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Virtual Hybrid- and Meta-Optimization of Forming 

Processes 
 

Rolf Steinbuch 

 

Abstract 

 

Today the optimization of metal forming processes is done using advanced 

simulation tools in a virtual process, e.g. FEM-studies. The modification of 

the free parameters represents the different variants to be analysed. So 

experienced engineers may derive useful proposals in an acceptable time if 

good initial proposals are available. As soon as the number of free 

parameters growths or the total process takes long times and uses different 

succeeding forming steps it might be quite difficult to find promising initial 

ideas. In metal forming another problem has to be considered. The 

optimization using a series of local improvements, often called a gradient 

approach may find a local optimum, but this could be far away from a 

satisfactory solution. Therefore non-deterministic approaches, e.g. Bionic 

Optimization have to be used. These approaches like Evolutionary 

Optimization or Particle Swarm Optimization are capable to cover a large 

range of high dimensional optimization spaces and discover many local 

optima. So the chance to include the global optimum increases when using 

such non-deterministic methods. Unfortunately these bionic methods require 

large numbers of studies of different variants of the process to be optimized. 

The number of studies tends to increase exponentially with the number of 

free parameters of the forming process. As the time for one single study 

might be not too small as well, the total time demand will be inacceptable, 

taking weeks to months even if high performance computing will be used. 

Therefore the optimization process needs to be accelerated. Among the 

many ideas to reduce the time and computer power requirement Meta- and 

Hybrid Optimization seem to produce the most efficient results. Hybrid 

Optimization often consists of global searches of promising regions within 

the parameter space. As soon as the studies indicate that there could be a 

local optimum, a deterministic study tries to identify this local region. If it 

shows better performance than other optima found until now, it is preserved 

for a more detailed analysis. If it performs worse than other optima the 

region is excluded from further search. Meta-Optimization is often 

understood as the derivation of Response Surfaces of the functions of free 

parameters. Once there are enough studies performed, the optimization is 

done using the Response Surfaces as representatives e.g. for the goal and the 

restrictions of the optimization problem. Having found regions where 

interesting solutions are to be expected, the studies available up to now are 

used to define the Response Surfaces. In many cases low degree 

polynomials are used, defining their coefficients by least square methods. 

Both proposals Hybrid Optimization and Meta-Optimization, sometimes 

used in combination often help to reduce the total optimization processes by 

large numbers of variants to be studied. In consequence they are highly 

recommended when dealing with time consuming optimization studies. 
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Terms and Definitions 

 

To discuss robust and reliable optimization effectively in the next 

sections, we have to use the same terms for the same phenomena. As 

optimization research is done by various groups within various and diverse 

scientific fields, and also in different regions of the earth, there is the real 

danger to get confused as the meanings of terms may diverge from group to 

group. Thus, we must clarify the set of terms used. Most people involved in 

optimization accept that for an optimization study (Steinbuch, Gekeler, 

2016): 

We need a given goal or objective . 

 This objective  depends on a set of free parameters . 

 Limits and constraints are given for the parameters values. 

 There are restrictions of the parameter combinations to avoid 

unacceptable solutions. 

 We seek to find the maximum (or minimum) of . 

 

To better define our terminology, we use the following conventions and 

findings: 

 The objective or goal must be defined à priori and uniquely. 

Changing the definition of the goal is not allowed, as this poses a 

new question and requires a new optimization process. 

 We need to define all free parameters and their acceptable value 

ranges we might modify during the optimization studies. 

 This value ranges or parameter ranges  are the span of the free 

parameters given by lower and upper limits. Generally it should be a 

continuous interval or a range of integer numbers. 

 The fewer free parameters we must take into account, the faster the 

optimization advances. Consequently, accepting some parameters as 

fixed reduces the solution space and accelerates the process we look 

at. 

 Restrictions, such as unacceptable system responses or infeasible 

geometry, must be taken into account. But restrictions limit the 

ranges of parameters to be searched. Such barriers have the potential 

to prevent the optimization process from entering interesting regions. 

