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Transformation of the Mechanical Properties of Fiber-

Reinforced Plastic Tubes from the Cartesian Coordinate 

System into the Cylindrical Coordinate System for the 

Application of Bending Models 

 
Marco Siegl 

 

Ingo Ehrlich 

 

 

Abstract 

 

Fiber-reinforced plastic (FRP) tubes are used in many different industries, such 

as electrical engineering and pipeline construction. The tubes are frequently 

subjected to bending loads, depending on the application. In order that the 

dimensioning of the tubes can be ensured, analytical bending models are used 

to calculate the resulting stresses, strains and displacements in the individual 

layers of the laminate. This enables the making of a statement about the failure 

of the fiber-reinforced tube by choosing an appropriate failure criterion. For the 

use of these bending models, it is necessary to understand the respective 

underlying theory. The theory provides the basis for the mathematical 

description of the mechanical properties for a single-layered tube and using the 

relationships between the stresses and strains that occur in the Cylindrical 

coordinate system for this calculation step. For this reason, a redefinition of the 

compliance matrix from the transformation about the winding angle to the 

Cylindrical coordinate system and a modification of the stress and strain 

vectors is necessary, because the defined Cartesian coordinate system of the 

model cannot be used for wounded FRP tubes. The transformation causes an 

exchange of entries in the compliance matrix, which remain in the correct 

relationship between the particular stress and strains. This step is not specified 

and may lead to incorrect results due to the incorrect entry of compliances. The 

present publication refers to sketch on this issue and represent a simplification 

of the changeover to the level required by the bending models notation of 

vectors in the form of a permutation. In addition, a new name for the pre-

acquisition of the redefined compliances is given to prevent confusion when 

entering the material law of a bending model. Finally, the permuted and 

redefined compliances are proved in an example to determine their accuracy. 

 

Keywords: Bending model, Cylindrical coordinate system, Fiber-reinforced 

plastic tubes, Permutation of the compliances, Transformation of the 

compliances. 
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Introduction 

 

Fiber-reinforced plastics represent a major constituent in lightweight 

construction and are utilized increasingly in the industry due to their excellent 

properties. The specific strength and specific stiffness of FRPs exceed those of 

high-alloyed steels or light materials such as aluminum. FRP materials are 

mainly used in industries such as aviation and space technology, in which a 

weight-minimization with simultaneous fulfillment of mechanical requirements 

is demanded for design goals. This leads to savings concerning the accelerating 

mass, thus allowing for greater drive power or payloads. This implies that 

FRPs are ideal lightweight materials for engineering components, which 

undergo acceleration or deceleration, which is the case in aerospace 

engineering, automotive and maritime engineering. In addition, dynamically 

moving components in general engineering applications can be produced with 

this lightweight construction to energetically optimize machines. 

Due to the high chemical resistance, FRPs are also used for equipment and 

pipeline construction in corrosive environment applications. The non-

conducting properties of glass fibers enables the use of glass-fiber-reinforced 

plastics (GFRP) as insulators and switches in the electrical industry. In many of 

these industrial sectors, axially symmetric structures made of FRP are used. 

For example, a fluid has to flow through or a machine operates in the interior 

and has to be sealed with gas. Furthermore, these tubular structures are 

subjected to bending caused by e. g. wind loads or module-specific design 

elements. The calculation of the stresses and deformations of FRPs under the 

described bending load is very challenging because of the anisotropy of the 

material and the multi-layered structure of the composite. Nevertheless, there 

are some calculation models for fiber-reinforced tubes, which are based on the 

definition of the linear-elastic material properties of a single layer and the 

associated coordinate system. 

