduce limited the capacity to generate/replicate data to HBase 

efficiently. Hospital system based on patient encounter database was very 

difficult and data profiles were fully representative of complex patient-to-

hospital relationships. Our platform is important to lead discovery of useful 

big data technologies across multiple hospital systems. 

 

Keywords: Analytics, Big Data, Cross Platform, Distributed Data, Distributed 

Filing System, Healthcare, High Performance Computing, Hospital System, 

Interactive Query, Relational Database. 
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Introduction 

 

Big Data is a collection of data that is large, complex, distributed, and 

growing fast (or 5Vs- volume, variety, velocity, veracity, and Value) (Hansen 

et al., 2014; Manyika et al., 2013). It has high potential for unlocking new 

sources of economic values, providing fresh insights into medical sciences 

and industrial systems while assisting on policy making and reducing costs 

(Canada Health Infoway, 2013; Dufrense et al., 2014). Several published 

studies have asserted that Big Data managed efficiently can improve care 

delivery while reducing healthcare costs (Canada Health Infoway, 2013; 

Hansen et al., 2014; Manyika et al., 2013; Raghupathi and Raghupathi, 2014). 

A McKinsey Global Institute study suggests, “If US healthcare were to use 

big data creatively and effectively to drive efficiency and quality, the sector 

could create more than $300 billion in value every year” (Manyika et al., 

2013). A number of published articles also reported using Big Data to 

improve population health with better policy decision making. For example, 

Dugas et al. (2012) collected 21 months (2009 Jan - 2010 Oct) of data at an 

urban academic hospital in Baltimore, Maryland US to assess the correlation 

of city Google Flu Trends (GFT) using big data technologies to find data 

trends over thousands of searched influenza cases. The study found that 

GFT had high correlation with the number of identified influenza results. 

Similarly, in 2010, during a major Haitian cholera outbreak, daily reported 

case data for all departments from the Haiti Ministry of Health and daily 

volume of Twitter posts containing the word “cholera” has similar large 

analytical patterns. The Twitter data (via Apache Storm – a big data 

technology) provided earlier disease outbreak information (Chunara et al., 

2012). Similarly, in a study by Twist et al. (2016) a platform Constellation 

(using Apache Storm and Hadoop in real-time) was successfully deployed at 

the Children’s Mercy Hospital (CMH) in Kansas City (Missouri, US) to 

match patients’ clinical data to their genome sequencing, thereby facilitating 

treatments (Twist et al., 2016) and faster time for analytical results from 50 

to 26 hours (Miller et al., 2015; Saunders et al., 2012). Moreover, Big Data 

in healthcare includes nationally standardized data collection schema, 

internationally accepted medical classification and terminology (e.g. ICD, 

SNOMED CT), semi-structured data for data transportation (e.g. HL7 

messages), unstructured clinical notes (physicians’ progress notes, medical 

images (e.g. MRI, X-rays), genetic lab data, and other types of data (e.g. 

public health and mental or behavioral health). Huge volumes of very 

heterogeneous raw data are generated daily by a variety of hospital systems 

(Kuo et al., 2014), such as Electronic Health Records (EHR), Computerized 

Physician Order Entry (CPOE), Picture Archiving and Communication 

Systems (PACS), Clinical Decision Support Systems (CDSS), and Provincial 

Laboratory Information Systems (PLIS). 

In this study, we described our practical application among collaborations 

with Vancouver Island Health Authority (VIHA) funded research project 

“Design and Implement a Big Data Analytics Framework for Health 

Applications.” The main objective of this project was to collaborate with the 

VIHA staff to develop and establish a BDA platform for application that 

applies to large sets of data collected from discharged patient records. A 
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Hadoop/MapReduce framework formed the platform with noSQL database 

called HBase representing real hospital-specific metadata and file ingestion. 

The modeled data produced through technological framework and processes, 

formed three billion of emulated patient data. This data were generated and 

cross-referenced with inpatient profiles based on the metadata dictionaries 

provided through consultation and meeting with the VIHA’s staff. 

 

 

Literature Review 

 

Big Data Analytics (BDA) designed and engineered in many industrial 

systems is developed to extract knowledge via data mining processes from 

sets of Big Data (Baro et al., 2015). Wang et al. (2014) further described the 

extraction of useful knowledge from Big Data in terms of a processing 

pipeline that transfers, stores, and analyses data for whole systems. According 

to Chrimes et al. (2017a) the review of processes of achieving full Big Data 

utilization involves five distinct configuration stages; each with specific 

challenges, as follows: 

1. Data aggregation: Copy/transfer data to a storage drive is a commonly 

used method of aggregating and migrating large quantities of data (Kuo et 

al., 2014). Big Data research projects usually involve multiple organizations, 

geographic locations, and research IT teams; therefore, generating large 

datasets from replication away from production systems at hospitals removes 

any ongoing network resource consumption and database resources that 

could render the system in operable. Further, exchange of data between 

groups and databases is very difficult to coordinate; hence, a second database 

for big data should be carried out to ease its maintenance and slightly separate 

operational issues. Furthermore, transferring vast amounts of data over the 

network requires a significant amount of bandwidth over a consistent long 

duration. Additionally, to replicate data from the sources and generate it 

iteratively across instances and multiple nodes, as Hadoop Distributed File 

System (HDFS) can accomplish, does require batch processes or file block 

process (Grover et al., 2015; Lai et al., 2014; White, 2015).  

2. Data maintenance: Since Big Data involves large volumes; it is very 

difficult to maintain access to all the data for ongoing queries. Moreover, 

time and cost can prohibit small organizations and technical system 

development and integration departments from managing large amounts of 

data. Another challenge, in healthcare, is that real patient data, metadata, 

and data profiles need to constantly be updated with clinical events table; 

otherwise, the analytics is rendered useless. There are many solutions available 

to provide maintenance including cloud computing (Dai et al., 2012) grid 

computing (Mohammed et al., 2014), NoSQL/NewSQL and other storage 

systems (e.g., MongoDB, HBase, Voldemort DB, Cassandra, Hadoop 

Distributed File System (HDFS) and Google’s BigTable (Lith and Mattson, 

2010; Moniruzzaman and Hossain, 2013). 

Legality and ethics is also a major issue in data maintenance. Security, 

confidentiality and privacy are all mandated by Canadian legislation with 

strict regulations for Canada’s public healthcare. Furthermore, Dufrense et 

al. (2014) point out that Canadians have a nationalistic view of their healthcare 
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system, and public disclosure of data in a publicly provided healthcare system 

makes sense to many citizens, including providers and health professionals. For 

example, the Health Insurance Portability and Accountability Act (HIPPA) 

require the removal of 18 types of identifiers, including any residual 

information that could identify patients. Privacy concerns can be addressed 

using new technologies, such as key-value storage services, but advanced 

configuration and technical knowledge is needed. For example, Pattuk et al. 