 Finding the maximum of  is the same process as 

finding the minimum of the negative goal . There is 

no need to distinguish between the search of maxima or minima. 
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Figure 1. Climbing up a Hill using Gradient Methods 

 
 

Gradient based Optimization Methods 

 

Gradient based optimization methods are the most popular ways to find 

improvements of given situations. From an initial position, the derivatives 

of the objective  with respect to the free parameters are 

determined. The column of these derivatives defines the gradient. Jumping 

along this gradient, for example, by using a line search method such as 

Sequential Quadratic Programming (SQP) (Bonnans et al., 2006), or any 

related method, has the tendency to find the next local maximum in a small 

number of steps or iterations, as long as the search starts not too far away 

from this local maximum (Figure 1).  

Optimization using this climbing of the ascent of the gradient is often 

labelled as a Gradient Method or included in the set of deterministic 

optimization methods. Here each step is determined by the selection of the 

starting point. Unfortunately, the numerical determination of the gradient 

requires 2  function evaluations per iteration, which may be an 

extended effort if the number of parameters is large and the hill not shaped 

nicely. 

 

Bionic Optimization 

 

Deterministic methods, such as gradient climbing, fail as soon as there 

are many local hilltops to climb. Only the next local maximum from the 

starting point is found if problems occur such as the one shown in Figure 2.   
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Figure 2. Multi-Hill Landscape with Many Local Optima 

 
 

An alternative is using purely stochastic searches, which may consist of 

randomly placed points in the parameter space. They guarantee discovery of 

the optimum, but only if we allow for very large numbers of trials. For real 

engineering applications, they are far too slow. A more powerful class of 

methods produces some random or motivated initial points into the 

parameter space and uses them as starting points for a gradient search. As 

long as the problem is of limited difficulty and does not have too many local 

optima, this might be a successful strategy. For problems that are more 

difficult to handle, the bionic methods presented in e.g. in (Steinbuch and 

Gekeler, 2016) prove to be more successful. They combine randomness and 

qualified search and have a sufficient potential to cover large regions of 

high-dimensional parameter spaces. Some randomly or intentionally placed 

initial designs are used to start an exploration of the parameter space and 

propose in reasonable time designs that might be outstanding, if not even the 

best. (Steinbuch and Gekeler, 2016) discuss some of the Bionic 

Optimization methods and give the basic ideas, examples of applications, 

and sketches of program structures. 

 

Efficiency of Optimization Strategies 

 

The task to solve optimization problems with a not too small number of 

free parameters requires large numbers of individual solutions to be 

evaluated, either to define the gradient or to search the parameter space in 

bionic optimization. Figure 3 (Gekeler et al., 2012) gives an idea about this 

number of studies for different bionic and deterministic approaches. We 

realize that the total computing times will be inacceptable as soon as the 

evaluation of one individual takes more than small fractures of seconds. In 

metal forming, where computing times per variant are in the range of hours 

to days. So the total optimization time would be in the range of many years. 

Evidently we have to think about efficient acceleration of the processes.   
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Figure 3. Efficiency of Different Optimisation Strategies 

 
Hybrid Optimization 

 

The different optimization strategies show good performance at 

different problems. There is no doubt, that random or bionic based methods 

should be used if the goal is represented by a landscape like in Figure 2. For 

isolated hills (Figure 1) gradient searches will perform better. So it is always 

a good idea to check, whether switching from one approach to another 

might be preferable. Typical indications for such a decision could be found 

by estimating the shape of the goal from the variants studied up to now.    

 

Reliability and Robustness 

 

Uncertainty is inevitable in engineering design. Every component, 

every material and all load sets are not given by exact data, but tend to 

scatter around some predefined values. Therefore research about design 

under uncertainty has been growing over the last years and is now used in a 

wide range of fields from simple product components to designing complex 

systems. Terms such as “Robust Design” and “Reliability Based Design 

Optimization” have been introduced in some design software packages. But 

their application to parametric uncertainty is difficult and limited. Robust 

design is mainly exploited to improve the quality of a product and to 

achieve the required level of performance. This can be done by minimizing 

the effect of the scatter; however, the causes are not eliminated.  