After this step, the mathematical theory of cylindrical anisotropic elasticity 

by Lekhnitskii (1963) can be specified. This includes the set-up of the basic 

equations for the strain-displacement relations for a tube with an orthotropic 

single layer, an indication of the stress relationships and their equilibrium 

conditions. In addition to that, two systems from the relationships and material 

properties are generated in the form of partial differential equations over stress 

functions through whether the bending problem or the tensile, torsion and 

pressure problem can be solved. Jolicoeur and Cardou (1994) established a 

general analytical solution based on the work of Lekhnitskii (1963) for stresses 

and displacements of a multi-layered tube, in which the individual layers are 

composed of orthotropic material and the boundary conditions between the 

individual layers and on the outer surfaces are defined. They also noted a 

deformation of the circular cross section due to bending stress, for which 

reason the Bernoulli-Euler hypothesis is strictly not allowed to be used for FRP 

cylinders. Chouchaoui and Ochoa (1999) used similar constitutive equations as 

Jolicoeur and Cardou (1994), but they considered only perfect bonding between 

the layers in comparison to Jolicoeur and Cardou (1994), who differentiated 
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slip and friction as boundary condition. Both publications are predicted on the 

assumption that the loading case for bending is defined with two moments 

acting at the ends of the tube, so that a constant curvature is resulting along the 

longitudinal tube axis. Therefore the equivalent flexural stiffness <  > for the 

multi-layered tube can be calculated. Tarn and Wang (2001) presented a state 

space approach to the bending of the laminated composite tubes. Here, the 

system matrix in the Cylindrical coordinate system is independent of the radius 

 , because of a judicious arrangement of the displacement and stress variables. 

Thus, the calculation process is followed by a reduction of the large system of 

equations for the stress and displacement expressions. Derisi (2008) used the 

flexural stiffness to describe a cantilever beam of FRP with a transverse force 

at the free end to calculate the deflection. Shadmehri et al. (2011) exhibited 

another way for defining the equivalent bending stiffness <  >, which is a 

function of the radius   and the laminate stiffness coefficients for anisotropic 

materials. In addition to the described warping of the cross section by Jolicoeur 

and Cardou (1994), also warping inhibition, transverse shear deformation and 

non-uniform twist on composite tubes occurs. Due to these effects, therein the 

referenced non-classical composite beam theory is used to define the 

equivalent bending stiffness <  >. Derisi et al. (2012) also used the non-

classical laminate theory to define the equivalent bending stiffness <  >, 

because the system of equations would be large for many layers. Instead, this 

investigation compared the flexural stiffness of three-point-bending tests for 

three different composite tubes with an analogous aluminum tube and the 

calculated flexural stiffness. A new simulation technique was also presented 

and has been proved with experimental results. Geuchy Ahmad and Hoa (2016) 

validated the analytical equivalent flexural stiffness <  > according to 

Jolicoeur and Cardou (1994) with experiments on two thick walled composite 

tubes. They used a pure bending test setup without concentrated loading points 

in the force introduction as in three- or four-point bending tests, which is 

developed by Shadmehri (2012). Here, the tube is fixed inside the bending 

facility with low melting point alloy. To realize the required bending moment 

at each end of the tube, the construction includes two hydraulic cylinders and 

moment-arm assemblies. The deformation behavior was measured with strain 

gauges at a different location of the tube and speckle pattern to exploit the 

surface deformation also with a Digital Image Correlation measurement 

system. The experimental results correlate to the analytic bending stiffness by 

Jolicoeur and Cardou (1994), but with only two specimens the experiment does 

not provide an adequate statistical coverage. Sarvestani et al. (2016) presented 

a new high-order displacement-based method for thick cantilever tubes under 

transverse loading, which has a good match with the experimental data, which 

are generated with a three-point bending test, FEM and the Lekhnitskii (1963) 

solution with a [0°] composite tube, because Lekhnitskii only examines single 

layer cylinders with monolithic homogeneous orthotropic cylindrical shells. 

The method was also based on the equation of Lekhnitskii (1963), but they 

used a layer-wise theory with Lagrangian linear interpolation functions, 

because of the thick composite tubes, and using the principle of minimum total 
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potential energy to get the equilibrium equations of a laminated orthotropic 

straight tube. 

 

 

Analysis  

 

A correct material definition requires a strict distinction between the 

Cartesian, the Cylindrical coordinate system and the coordinate system that 

defines the external loads. A unidirectional (UD) composite layer is also 

characterized by a local Cartesian coordinate system and forms the basis for a 

mechanical description of the anisotropic material properties. According to a 

transformation in the Cartesian and the transformation into the Cylindrical 

coordinate system a new defined permutation matrix is established. The reason 

is the deviant definition of the Cartesian coordinate system by Lekhnitskii 

(1963). After transformation, the corresponding bending models can finally be 

applied. 