(2013) proposed a framework for secure Big Data management involving an 

HBase database called Big Secret, which securely outsources and processes 

encrypted data over public key-value stores. Although hospitals house their 

data in server racks in a highly secure buildings and the vendors commonly 

are not allowed to use cloud services, especially when there is no control of 

the location. 

3. Data integration: Data integration and interoperability processes 

involve combining and transforming data into an appropriate format for 

analysis. Since Big Data in healthcare are extremely large, distributed at 

different locations, unstructured and heterogeneous, the management of data 

integration over time is very time consuming (Dai et al., 2012; Martin-Sanchez 

and Verspoor, 2014). Numerous solutions have been proposed for raw Big 

Data integration (Chen et al., 2012b; Raghupathi and Raghupathi, 2014). 

The problem with these methods is they are problem-oriented, i.e., the method 

is only applied to specific data sets or aggregates. Very few generic approaches 

exist across integrated unstructured data.  

4. Data analysis:  Data analysis or analytics is highly important for a 

successful BDA (Chrimes et al., 2017b). BDA complexity involves analytic 

algorithms to be programmed in that the computing time increases dramatically 

even with small increases in data volume. However, it is very difficult to 

efficiently analyze the data interactively using traditional analytical software, 

such as IBM SPSS, Microsoft Excel or MathWorks MATLAB because Big 

Data is too large, too heterogeneous and highly distributed over many 

locations in the healthcare continuum. It can take several days, and most 

likely months, to obtain a result over a very large data set (in terabytes and 

beyond). Moreover, for complex analyses, the computing time increases 

exponentially even with incremental growth in the data size. For example, 

Bayesian Network  are a popular algorithm for modeling knowledge in 

computational biology and bioinformatics, and the computing time required 

to find the best network increases exponentially, as the number of records 

rises (Schadt et al., 2010). Even for simple data analysis, it can take several 

days; even months, to obtain a result when databases are very large and 

SQL-like “joins” are executed.  

Many studies suggest parallelization of computing model for high 

performance over analytical platforms to reduce computationally intense 

problems (Deepthi and Anuradha, 2016; Marozzo et al., 2012; Mohammed 

et al., 2014; Taylor, 2010; Vaidya and Deshpande, 2015; Wu et al., 2014; 

Zhang et al., 2015). In addition, using the traditional analysis methods, the 

error rate related to analyzing large amount of data may add a new dimension 

to the challenge of analyzing large data sets. Whereas, in BDA, the large 

sets are frequently analyzed without any mention of the error dimension. To 

address the analytical challenges, many recently published studies have 
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suggested that using High Performance Computing (HPC), and parallelization 

of computing model can efficiently increase analysis performance for the 

computationally intense problems (Deepthi and Anuradha, 2016; Mohammed 

et al., 2014; Vaidya and Deshpande, 2015; Wu et al., 2014; Zhang et al., 2015).  

5. Pattern interpretation:  Knowledge representation is an absolute must 

to achieve for any data mining over BDA platforms. Further, BDA is of little 

value if decision-makers do not understand the patterns. Additionally, given 

the complex nature of the data and how big data technologies can increase 

users’ interactive queries and utilization, representations of trends and 

individualized results will not be comprehensible to non-experts. Moreover, 

many people instinctively believe that bigger data means better information. 

But agile data science cannot protect us from inaccuracies and faulty 

assumptions. Many reporters are often fooled into thinking that correlations 

have true significance (or lack thereof). 

 

 

Methodology 

 

The basic premise of a BDA platform in healthcare was to construct the 

platform capable of compiling large heterogeneous clinical data from diverse 

sources while querying large volumes quickly and efficiently. We must 

create a simulated technical and operational environment with the cross 

platform over billions of patient records under performance of valuable data 

queries. Furthermore, it needs to be proven possible that it is beneficial to 

implement as a bolt-on solution to the current hospital system. Also, the 

applications were required to ensure patient data security and privacy with 

legislation, confidentiality laws and regulations. It must cover the complex 

relationships in the clinical event table of a patient in the hospital system 

with possible multi-encounters that are interrelated, for example chronic 

severe mental health, diabetes, and substance abuse as shown in Figure 1. 

As well as movement of patients in the hospital with medical services and 

health outcomes must be incorporated in the data schema to query interactively. 
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Figure 1. A Patient (at Start) Showing Multiple Encounters and Complex 

Relationships in the Patient Record of the Hospital System (with an End Point) 
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Platform Architecture 
 

The BDA platform harnesses the technical power and advanced 

programming to produce accessible front-end tools to end users that allow 

for analysis of large quantities of back-end data in an interactive enriching 

manner. All this must be accomplished cost effectively under rigorous and 

varied usability user acceptance tests (UATs) to be deployed to production. 

Based on the design philosophy of simulation with multiple interactive 

components for end users to query data at extreme volumes within seconds, 

we constructed a dynamic platform with interfaced backend applications, 

such as Apache Phoenix, Spark, and Drill, linked to backend HBase over 

Hadoop Distributed File System (HDFS). With the Hadoop/MapReduce 

framework, the platform allowed users to easily analyze and visualize health 

Big Data (Chrimes et al., 2017b). The overall platform included four main 

components (shown in Figure 2):  

 

1. A clinical data warehouse stores healthcare data. Currently at VIHA 

there are over 1000 tables in its Admission, Discharge and Transfer 

(ADT) data from hospital system, and annually ca. one million 

patient encounters add to 50+ years archive (500 million at VIHA 

and 10 billion provincially).  

2. High performance Linux clusters (WestGrid University System) 

were used to install software, build configurations, and run simulation 

queries (Hadoop ecosystem, Apache Phoenix, Spark and Drill). 

3. HBasenoSQL database was used to store data from VIHA clinical 

data warehouse. HDFS distributes the data to indexed storage across 

the WestGrid clusters with backup, high availability and redundancy. 

4. A master deployment manager (DM) was used to access the clusters 
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from sponsored accounts over the Portable Batch System (PBS) of 

the Resource Manager (RM). The access to the DM is controlled by 

lightweight directory access protocol (LDAP) while accessing 

worker nodes was restricted to only the user running the job. This 

architecture permitted an agile and stabilized access with system 

administrator that could be launched from any terminal for each PBS 

job. 