Reliability-based Design Optimization (RBDO), as one paradigm of 

design under uncertainty searches optimal designs with low probabilities of 

failure within the expected scatter of the produced parts. Robust design 

optimization (RDO) seeks a product design which is not too sensitive to 

changes of environmental conditions or noise. RDO tries to minimize the 
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mean and the variation of the objective function simultaneously under the 

condition that all constraints are satisfied (Wang et al., 2010; Tu et al., 

1999).  

For optimization under uncertainty, it is necessary to take both the 

probabilistic design constraints and the design objective robustness into 

account. In Figure 4 one can observe in the case of an optimization problem 

with one free parameter that unreliable parts are not robust, as they fail to 

comply with the restrictions. This corresponds to unacceptable values of the 

objective (Gekeler and Steinbuch, 2014). On the other hand there are 

optima, which are reliable but not robust. Finally robust and reliable optima 

are what we are searching in most cases. 

 

Figure 4. Definition of Reliability and Robustness 

 
 

Many engineers use the First Order Reliability Method (FORM) or 

Second Order Reliability Method (SORM) (cf. Figure 5) successfully to 

perform optimization and reliability or robustness applications. But, due to 

some difficulties, they are not suitable for every optimization case. The most 

important problems related to FORM and SORM are (Gekeler and 

Steinbuch, 2014): 

 

 scattering input data have to be independent when they are 

considered as random variables. They must follow a normal 

distribution or have been transformed into a normal distribution; 

 the linear or quadratic approximation of the restrictions hyper-plane 

may not be conservative. In 
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Figure 5 (F) indicates the region where FORM is not conservative, 

while (S) adds the region where SORM is not conservative; 
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Figure 5. 2
nd

 Restriction and Non-conservativeness of FORM (F) and 

SORM (S) 

  
 

 the normalization of the random variables requires a good guess of 

the mean and standard deviation of the multidimensional random 

variables which may be found only after a large number of tests; 

 the approaches primarily hold only for one critical restriction, and 

they may fail or become less applicable as soon as there is a second 

restriction active as shown in 
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Figure 5. 

 

As the proposed approaches to carry out reliability and robustness 

studies consume much time and computing power, faster steps to come up 

with acceptable results were proposed (Gekeler and Steinbuch, 2014). These 

proposals, found by the advanced optimization techniques, may be used as 

input for manufacturing without having to consider uncertainty at all. To 

take into account stochastic problems, a more general definition of the 

robust and reliable optimization was suggested. The objective function of np 

parameters is described as: 

 

 (1.1) 

  

where  is a vector composed of two other vectors,  and : 

 

 (1.2) 

  

Here  stands for the vector of optimization goals, while r represents 

the set of  restrictions. In general there are given limits to the design 

parameters 

 

 (1.3) 

  

In addition all may show some scatter indicated by 

 

 (1.4) 

  

Among others (Wang et al., 2010) distinguish sets of non-scattering 

design or optimization parameters scattering design or optimization 

parameters , and scattering non-optimization parameters . If one allows 

 for some set of parameters and  for another set or 

even the same set of the same parameters, these three classes will be 

reduced to one set of optimization goals or restrictions z and parameters p   

as proposed in eqs. (1.1) to (1.4). Some of them do not essentially scatter, 

and some of them are fixed within their tolerances. This allows for a more 

simple annotation without losing the generality of the idea. Using this 

approach, the optimization might be done in a relatively compact way. 

 

 

Metamodeling 

 

The main concern of stochastic mechanics is to use a sufficient amount 

of test data to provide acceptable probabilistic measures (Doltsinis, 2012). 

One common and efficient way to solve this problem is using Meta models, 

e.g. Response Surfaces (RS) in all components of . These RS 

provide approximations of the goal and the restrictions. They allow for 

estimations of the mean and standard deviation of all the components of . 
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(McKay et al., 1979; Au et al., 1999; Das et al.; 2000; Matthies et al., 2013; 

Dubourg et al., 2013; Bourinet et al., 2011). 