 

Figure 2. Big Data Analytics Platform Architecture 

 
 

High Performance Computing (HPC) Infrastructure 

 

In this study, as described above, we relied on WestGrid’s existing 

architecture as the computing infrastructure. WestGrid is a nationally Canadian 

funded program since 2003, mainly used in western Canada while EastGrid 

and Ontario and Quebec grids are available. WestGrid installation at the 

University of Victoria (UVic) started in July 2010. The WestGrid computing 

facilities at UVic have 2 main clusters called Hermes and Nestor.  Hermes is 

a capacity cluster geared towards serial jobs with 84 nodes having 8 cores 

each and 120 nodes with 12 cores each, which gives a total of 2112 cores. 

Nestor is a large cluster consisting of 288 nodes (2304 cores) geared towards 

large parallel jobs. The computing system of these two clusters share 

infrastructure such as resource management, job scheduling, networked 

storage, and service and interactive nodes. In this study, we use five dedicated 

worker nodes and one head node from Hermes cluster.  

 

Conceptual Analytics Framework 
 

Under the umbrella of the hospital system and its end users, the framework 

and the applications would allow users to query, visualize, interpret, and modify 
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outputs of the data. The overall purpose was to make Big Data capabilities 

accessible to stakeholders, including UVic researchers, VIHA physicians and 

database administrators, and other healthcare practitioners. Our analytics 

framework on the platform includes nine technical integrated parts of the 

system:    

 

1. A clinical data warehouse was part of the main goal to achieve 

billions of patient records to represent Big Data in healthcare 

application. Currently, the data warehouse at VIHA has over 1000 

relational tables of its hospital system that encompass ten billion 

records archived over a period of ~50 years. Health data are 

continuously generated and added to the warehouse at a rate which 

has grown exponentially to over one million encounters annually at 

VIHA. 

2. A back-end NoSQL database of HBase with indexing rows to 

columns uniquely and key-stores that encrypts the data. In the 

emulation of the database, each row represented encounter-based 

patient data as a Big Integer, with diagnoses, interventions, and 

procedures specific to that patient, which the current ADT system 

has in its database schema linked to a bigger data warehouse, which 

includes DAD (Table 1). This patient-specific structure in the database 

allowed for active updates to add to the data generation while 

maintaining accurate patient querying over the platform. Patient-

specific rows across the columns according to the existing abstraction 

were essential part of the emulation; HBase established a wide range 

of indexes for each unique row, and each row contained a key value 

that was linked to the family of qualifiers and primary keys (columns). 

HBasewas chosen due to its NoSQL services, especially linear to 

modular scalability to document architecture. In addition, it allows 

for SQL-like layer of Apache Phoenix to be configured on top of 

HBase big-tables. The HBase operations were specific to family 

qualifiers at each iteration; therefore, the data was patient-centric 

combined with certain DAD data (from different sources of metadata) 

in the rows and columns, such that summary of diagnosis or medical 

services as a whole could be queried. The BDA platform was built on 

top of the available open-source software (HBase). HBase (NoSQL 

version 0.98.11) is a NoSQL database composed of the main 

deployment master (DM) node and its fail-over master, the Region 

Servers holding HBASE data, and ZooKeeper, which contained 

services to allocate data locality (Zookeeper, 2016), of three nodes, 

that orchestrated that ensemble. The xml configuration files were 

HBase-site.xml and the HBase-env.shwere adjusted to improve the 

performance of HBase.  
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Table 1. Data Schema of Patient Data 

CREATE TABLE IF NOT EXISTS DADS1 ( 

EncounterID   BIGINT NOT NULL, 

Admit_by_Ambulance VARCHAR, 

Admit_Category VARCHAR, 

Admission_Date VARCHAR, 

Admission_Time VARCHAR, 

Age INTEGER, 

Anesthestic_Grade  VARCHAR , 

Anesthetist_ID  VARCHAR, 

Anesthetistic_Technique  INTEGER, 

Arrival_Date_in_ER  VARCHAR NOT NULL, 

Arrival_Time_in_ER  VARCHAR NOT NULL, 

Date_Patient_Left_ED  VARCHAR , 

Date_of_Transfer_In  VARCHAR, 

Days_in_Unit  VARCHAR, 

Discharge_Date VARCHAR NOT NULL, 

Discharge_Disposition VARCHAR NOT NULL, 

Discharge_Site VARCHAR NOT NULL, 

Discharge_Time VARCHAR NOT NULL, 

Birth_Date  VARCHAR, 

Diagnosis_Cluster VARCHAR, 

Diagnosis_Code VARCHAR NOT NULL, 

Diagnosis_Occurrence  INTEGER, 

Diagnosis_Prefix VARCHAR, 

Diagnosis_Type VARCHAR, 

Entry_Code VARCHAR, 

Episode_Duration  INTEGER, 

First_Name VARCHAR, 

Glasgo_Coma_Scale VARCHAR, 

Gender  VARCHAR, 

Health_Care_Number VARCHAR NOT NULL, 

HCN_Prov VARCHAR, 

Institute_From  INTEGER, 

Institution_To  INTEGER, 

Interven_Attribute_Extent VARCHAR, 

Interven_Attribute_Location VARCHAR, 

Interven_Attribute_Status VARCHAR, 

Interven_Code VARCHAR, 

Interven_Episode_Start_Date  VARCHAR, 

Interven_Episode_St_Date  VARCHAR, 

Interven_Location  VARCHAR, 

Interven_Occurrence  INTEGER, 

Interven_Options VARCHAR, 

Interven_Pr_Number  INTEGER, 

Interven_Preadmit_Flag  VARCHAR, 

Interven_provider_service  INTEGER, 

Interven_Start_Time_unknown  VARCHAR, 

Interven_St_T_unknown  VARCHAR, 

Last_Name  VARCHAR, 

LOS  INTEGER NOT NULL, 

Middle_Name  VARCHAR, 

Most_Responsible_Site VARCHAR, 
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MRN VARCHAR, 

Out_of_Hospital_ooh_indicator  VARCHAR, 

Out_of_hospital_ooh_number  INTEGER, 

PHN INTEGER, 

Postal_Code VARCHAR, 

Pdr_Number  INTEGER, 

Provider_Occurrence  INTEGER, 

Provider_Service  VARCHAR, 

Provider_Type  VARCHAR, 

Patient_Service  INTEGER, 

Patient_Service_Days  INTEGER, 

Patient_Service_Occurrence  INTEGER, 

Patient_Service_Type  VARCHAR, 

Readmit_Code  INTEGER, 

Reporting_Prov INTEGER, 

Residence_Code  INTEGER, 

Responsibility_for_payment  INTEGER, 

Service_Nursing_Area  VARCHAR, 

Time_Patient_Left_ED  VARCHAR, 

Time_Pt_left_ED_unknown VARCHAR, 

Transfer_Hours VARCHAR,  

Transfer_Nursing_Unit  VARCHAR, 

Transfer_In_Date  VARCHAR, 

Transfer_Out_Date  VARCHAR, 

Unit_Transfer_Occurrence  INTEGER, 

Unplanned_return_to_OR  VARCHAR, 

Wait_Time_in_ED  VARCHAR, 

FIN   INTEGER NOT NULL, 

Encounter_Number   INTEGER NOT NULL, 

Admit_Source   VARCHAR, 

Encounter_Type   VARCHAR, 

Medical_Services   VARCHAR, 

MostResponProvider    VARCHAR, 

Address   VARCHAR, 

Family_Physician   VARCHAR, 

Location_Building   VARCHAR NOT NULL, 

Location_unit   VARCHAR NOT NULL, 

Location_Room   VARCHAR NOT NULL, 

Location_Bed   VARCHAR NOT NULL, 

CONSTRAINT PK PRIMARY KEY (EncounterID, Arrival_Date_in_ER, 

Arrival_Time_in_ER, Discharge_Date, Discharge_Disposition, Discharge_Site, 

Discharge_Time, Diagnosis_Code, Health_Care_Number, OS, FIN, 

Encounter_Number, Location_unit), Salt Buckets =5. 

 

3. The construction and build of the framework of HBase (NoSQL) across 

Hadoop (HDFS) with MapReduce components established the BDA 

platform. This construct coincided with and was enforced by the 

existing architecture of the WestGrid clusters at UVic(secure login 

via LDAP directory to deployment database nodes and restricted 

accounts to dedicated nodes). It was initially running the architecture 

of the platform with five worker nodes and one master node (each 

with 12 cores). The data were distributed in parallel on the nodes via 

a balanced allocation to each local disk with running part of the 



ATINER CONFERENCE PAPER SERIES No: IND2017-2430 

 

13 

batch jobs with set metadata and columns for each row up to 50 

million in a serial computing process that generated replications. 

4. A HPC clusters with a total of 4412 cores with batch processing and 

parallelized nodes. Hermes has 2112-core capacity cluster(s) geared 

towards serial jobs that can be distributed. It consists of 84 nodes 

having eight cores each and 120 nodes with 12 cores each. The systems 

are designed for high-performance and advanced-research computing 

and include clusters with fast interconnection and shared memory 

systems. Serial programs run on one CPU or core on a computing 

cluster node. Parallel programs, on the other hand, may have multiple 

processes or threads running at the same time, so that installations 

need to communicate to carry out their tasks. This study used both 

types to send job to ingest file and also to run the Hadoop/MapReduce 

framework or parallel program process. It also utilized the batch serial 

process to access and start jobs over the Hadoop top-down head node 

to slave architecture. 

5. A master DM is the portable batch serial login that was configured as 

head node to worker nodes. Deployment of the Hadoop environment 

on the nodes carried out via a sequence of setup scripts that the user 

calls after loading the modules and setup additional configuration to 

the head node with YARN and ZooKeeper as allocators of various 

deployments. Setup scripts created an initial configuration depending 

on the number of nodes chosen when launching the job. The user can 

adjust those configurations to match the needs of the job and its 

performance. 

6. Making the BDA platform InfiniBand-enabled was challenging, as 

most of the Hadoop environment services rely on the hostname to 

get the IP address of the machine. Since the hostnames on a cluster 

are usually assigned to their management network, the setup scripts 

and the configuration files required adjustment. The InfiniBand was 

used because it offers low latency (in us) and high bandwidth (~40Gb/s) 

connectivity between the nodes. YARN, Hadoop’s resource and job 

manager, un-fortunately still partly used the Gig-Ethernet interface 

when orchestrating between the nodes, but the data transfer was 

carried out on the InfiniBand. Yarn was the resource manager of 

Hadoop and services of scheduling incongruent to running the Hadoop 

jobs. In addition to the MapReduce component, Yarn and HDFS 

constitute the main components (Taylor, 2010). 

7. The queries via Apache Phoenix (version 4.3.0) resided as a thin SQL-

like layer on HBase. This allowed ingested data to form structured 

schema-based data in the NoSQL database. Phoenix can run SQL-

like queries against the HBase data. Similar to the HBase shell, 

Phoenix is equipped with a python interface to run SQL statements 

and it utilizes a .csv file bulk loader tool to ingest a large flat file 

using MapReduce. The load balancing between the RegionServers 

(e.g. “salt bucket”) was set to the number of slaves or worker nodes 

that allowed ingested data to be balanced and distributed evenly. 

8. Apache Spark was also built from source and installed to use on 

HBase and the Hadoop cluster. Spark utilizes Yarn and HDFS 
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architecture and is known to scale and perform well in the data space 

(over distributed files over multiple nodes).  

9. Inspired by Google’s big query engine Dremel, Drill supports a wide 

range of data sources, including .csv, JSON, HBase, etc. (Sitto and 

Presser, 2015). By (re)compiling and optimizing each of the queries 

while it interacts with the distributed data sets via the so-called 

drillbit service, Drill showed capacity of the query with performance 

at a low latency SQL query.  

 

Developing Tools 

 

Several of the open-source software were installed and configured 

to form the analytics platform (Chrimes et al., 2017b). The software 

stack formed is shown in Figure 3. 
 

Figure 3. Software Stack 

 
 

Apache Zeppelin 0.6.0 is a web-based notebook that enables interactive 

data analytics via local host and Spark-SQL. Ithas many built-invisualization 

features to support knowledge presentation. Similarly, Jupyter 4.0.6 

(formerly known as iPython Notebook) is an interactive notebook that 

supports users to interact with data in various programming languages and 

combine code with markdown text to perform visualizations.   

Apache Spark (1.3.0 to 1.5.2) is an open-source parallel processing 

framework to utilize Yarn (Hadoop’s resource manager) and less use of 

MapReduce for running large-scale data analytics applications across 

computer clusters. It has its own SQL-like queries built in. Apache Phoenix 

4.3.0 is an open-source skin on HBase that provides a Java Database 

Connectivity (JDBC) driver and SQL-like access. Phoenix enables Online 

transaction Processing (OLTP) and operational analytics over Hadoop’s 

foundation for low latency applications. It compiles SQL-like query into a 

series of HBase scans, and it orchestrates the running of those scans to 

produce regular JDBC result sets. Phoenix is fully integrated with other 

Hadoop products such as Spark, Hive, Pig, Flume, and MapReduce.    
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Drill 1.3.0 is also Apache open-source software (established 2015) 

that supports data-intensive distributed large-scale datasets using SQL 

ANSI:2003 query types. It offers a low latency query engine and utilizes 

Zoo Keeper. As opposed to the master/slave architecture of Spark in 

which a driver is handling the execution of the Directed Acyclic Graph 

(DAG) on a given set of executors, the drillbits are loosely coupled and 

each can accept a query from the client (Chrimes et al., 2017b). To run 

Drill over a distributed mode, the user will need a ZooKeeper cluster 

continuously running. Drill 1.3.0 and ZooKeeper 3.4.6 were installed and 

configured on the framework of the platform over a port with a local host. 