In this formulation, the goal and the restrictions are defined respectively 

as  and  (cf. eq. 1.1 and 1.2).  In many cases, RS are first or second order 

degree polynomials in the optimization parameters. Since frequently better 

data are not available, one may use them to perform the reliability or the 

robustness analysis. The main disadvantage of this approach is that a large 

number of tests are required (i.e. FE-jobs or experimental measurements). A 

second order RS could be defined by its coefficients: 

 

 
(2.1) 

 

The number of coefficients for this second order RS is given by 

 

 (2.2) 

  

where  denotes the number of optimization parameters. To find the RS by 

a least squares method, the number of tests should be about twice the 

number of coefficients. In consequence there should be about  tests. For 

nonlinear studies and some (e.g. ) optimization parameters, where 

one job may take some hours, the total computation time may become 

absolutely unacceptable. A reduction of the number of coefficients in eq. 

(2.1) by omitting the mixed terms to  

 

 
(2.3) 

  

may sometimes help accelerate the process, as there are only  

unknown coefficients and one has to run about  tests. But this 

simplification may essentially reduce the quality of the approximation. The 

response surfaces found by any means may be used to estimate the goal or 

the reliability as shown in Figure 6. The short vertical lines indicate the test 

data and their distance to the RS. 

In many cases the optimum and the MPP (cf. Figure 5) coincide as the 

optima often are found to be close to restrictions. If the random variables are 

following normal distributions, one may find the failure probability at 

parameter values from the mean and the standard deviation. The reliability 

close to the MPP and optimum then becomes 50% because .  

 

Figure 6. Approximation of a Goal or Restriction by a 2
nd

 Order Response 

Surface 
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In these cases, neither reliability nor robustness requirements are 

fulfilled. If such an optimized design does not provide sufficiently high 

reliability or robustness, its free parameters must be modified to shift it 

away from the critical regime. This may be done by translating the 

parameters along a direction close to the normal  or the gradient of the 

restriction  from the MPP in Figure 5. Studies, such as the ones on the 

response surfaces, may help to give acceptable representations of the 

preferable position of the design. Care should be taken in the presence of 

more than one restriction (
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Figure 5). If other restrictions prohibit feasible solutions near the optimum, 

we need to search other regions of the parameter space which are large 

enough to allow solutions that do not violate any restriction. 

Example: We analyze the bending of an L-Profile fixed at its lower end 

while a deflection of the upper end of umax = 400 mm is applied (Steinbuch 

and Gekeler, 2016). The goal is the minimization of the mass of the L-

profile. The length  and thickness  are defined as free parameters (Figure 

7). 

 

Figure 7. L-Profile under Displacement Controlled Bending Load 

  
       

a) Overall view b) Free parameters  and  

 

Figure 8 indicates the meaning of the constraints on the force and 

energy. 

 

Force , 

, 

. 

 

In order to generate the corresponding response surfaces, one needs to 

place variants in the parameter space. Using them Response Surfaces for the 

goal and the constraints will be generated. Then the restrictions are applied 

to the Response Surfaces (see Figure 9). 
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Figure 8. Definition of Constraints on Force and Energy 

 
Figure 9. Response Surface of Goal and Restrictions for L-Profile 

 
 

The optimization is done on the response surface of the mass in order to 

find the deterministic optimum. The optimum without taking into account 

the scattering is indicated in Figure 10. 

 

Figure 10. Optimization on RS, which Represents the Mass in the 

Acceptable Parameter Region 
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Now the reliability and robustness of the optimum must be guaranteed. 

We do it by stepping away from the limits of the allowed parameter region, 

following the expected scatter (Figure 11). The quantification of this scatter 

must be provided by real-world experiences of the manufacturing process 

and the material quality. 

 

Figure 11. Guess Reliability and Robustness by the Use of the Expected 

Scatter of the Input Data 

 
 

 

Application to Metal Forming 

 

With growing demands and the high complexity and variety of the 

products, simulation of forming processes is an increasingly important field. 

Understanding how the loads will act on a part required to dimension the 

forming tools and to determine the process borders. Simulations are used to 

control the quality of the final product at an early stage of the process 

development. Their flexibility enables quick changes of process parameters, 

and the evaluation of their effects. Here Robust and Reliable Optimization 

may help avoid defects in production lines, reduce testing and improve 

efficiency in the metal forming process. 