The receiving drillbit becomes the driver for the query, parsing, and 

optimization over a generated efficient, distributed, and multiphase execution 

plan; it also gathers the results back when the scheduled execution is done 

(Dunning et al., 2016; Jurney, 2013).   

At the foundation of the stack is HDFS. It is the most important 

foundational component of the platform. Yarn is there source manager of 

Hadoop and services of scheduling incongruently running the jobs. In 

addition to Map Reduce component, Yarn and HDFS constitute the main 

components of Hadoop 2.6.0 version.  

 

Data Privacy Protection 

 

Ensuring patient data security and privacy was an important requirement 

in this study. The established platform used the three following methods to 

protect data security and privacy: 

Data Masking – Typically this is carried out by database administrators 

thru rules and regulations set by business/security analysts based on current 

legislations of BC Ministry of Health. The goal was to generate a 

comprehensive list of sensitive elements specific to the organization and 

associated tables, columns, and relationships across the data warehouse and 

encryption of indexed key stores provided by HBase(Chrimes et al., 2017a).  

Data replication – We worked in conjunction with Business Intelligence 

and Data warehouse, Clinical reporting, Application Platform Services, 

Database Administrators, and Physicians/Nurses groups to identify the masking 

or encryption required and optimal techniques to de-identify and restrict 

access to patient data. Once the data form distributed HBase data sets across 

working nodes, it was queried via Apache Phoenix, Spark and Drill only 

thru PBS held by WestGrid.  

Using HBase over Security/Privacy Mechanisms – HBase provided 

comprehensive security/privacy support thru its qualifiers and key-stores of 

data ingested. The access control to data stored in HBase was at table level, 

column family level and column level. HBase supports Kerberos authentication, 

Remote Procedure Call (RPC) and at-rest privacy protection. Data could not 

be queried without WestGrid for authentication. 
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Findings/Results 

 

Data Emulation and Modeling 

 

Over the span of twelve months in 2014-2015, several interviews were 

conducted with business intelligence data warehouse, clinical reporting, 

application platform, and health informatics architecture teams employed at 

VIHA (Table 2). During these interviews, an emulated health Big Data was 

generated from hospital admissions (based on encounter types) and a discharge 

system (based on diagnoses and procedures). In it, data profiles (including 

dependencies) and the importance of the metadata for the clinical reporting 

were confirmed and verified. Furthermore, current reporting limitations of 

the different combinations of the DAD and ADT data were recorded to form 

accurate simulation of the existing and future queries (Wu et al., 2014). To 

test the feasibility of the BDA platform and its performance, the emulated 

patient data had 90 columns that combined DAD and ADT metadata profiles.  

 

Table 2. Use Cases and Patient Encounter Scenarios related to Metadata of 

the Patient Visit and its Placement in the Database related to Query Output 
Case 

No. 
Case 
Description 

Column (Metadata) Used 
for Analysis 

Database 
Build 

Query Output 

1 Uncontrolled 
Type 2 diabetes 
& Complex 
comorbidities 

ICD10-CA, MRN, PHN 
and LOS, Discharge 

DAD with 
Diagnosis 
Codes, patient 
IDs and 
Discharge in 
Columns 

ICD10-CA codes with 
counts, frequencies or 
max values for patient 
encounters 

2 TB of the lung 
& uncontrolled 
DM 2 

ICD10-CA, MRN, PHN, 
Inpatient Encounter, 
Location, Unit Transfer 

DAD and ADT 
columns 

ICD10-CA and 
encounter type codes 
with counts, 
frequencies or max 
values for patient 
encounters 

3 A on C Renal 
Failure, 
Fracture, Heart 
Failure to CCU 
and stable DM 2 

ICD10-CA, MRN, PHN, 
Intervention (CCI), 
Episode, Unit Transfer, 
Bed Location, CCU codes, 
Discharge 

DAD and ADT 
columns 

ICD10-CA, CCI and 
encounter types and 
unit transfer and bed 
location codes with 
counts, frequencies or 
max values for patient 
encounters 

4 Multi-location 
Cancer patient 
on Palliative 

ICD10-CA, MRN, PHN, 
Intervention (CCI), 
Surgery, Episode, Bed 
Location, Transfer to ALC 
Unit, Medical Services and 
Patient Services, Discharge 

DAD and ADT 
columns 

ICD10-CA, CCI and 
encounter types and 
unit transfer and bed 
location and medical 
service codes with 
counts, frequencies or 
max values for patient 
encounters 

5 1 cardiac with 
complications 

ICD10-CA, MRN, PHN, 
Intervention (CCI), 
Surgery, Episode, Bed 
Location, Transfer, 
Medical Services, 
Discharge 

DAD and ADT 
columns 

ICD10-CA, CCI and 
encounter types and 
transfer codes with 
counts, frequencies or 
max values for patient 
encounters 
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6 1 ER to 
surgical, 
Fracture, re-
admit category 
7 days and some 
complication 
after 

ICD10-CA, MRN, PHN, 
Intervention (CCI), 
Surgery, Episode, Bed 
Location, Medical 
Services, Progress Notes, 
Discharge, Re-Admission 

DAD and ADT 
columns 

ICD10-CA, CCI and 
medical services and 
re-admit codes with 
counts, frequencies or 
max values for patient 
encounters 

7 1 Simple Day-
Surg. with 
complication, so 
got admitted to 
Inpatient 
(Allergy to 
medication) 

ICD10-CA, MRN, PHN, 
Intervention (CCI), 
Surgery, Bed Location, 
Medical Services, 
Discharge 

DAD and ADT 
columns 

ICD10-CA, CCI and 
medical services codes 
with counts, 
frequencies or max 
values for patient 
encounters 

8 1 cardiac with 
complications 
and Death 

ICD10-CA, MRN, PHN, 
Intervention (CCI), 
Episode, Bed Location, 
Transfer, Medical 
Services, Discharge 
Disposition 

DAD and ADT 
columns 

ICD10-CA, CCI and 
medical services, 
discharge disposition 
and transfer codes 
with counts, 
frequencies or max 
values for patient 
encounters 

9 1 Normal birth 
with postpartum 
hemorrhage 
complication 

ICD10-CA, MRN, PHN, 
Intervention (CCI), 
Surgery, Episode, Bed 
Location, Medical 
Services, Discharge 

DAD and ADT 
columns 

ICD10-CA, CCI and 
medical services and 
discharge codes with 
counts, frequencies or 
max values for patient 
encounters 