 

Deep Drawing of a Can 

 

Deep drawing is a method of sheet metal forming. In this process a 

sheet metal blank is axially drawn into a hollow cup (can) with a forming 

die and the mechanical action of a punch. The end form is achieved by 

redrawing the intermediate form through a series of dies (Ping et al., 2012). 
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Figure 12. The First Stage of the Deep Drawing Process (Gekeler et al., 

2015)  

 
 

a) Tools of the 1
st
 Step of Deep 

Drawing 

b) 1
st
 Intermediate Form of the Workpiece 

– Simulation Indicates the Effective 

Plastic Strain 

  

Figure 13. Optimization Workflow for Can Optimization with Simufact 

(www.simufact.com) 

 
 

In our example the workpiece is a blank with predefined dimensions of 

radius and height. The deep drawing process contains many components and 

steps. The first forming, shown in Figure 12 uses the following tools: a die 

(ring), a blank holder (not shown), and two punches, which move together 

during the first stage. The blank lies between the die and holder. It is drawn 

into a forming die. In the next stage the tools include a forming die with a 

smaller diameter, the 1
st
 punch serving now as the blank holder, and a 

moving 2
nd

 punch. This intermediate form goes through three ring-dies that 

make the can thinner. The 2
nd

 punch and bottom-die are used on the bottom 

forming of a can, the last stage, after stretching. 

http://www.simufact.com/
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Here, the optimization task is to achieve a uniform wall thickness 

distribution at the can after the 1
st
 forming stage, dependent on tool friction. 

The workflow of the optimization process including the optimization step 

and the FE- simulation tool is shown in Figure 13. 

The workflow follows the following steps: 

1. The workflow starts with a run of the control program (optimizer). 

For example the values of input parameters will be selected 

randomly within a certain range. 

2. The changed values are rewritten in the FE-input file. 

3. The simulation job is run in batch mode. 

4. After a simulation job is finished, the optimizer receives the output 

file of the last simulation increment, converts it, and reads the 

results. If these results do not satisfy the restrictions, then the goal 

value will be modified to comply for the violation of the restriction. 

This is called a penalization. So the unsuitable set of input 

parameters will be restricted, and the next cycle of optimization 

process will be executed. If activated, the program will verify the 

completed job status by checking a stop criterion, for example. If 

the tolerance between the new and the old fitness values has been 

reached, the optimizer will be stopped. Otherwise, the input 

parameters will be recalculated and next cycle of optimization 

process will run. 

 

Significant variables or optimization parameters that can be used for 

optimization of the deep drawing process include:  

1. the properties of sheet metal,  

2. blank holder force,  

3. tool friction,  

4. punch speed,  

5. the blank diameter to punch diameter ratio,  

6. the sheet thickness,  

7. the clearance between the punch and the die,   

8. the punch and finally 

9. die corner radii. 

 

Figure 14. Optimization of the Can’s Wall Thickness Distribution in a Deep 

Drawing Process using PSO 
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So a total of 9 optimization parameters had to be taken into account. 

The results found in each cycle had to be tested for their robustness as well. 

Unsatisfactory responses might be handled by reduction of the goal 

achieved, we modify the goal to punish the violation, do a penalization.  

The convergence behavior and the robust and reliable optimization 

result are depicted in Figure 14. The figure shows the wall thickness 

decreasing through the iterative process for different particles in a PSO-

study (10 particles, 6 iterations). We realize that the best result is reached 

after some steps by most of the particles. But it must not be ignored that the 

total study took about 150 hours on an 8 processor computer. 

 

Backward Extrusion of a Can 

 

Backward extrusion is a widely used cold forming process for the 

manufacturing of hollow cylindrical products. It is usually performed on 

high-speed and accurate mechanical presses. The punch descends at a high 

speed and strikes the workpiece, extruding it upwards by means of the high 

pressure. The die ring helps to form the tube wall. The thickness of the 

extruded tubular section is a function of the clearance between the punch 

and the die (Barisic et al., 2005). A schematic outline of backward extrusion 

process is presented in Figure 15. 

 

Figure 15. The Backward Extrusion Process 

 

 

a) Tools of Backward Extrusion b) Can - Result of a 

Backward Extrusion 

Simulation 

 

For the simulation of the backward extrusion process, a simplified 

process model could be used. For instance, all the punch parts could be 

represented as one single part. All the tools of the backward extrusion 

process could be divided into three groups according to their functions: 

punch, ring and housing base. The workpiece is represented by an aluminum 
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blank. Figure 16 illustrates the components of the backward extrusion 

simulation model. 

The output of the process is the can with its wall thickness. The wall 

thickness distribution depends on the tool dimensions. Parameter variations 

cause a thickness distribution. Figure 17 depicts all the dimensions of the 

tools that could be variables for the backward extrusion process 

optimization. In addition, the thickness of the workpiece may be modified as 

well.  

 

Figure 16. Simulation of the Backward Extrusion with a Simplified Model 

   

a) Tools of Backward Extrusion b) Meshed Workpiece 

The goal of the optimization is to minimize the mass, here using a PSO 

study again. As a first restriction the required can length of = 200 mm 

should be reached in the backward extrusion process. Furthermore, the final 

can has to resist an inside pressure of = 21.6 bar, without large 

deformations up to = 18 bar. All restrictions and violations of reliability 

and robustness are handled using penalty methods. Figure 18 shows the 

fitness values of different particles through iterations of the PSO (16 

iterations x 18 particles = 288 simulation runs, about 600 h of computing 

time on an 8 processor computer). In this example, the fitness value 

represents the workpiece mass. Optimization is obtained through 

modifications to the geometry. The figure contains the worst, average and 

best particle curves. The Bionic Optimization method finally proposes an 

18% mass reduction from the initial mass of 38 g to the optimized mass of 

30.0 g. As not all particles have converged, even better results might be 

expected. To accelerate the further search we used Meta-modeling (c.f. 

subsection “Meta-models”). 
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Figure 17. Free Parameters at Backward Extrusion Tools to Achieve an 

Optimized Shape of the Can 

 
a) Bottom Forming Tool b) Lower Die 

 
 c) Punch d) Ring 

 

Figure 18. Minimization of the Can’s Mass in a Backward Extrusion 

Process with PSO 

 
 

 

Proposals to Improve Speed 

 

From the definition of the optimization process (subsection “Gradient 

Based Optimization Methods”) it is evident, that the number of free 

parameters is of central importance for the velocity of the optimization. So 

if there exists a need to do a study faster, one of the first considerations 

should be the reduction of the number of these free parameters. In many 
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cases there exist correlations between system variables, so some of them 

might be represented by others. Furthermore some parameters have no or 

only little importance in the region of interest. We should remove them. If 

we want to be sure that the parameters do really not matter, after the 

optimization has converged, we reactivate them and check, if the 

assumption to disregard them is justified. In all cases, trying to keep the 

number of free variables as small as possible will help to accelerate the 

studies to be performed. 

The examples in section “Application to Metal Forming” and Figure 3 

indicated that the total time to perform the robust and reliable are not to be 

accepted in many cases. Therefore methods to accelerate the process have to 

be introduced. There have been made many proposals. We want to discuss 

some of them (Gekeler and Steinbuch, 2015).      

 

Figure 19. Good Initial Designs Reduce the Numbers of Studies Required to 

Find an Optimum 

 
 

Impact of Initial Design 

 

Figure 19 shows the fitness values of some variants of a bionic 

optimization process. We realize that most of the early variants represent 

ideas with poor performance. After about 20 cycles there are acceptable 

designs to be dealt with. Why shouldn’t we reduce the range of initial 

designs to the region in the parameter space, where good results are to be 

expected? In many cases this is a very good idea. Starting at a good initial 

point then climbing up a local hill might yield fast and well performing 

results, as already indicated in Figure 1. But as soon as we have a non- 

trivial landscape (cf. Figure 2) we are not sure where to start. So the less or 

more random driven search of the parameter space as it is done by the 

bionic optimization methods might propose solutions we would not have 

thought of initially.      