10 1 HIV/AIDS 
patient treats for 
underlying 
factor (an 
infection) 

ICD10-CA, MRN, PHN, 
Medical Services, 
Discharge 

DAD and ADT 
columns 

ICD10-CA, and 
medical services codes 
with counts, 
frequencies or max 
values for patient 
encounters 

11 Strep A 
infection  

ICD10-CA, MRN, PHN, 
Medical Services, 
Discharge 

DAD and ADT 
columns 

ICD10-CA, and 
medical services codes 
with counts, 
frequencies or max 
values for patient 
encounters 

12 Cold but 
Negative Strep 
A. Child with 
throat culture 

ICD10-CA, MRN, PHN, 
Medical Services, 
Discharge 

DAD and ADT 
columns 

ICD10-CA, and 
medical services codes 
with counts, 
frequencies or max 
values for patient 
encounters 

13 Adult patient 
with Strep A. 
positive and 
physical exam 

ICD10-CA, MRN, PHN, 
Medical Services, Patient 
Services, Discharge 

DAD and ADT 
columns 

ICD10-CA, patient 
and medical services 
codes with counts, 
frequencies or max 
values for patient 
encounters 

14 Severe 
Pharyngitis with 
physical exam 

ICD10-CA, MRN, PHN, 
Medical Services, Patient 
Services, Discharge 

DAD and ADT 
columns 

ICD10-CA, patient 
and medical services 
codes with counts, 
frequencies or max 
values for patient 
encounters 

15 Child, moderate 
Pharyngitis, 

ICD10-CA, MRN, PHN, 
Medical Services, 

DAD and ADT ICD10-CA, and 
medical services codes 
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throat culture 
negative, 
physical exam  

Discharge columns with counts, 
frequencies or max 
values for patient 
encounters 

16 Adult, history of 
heart disease, 
Positive culture 
for Strep A.  

ICD10-CA, MRN, PHN, 
Medical Services, Patient 
Services, Discharge 

DAD and ADT 
columns 

ICD10-CA, patient 
and medical services 
codes with counts, 
frequencies or max 
values for patient 
encounters 

17 Adult, physical 
exam, moderate 
pharyngitis, 
positive for 
strep A. culture 
and positive 
second time, re-
admit 

ICD10-CA, MRN, PHN, 
Medical Services, Patient 
Services, Discharge 

DAD and ADT 
columns 

ICD10-CA, patient 
and medical services 
codes with counts, 
frequencies or max 
values for patient, 
readmit encounters 

 

We successfully benchmarked the performance of the BDA platform 

with clinical data warehouse utilization processes. Within the archive of 

data warehouse, two of the largest data sets are the Admission, Discharge, 

Transfer (ADT) and the Discharge Abstract Database (DAD). ADT has over 

1000 tables with 75 columns containing individual patient bed-tracking 

information, while the DAD is set by a data dictionary (hundreds of data 

elements) of 28 columns contains Canadian Institute for Health Information's 

(CIHI) diagnostic codes and discharge abstract metadata. These data sets are 

not system linked to form an all-encompassing database. In a hospital 

system, the capacity to record patient data efficiently in the ADT is crucial 

to timely patient care and quality patient-care deliverables. Thus, the ADT 

system is often referred to as the source of truth for reporting operations of 

inpatient to outpatient and discharged (Chrimes et al., 2017b). A suitable 

analysis of ADT and DAD integrated data in this study shows many benefits 

of using big data technologies to produce high volumes while interactively 

applying new ways to query the data to find unknown correlations and 

trends. Figure 4shows the overall industrial design of the platform crossover 

and bolt-on with the current production system. 
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Figure 4. Industrial Design of the Big Data Analytics (BDA) Platform as Bolt-

on Solution to Hospital System Services Involving Physicians, Nurses, Health 

Professionals, Health Records, Data Warehouse, Database, Analytics and 

Application Platform Services Maintained with Patient Encounters into System 
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Data Ingestion and Query Performance  

 

The pathway to running ingestions and queries over the BDA platform 

includes nine user-to-system steps (Chrimes et al., 2017b): 

 

1. Generating .csv flat files 

2. Apache Phoenix Module Load 

3. HDFS Module and Ingestion of HFiles 

4. BulkloadingHFiles to HBase 

5. HBase Compression 

6. Phoenix SQL-like Queries 

7. Apache Spark and Drill Module Loads 

8. Notebook and Python/Pypark Module Loads 

9. Spark and Drill SQL-like Queries 

 

Thru this sequence, the Phoenix module loaded after Hadoop and HBase 

SQL code was directed and then iteratively run to ingest three billion rows to 

the existing HBase. Phoenix can run SQL-like queries against the HBase 

data. It was utilized to index and place schema over each .csv file bulk loaded 

to ingest using MapReduce. The queries via Apache Phoenix resided as a 

thin SQL-like layer on HBase. This allowed ingested data where the batch 

loads were 50 million each via the index and schema between HBase’s 

Region Servers thru a functional SQL-like code of “salt bucket” that set the 

number of worker nodes in the cluster to five evenly distributed data. This 

additional code was deemed necessary as HDFS did not automatically 

distribute data evenly and queried unbalanced data showed slow performance. 

Performance was measured with three main processes: HDFS ingestions, 

bulk loads to HBase, and query times. Three flat files (.csv) with different 
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number of rows (50 million, 1 and 3 billon) were ingested to HDFS for testing 

(Table 3).  

 

Table 3. HDFS Data Ingestions 

Data Size Ingestion Time 

50 Million records (23GB) ~3-6 min 

1 Billion records (451GB) ~60-120 min 

3 Billion records (10TB) ~180-360 min 

 

At an optimized iteration, HDFS ingestion required three seconds but 

HBase required four to twelve hours to complete the Reducer of MapReduce. 

HBase bulk loads took a week for one billion and over two months for three 

billion (Table 4). 