 

0 5 10 15 20 25 30 35 40
2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4
x 10

6 goal vs. generation

 generation

g
o
a
l o

f 
3
 b

e
st

 +
 w

o
rs

t 
p
a
re

n
t

random initial designs 

good initial design 

Save 50% of jobs! 

 



ATINER CONFERENCE PAPER SERIES No: IND2016-2027 

 

23 

Parallelization 

 

As the total development time is the delimiting criterion in many 

optimization studies, it is always a good idea to use parallel processing. 

Distributing the computational task on some or many processors might be 

done by different ways. The most popular one is to handle all the matrix 

operations on the different computer cores available. This causes essentially 

speed up which could be close to the number of cores available if the matrix 

manipulations are the most demanding part of the study. Figure 20 gives an 

indication of such a speed up, where here the number of slaves is to be read 

as the number of cores. The more complex the3 problem is, the more 

efficient the parallelization becomes as the relative time to administer the 

sharing of the tasks to different processors becomes less significant. 

 

Figure 20. Speed up by Use of Parallelization Reduces the Total 

Development Time 

 
 

In optimization we deal with many variants of a base design. So we 

could accelerate the process by doing the computation of each variant on 

different cores. Here we will observe essentially accelerations as well, as 

long as the time for one single study is not too small. Figure 20 might be 

read as a demonstration of this as well. We realize that for small problems, 

the time to manage the activation of the different cores causes more delay 

than the parallelization might gain again. 

Finally a combination of the parallelization of the matrix management and 

the variants would further increase the performance of the optimization 

process. Unfortunately computing power and software licenses are not for 

free, so the expansion of the idea might be limited by economic resources.  

 

Meta-models 

 

Meta-Models as we introduced in section “Metamodeling” help to find 

good designs in shorter time as the example outlined. For real problems with 

larger numbers of design variables this should hold even more. To give an 

idea about its efficiency we applied meta-modelling to a PSO-study of the 

backwards extrusion process sketched in subsection “Backward Extrusion 

of a Can”. We started our study after the first optimization, as we had 
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already decreased the can’s mass from 38 g to 31 g. As we had nparam = 9 

free parameters we needed about (cf. eq. 2.2)  

 

 
 

studies to find reliable response surfaces of the goal and the restrictions. 

Figure 21 indicates the success of the method. After some studies we 

used the results found up to now to build a RS and find the local optimum. 

In all cases these optima are essentially better than the one found by PSO. 

We could have been accelerating the optimization by introducing the 

solutions found by the RS into the PSO process itself.   

 

Figure 21. Improving the Results of a PSO-study by Metamodeling 

 
 

Hybrid Optimization 

 

In the case of the example discussed in subsection “Deep Drawing of a 

Can” we used a gradient method to improve the results found in Figure 14. 

As all particles of the PSO-search converged to the same design, we had 

only one starting point. In this case the solution found by the PSO was 

already so good, that switching to the local deterministic optimization 

methods did not show any essential improvement. This is a relatively rare 

situation, in most problems the local search like the meta-models find 

solutions that show at least some improvement.    

 

 

Conclusions 

 

The question of robustness and reliability in optimization problems 

under uncertainties must be studied with the aim of providing applicable 

strategies that may be used in the design process. The proposed methods 

may help to understand of the basic concepts. 

As often only small numbers of test results or data of FE-Jobs are 

available, the quality of the probabilistic interpretation should be considered 

with care. Approximations using normal distributions include the danger of 
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being non-conservative and, in addition, may produce large scatter 

predictions, thus reducing the predicted reliabilities. 

Adapted approximations may reduce the scatter and yield more realistic 

predictions. If many restrictions must be considered, the search for regions 

with feasible designs may become more tempting than the original 

optimization. In all cases, the inherent uncertainties of such stochastic 

approaches need to be taken into account, especially if the safety of human 

beings or large costs of failures are factors. In every case, the rules of 

probability must not be disregarded to guarantee a sufficient level of 

theoretical reliability. 

The use of hybrid optimization or meta-optimization often helps to 

reduce the total time of the optimization. But to find strong criteria for the 

switch to another method, some knowledge is required, which can only be 

assembled by preceding or parallel studies. So once more the “no free 

lunch” theorem holds. Doing optimization especially including reliability 

and robustness studies is a time consuming job. There are no ways to ignore 

the limiting factors. Especially the many trials to overcome the convergence 

laws of probability are always bound to be fruitless. 