 

Table 4. HBase Distributed Data Durations 

Data Size Completion Time 

50 Million records (0.5TB) 3-12 hrs 

1 Billion records (10TB) 60-240 hrs 

3 Billion records (30TB) 300-480 hrs 

 

A SQL script containing all the queries was written and ran using 

Phoenix sqlline.py. The total number of queries that were used was 22: two 

simple queries with wildcard column selection; ten simple queries that did 

not involve more than three columns in the primary keys (family qualifiers); 

and, ten complex queries that had >3columns selected (Table 5). All queries 

run on Zeppelin, Jupyter, Spark-terminal and Pyspark, as well as Drill took 

approximately the time of 50-120 seconds to load the data and query. Spark 

was configured to run on specialized Yarn-client with 10 executors, four 

cores with 8 GB of RAM each; therefore, each node had two executors with 

a total of eight cores and 16 GB memory. However, Drill was faster with its 

configuration involving inherent ZooKeeper allocations via its drillbit 

components. 
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Table 5. Performance of Queries over 50 million (M), 1 and 3 Billion (B) 

Patient Records 

Query Questions 
Response Time (sec) 

50M   1B 3B  

1.  Wildcard Selection of Encounter Data 1.84 1.87 3.05 

2.  Wildcard Selection of EncounterID with 

Ambulance Encounter 
1.83 1.77 1.65 

3.  Diagnosis (Dx) with LOS 1.14 1.47 2.11 

4.  Frequency of Diagnosis (Dx) with LOS 1.64 1.68 2.32 

5.  Dx  with Discharge Date and Time 0.83 0.77 1.02 

6.  Dx with Unit Transfer Occurrence 1.15 1.22 1.67 

7.  Dx with Location of Building, Unit, Room, 

and Bed and Discharge Disposition 
1.16 0.84 0.98 

8.  Dx with Encounter Type & LOS 0.69 0.68 0.98 

9.  Dx with Medical Services & LOS 0.44 0.38 1.02 

10. Provider Service with Dx 1.35 1.44 1.92 

11. Highest LOS for MRNs with Admit_Date 1.45 1.46 1.62 

12. Frequency (or number) of Admit_Category 

with Discharge_Date 
1.86 1.76 1.89 

13. Admitted by Ambulance, Interventions, 

and Medical Services with Dx 
1.79 1.87 1.89 

14. Intervention and Location with 

Admit_Date and Admit_Time 
1.64 1.75 1.87 

15. Medical Services with Unit Transfer             

Occurrences  
1.83 1.75 1.92 

16. Admit Category and Discharge with 

Transfer  
1.64 1.75 1.75 

17. Encounter Types with Discharge and 

Transfer 
1.85 1.76 1.53 

18. Medical Services with Days in Unit 1.82 1.90 2.34 

19. Admission, Transfer with Intervention and 

Encounter  
1.97 1.88 3.02 

20. Frequency (or number) of Admit_Category 

with Patient Services 
1.85 1.79 2.61 

21. Provider Occurrence with Nurse Services 1.62 1.65 1.70 

22. Provider with Dx and Intervention 1.85 1.75 1.71 

 

For performance benchmarking, three metric measures were used: HDFS 

ingestion(s), bulk loads to HBase, and query times via Phoenix. We computed 

the ingestion efficiency (IE) and query efficiency (QE) of one billion compared 

to 50 million records using the formula in equation (1): 
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   (1) 

 

Where Ti (N) is the time it takes to ingest N records to either HDFS or 

HBase.  

Figure 5 shows the fluxes of the IE for all 60 iterations to three billion. 

Furthermore, QE performance of Apache Spark and Apache Drill on the exact 

same data (Figure 6). 

 

Figure 5. Sixty Iterations of HFile to Bulk loading via MapReduce to HBase 

Distributed Database. Solid Line is Actual Minutes to Complete All Job Tasks 

and the Dotted Line is Average Duration 
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Figure 6. Drill and Spark Query Performance 

0

200

400

600

800

1000

1200

1400

0

200

400

600

800

1000

1200

1400

50 Million 1 Billion 3 Billion

Drill_Querying Spark_Querying
 

 

 

Discussion 

 

The Big Data Analytics (BDA) platform with Hadoop/MapReduce 

framework over HBase was successfully implemented. The primary objective 

of establishing proof-of-concept of interactive platform with high performance 

was achieved. Further evaluation of the process of how to configure to 
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efficiently operate and analyze patient data over a distributed computing 

system in operational hospital system was accomplished. Nevertheless, there 

were a few challenges to maintaining the platform operationally: major 

undertaking to manually run batches of file ingestions to accurately update 

the database without errors. Furthermore, ongoing update of software 

versions and integration with Hadoop’s ecosystem requires constant maintenance 

of operating system. Despite having a comprehensive data security/privacy 

covered by access, authentication and key-store data encryption of HBase, 

we still faced similar difficulties to obtain real patient data for research. 

Nonetheless, we used simulated data of real schemas of hospitalization data 

of VIHA’s data warehouse for further change control and development of 

net new technologies utilizing patient data in non-production environments 

to test for production. 

The bulk of the methodology of the replication of operational generations 

of the emulated data and queries with Hadoop configurations and other 

software, i.e., HBase, Spark and Drill, was completed over industrial design 

and integration of technical Big Data components. Most of the configurations 

were somewhat out-of-the-box installations of the distributed filing system 

and MapReduce components in Java, Python and Scala to perform as 

expected. Therefore, Hadoop-MapReduce configurations established the 

platform. It produced the bulk loads of 50 million rows in iteration to one 

billion were slow. Ingestions to three billion were even slower. It was found 

that these slow performances were caused by Reducer in placing data to 

map of database (Mapper was fast ~1-6min). Additionally, each iteration of 

50 million rows to form key-valued noSQL database took longer because 

the HBase had to be compacted (and re-indexed) after each batch before 

running the next iteration. Number of failed ingestions increased, as the file 

system grew more than expected, and compression of HBase had to run 

more frequently. If we were to re-run the iteration without running 

compression, one or all the servers would go “Dead” resulting in system 

crash and cleanup of the data that was distributed partially in that iteration. 

At times, a full clean-up was required, so after running HBase for too long, 

removing error messages required clearing out content on the cluster, re-

starting the modules, and even re-loading Hadoop and HBase. Thus, the 

process of reaching to three billion records via iterations took about a month 

but these times were as fast as or faster than current data migrations (of a 

similar size) estimated. Finally, since we did not use real patient data, 

advanced health patterns or trends were only confirmed to be randomized 

replicated data clusters. 

The most impactful technology of the Big Data components in this 

study was MapReduce (and Java code performance therein). MapReduce 

methodology is inherently complex as it has separate Map and Reduce task 

and steps in its defaulted programming framework, as this study discovered. 

This study’s platform was highly dependent on the efficiency of MapReduce in 

ingesting files over the six nodes, using this workflow: input  map  

copy/sort  reduce output similar to a study by Chenet al. (2012a). Once 

configurations in Yarn, ZooKeeper and others, the Reducer were optimized 

with iterations of 50 million rows with data, integrity of the desired clinical 

event model was established via SQL-like in Apache Phoenix. According to 



ATINER CONFERENCE PAPER SERIES No: IND2017-2430 

 

24 

blogs with technical resolutions, enabling or disabling services or xml settings 

over the platform as expected to be carried because the system relied 

heavily on InfiniBand (IB) bandwidth. Also there are known issue with 

using MapReduce over HBase with slow performance after additional indexing 

of data and its store (Greeshma and Preadeepini, 2016; Maier, 2013; Sakr 

and Elgammal, 2016; Taylor, 2010; Yu et al., 2016). 