Nevertheless the ideas of reliable and robust optimization provide tools 

that enable us to improve the quality of virtual designs essentially. Proposals 

which are far better suitable to comply with the demands of product lifetime 

might be found. So the effort required during the design stage is justified by 

products which are often more reliable at essentially lower costs.   

    

 

References 

 
Au, S. K. and Beck, J. L. (1999): A new adaptive importance sampling scheme for 

reliability calculations. Structural Safety. Vol. 21 (1999), pp. 135-158. 

Barisic, B., Car, Z. and Cukor, G. (2005): Analytical, Numerical and Experimental 

Modeling and Simulation of Backward Extrusion Force on Al Mg Si 1. [ed.] 

Karl Kuzman (2005). pp. 341-347. 

Bonnans, F. J., et al. (2006): Numerical Optimization - Theoretical and Practical 

Aspects. s.l. : Springer Berlin Heidelberg (2005). 

Bourinet, J.-M., Deheeger, F. and Lemaire, M. (2011): Assessing small failure 

probabilities by combined subset simulation and Support Vector Machines. 

Structural Safety. Vol. 33 (2011), pp. 343-353. 

Das, P. K. and Zheng, Y. (2000): Cumulative formation of response surface and its 

use in reliability analysis. Probabilistic Engineering Mechanics. Vol. 15 

(2000), pp. 309-315. 

Doltsinis, I. S. (2012): Stochastic Methods in Engineering.  WIT Press (2012). 

Dubourg, V., Sudret, B. and Deheeger, F. (2013): Metamodel-based importance 

sampling for structural reliability analysis. Probabilistic Engineering 

Mechanics. Vol. 33 (2013), pp. 47-57. 

Gekeler, S., Steinbuch, R., Widmann, C. (2012): On the Efficiency of Bionic 

Optimisation Procedures, WIT Transactions on the Built Environment, 

Volume 125 (2012). 

Gekeler, S. and Steinbuch, R. (2014): Remarks on Robust and Reliable Design 

Optimization. METAHEURISTICS AND ENGINEERING, 15th Workshop 

of the EURO Working Group, Istanbul, (2014). pp. 77-82. 

http://www.witpress.com/elibrary/wit-transactions-on-the-built-environment


ATINER CONFERENCE PAPER SERIES No: IND2016-2027 

 

26 

Gekeler S., Kmitina I., Popova T., Steinbuch R. (2015): Final report Research 

project “Robust Design Optimizer”, Reutlingen Research Institute, Reutlingen 

(2015). 

Gekeler, S. and Steinbuch, R. (2015): Robust Optimization and Non-linear 

Problems Proceedings of the MSC-User-Meeting, Munich, June 16-17, (2015). 

Matthies, H. G., et al. (2013): Stochastic Setting for Inverse Identification 

Problems. Report to Workshop Numerical Methods for PDE Constrained 

Optimization with Uncertain Data. Report No. 04/2013, DOI: 10.4171/OWR/ 

2013/04 27 January 2013. 

McKay, M. D., Beckman, R. J. and Conover, W. J. [ed.] (1979): A Comparison of 

Three Methods for Selecting Values of Input Variables in the Analysis of 

Output from a Computer Code. (JSTOR Abstract) American Statistical 

Association and American Society for Quality. Technometrics. Vol. 21 (1979, 

pp. 239-245. 

Ping, Hu, et al. [ed.] (2012): Theories, Methods and Numerical Technology Of 

Sheet Metal Cold And Hot Forming: Analysis, Simulation And Engineering 

Applications. Springer (2012). 

Steinbuch, R., Gekeler, S., [ed.] (2016):  Bionic Optimization in Structural Design, 

Springer Berlin Heidelberg (2016). 

Wang, Z., Huang, H. and Liu, Y. (2010): A Unified Framework for Integrated 

Optimization under Uncertainty. ASME Journal of Mechanical Design. Vol. 

132 (2012). 

 