The data used in this study consisted of diagnosis codes, personal health 

numbers, medical record numbers, dates of birth, and location mnemonics 

(to mention only a few of the 90 columns), as these codes are standardized 

for hospital systems and, compared to genetic data, easier to replicate in 

metadata in large volumes. The use of groups of events allows the definition 

of a phenotype to go beyond diagnosis as coded using the International 

Classification of Disease, version 9, codes (ICD-9) and potentially allows 

assessment of the accuracy of assigned codes (Freire et al., 2016; Hripcsak 

and Albers, 2013). In healthcare, the complexity of Big Data storage and 

querying increase with unstructured sets of data and/or images. Images take 

up lots of storage capacity and are difficult to process and next to impossible 

to query in large volumes. The growth in the volume of medical images 

produced on a daily basis in modern hospitals has forced a move away from 

traditional medical image analysis and indexing approaches towards 

scalable solutions (Wang et al., 2011). MapReduce has been used to speed 

up and make possible three large-scale medical image processing use-cases: 

(1) parameter optimization for lung texture classification using support 

vector machines (SVM), (2) content-based medical image indexing/ retrieval, 

and (3) dimensional directional wavelet analysis for solid texture classification 

(Markonis et al., 2012). In their study, as in our study, a default cluster of 

heterogeneous computing nodes was set up using the Hadoop platform, 

allowing for a maximum of 42 concurrent Map tasks. The present study did 

not test the amount and efficiency of concurrent Map tasks of MapReduce 

to process the data to HBase ingestions; this is something to be investigated 

further as using real hospital data that is highly unstructured and rich in 

images might require this enhancement. Moreover, this study ran up against 

limitations in the ability of the Reducer component of MapReduce more 

than Map tasks to form the bulk loads of HBase and its NoSQL schema, and, 

therefore, the Reducer improvements should be investigated before Map tasks. 

The complex nature of HBase means that it is difficult to test the 

robustness of the data in emulations based on real data. Several steps were 

required to prepare the DAD database alone for statistical rendering before 

it was sent to CIHI. The actual columns used in this study are the ones used 

by VIHA to derive the information accurately in a relational database, which 

ensures the data is in alias pools and not duplicated for any of the encounters. 

The DAD data also makes calculations (which in the reporting workflow 

adds columns), which is what the reporting and data warehouse teams also 

do to form their databases. Adding columns to a NoSQL database is much 

easier than adding columns to a SQL relational database, and von der Weth 

and Datta (2012) showed good performance of multi-term keyword searches. 

Therefore, it is an advantage to have a large database with row keys and 

column families already set up; this is supported by Xu et al. (2016), as their 

middleware ZQL could easily convert relational to non-relational data. 
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However, the indexing of HBase proved to decrease the time to ingest the 

data accurately (so that queries produced accurate information). If the indexing 

was not reiterated, with the addition of new columns or rows, then the data 

cannot be queried at all. Spark and Drill performed well with the larger 

volumes, thus offering an alternative to HBase (without the indexing); 

however, the data cannot be fully represented without indexing if real patient 

data is to be used. Not all columns are known, but mimicking an index with 

family columns does enable simulation of the data model of the hospital. 

This is a significant drawback, and more data modeling of the relational to 

the non-relational database is required. 

Essentially this study is proposing a row-column key-value (KV) model 

to the data distributed over a customized BDA platform for healthcare 

application. Wang et al. (2013) support this study’s claim in their statement 

that non-relational data models, such as the KV model implemented in 

NoSQL databases. Wang et al. (2014) further stated that NoSQL provided 

high performance solutions for healthcare, being better suited for high-

dimensional data storage and querying, optimized for database scalability 

and performance. A KV pair data model supports faster queries of large-scale 

microarray data and can be implemented using HBase (an implementation of 

Google’s BigTable storage system). The new KV data model implemented 

on HBase exhibited an average 5.24-fold increase in high-dimensional 

biological data query performance compared to the relational model 

implemented on MySQL Cluster and an average 6.47-fold increase on query 

performance on MongoDB (Sakr and Elgmmal, 2016). Their performance 

evaluation found that the new KV data model, in particular its implementation 

in HBase, outperforms the relational model currently implemented; therefore, it 

supports this study’s proposed NoSQL technology for large-scale data 

management over operational BDA platform. 

Nelson and Staggers (2014) have stressed the importance of patient data 

modeling with Big Data platforms in healthcare. They indicated that a lack 

of BDA ecosystems is one of the reasons why healthcare is behind other 

sectors in utilizing current technologies to harness Big Data, and that that 

nursing informatics and data from nurse progress notes are underutilized in 

hospital systems. Wang et al. (2014) also compare bioinformatics with 

healthcare and Big Data applications. Bioinformatics can match extremely 

large libraries of genetic data to libraries of medications or treatments; 

however, such matching in real-time over large hospital systems of patient-

centric frameworks in Canada is difficult due to current traditional data 

warehousing practices of storing relational data. Chawla and Davis (2013) 

and Kuo et al. (2011) argue that even structured data lack interoperability 

among hospital systems, so that no solutions could possibly link all data. At 

VIHA, for example, it is difficult to link the DAD and ADT data on 

encounters, because the DAD data on diagnosis and intervention are not 

stored together or integrated or have relational dependencies in an all in one 

data warehouse, while the ADT automatically links the data to encounters. 

Therefore, more validation is required to match corresponding medical 

services in ADT to patient diagnosis from the DAD. 

Srirama et al. (2012) indicated that Hadoop is suitable for simple iterative 

algorithms where they can be expressed as a sequential execution of constant 



ATINER CONFERENCE PAPER SERIES No: IND2017-2430 

 

26 

MapReduce models (that could also be configured to be representative of 

the clinical event model of hospital systems). It is not well suited for complex 

statistical analysis or iterative problems. To amend the Hadoop’s ecosystem 

weaknesses, we plan to engineer “R” to work over Hadoop (e.g. RHadoop). 

R and Hadoop complement each other very well in BDA and in data 

visualizations (Das et al., 2010). 
 

 

Conclusions 

 

In this study, Hadoop/MapReduce framework was proposed to implement 

a data-volume-intensive distributed computing platform. Few studies have 

tested Big Data tools in Hadoop’s ecosystem in healthcare. And even fewer 

studies have established a simulation of three billion patient records. Therefore, 

this study achieved the top three V’s that define Big Data: high performance 

(or velocity) over its generator of detailed data (or variety) that formed 

extremely large quantities (or volume). Our future work will involve user 

acceptance testing under different simulations and clinical event models.  
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