 

Unidirectional Layer 

 

The unidirectional single layer consists of quasi-endless long reinforced 

fibers imbedded in a matrix system. In case of FRP the matrix is a plastic type. 

The 1-direction of the local 123-coordinate system is congruent with the fiber 

direction (see Figure 1). The transverse directions are indicated by the 

alignment of the layer. For transversely isotropic materials the 3-direction is 

the thickness direction of the single-layer and 2-direction stretched with the 1-

direction a plane, in which the fibers may be displayed in their entire length. 

 

Figure 1. Volume Element of a Unidirectional Fiber-reinforced Layer with 

Associated Coordinate System and Spatial State of Stress (Schober, 2008) 

 
 

Figure 1 shows the stresses and their directions on the volume element. 

Thus, the stresses are clearly marked, two indices are given by the Anglo-

Saxon principle. The first index indicates the direction of the normal line of the 

plane of action to which the stress is applied. The second index indicates the 
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direction of the stresses. A shear stress is defined as positive when the stress 

extends in the positive axis direction at its positive sectional plane. The three-

dimensional stress tensor of the volume element of Figure 1 is given by 

 

     

        

        

        

 = 

        

     

      

   (1) 

The moment equilibrium at the volume element is described by the 

relations        ,         and        , whereby the stress tensor is 

symmetric. The stress tensor can be written depending on the Voigt’s notation 

(Voigt 1966) as a 6x1 vector 
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Using this notation for the stress vector     and for the strain vector    , 
the constitutive equation according to Hooke’s law for transversely isotropic 

unidirectional single layer results to 
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and 

 
 
 

 
 

  

  

  
   

   
    

 
 

 
 

 

 
 
 
 
 
 
            
          
        
        
           
         

 
 
 
 
 

 

 
 
 

 
 

  

  

  
   

   
    

 
 

 
 

  

             

(4) 

The compliance matrix    , which is necessary for further calculation, has 

nine independent elastic constants, which are expressed by the respective 

engineering constants 
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The compliances    ,     and     in equation (5) are indicated by the 

Maxwell-Betti Reciprocal Relations (Ehrenstein, 2006; Ehrlich, 2004; 

Schürmann, 2007). The stiffness matrix     is obtained by inverting the 

compliance matrix   . Here, it’s possible to mistakenly interchange the 

compliances in equation (5) with the used compliances of Chouchaoui and 

Ochoa (1999), because they specified the compliances with     and the 

respective compliances are not expressed in terms of the elastic constants as in 

equation (5). 

In individual unidirectional layers of FRPs the special case of orthotropic, 

transverse isotropy, occurs. Thereby, an infinite number of planes of symmetry 

with a rotation around the longitudinal 1-axis (see Figure 1) are present. As a 

result, the entries in the stiffness and compliance matrix are not reduced, but 

comprise only five independent elastic constants because the material 

properties transverse to the fiber direction are isotropic (Ehrenstein, 2006; 

Ehrlich, 2004; Moser, 1992; Schürmann, 2007). Hence, the following relations 

can be specified for the engineering constants in the transverse direction 

 

                              

    
  

        
  (6) 

These relations can be used for a single layer in the compliance matrix in 

equation (5). 

 

Cartesian Coordinate System  

 

The bending models are designed for axially symmetric structures such as 

tubes. Thus, it is beneficial to define the global Cartesian coordinate system on 

the basis of a tube. Due to the axisymmetric material properties of a coiled 

tubing layer of FRP material, the coordinate system is placed on the surface of 

the layer (see Figure 2). In Figure 2 a single-layered composite tube with 
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wound fibers with orientation to the xyz-coordinate system of the angle α is 

illustrated. The x-axis is the longitudinal axis of the tube. The y-axis is always 

directed tangentially to the FRP tube. The z-axis is orthogonal to the laminate 

surface with an orientation towards the outside of the composite. 

 

Figure 2. Cartesian Coordinate System for the Transformation of the Material 

Properties 

 
 

By reason of the mechanical design of a fiber-reinforced plastic tube under 

certain loads, an orientation of the fibers at a certain winding angle α is 

necessary. The direction of the angle and the definition of local and global 

coordinate systems to each other is shown in Figure 3. The 1-direction is 

maintained in the fiber longitudinal direction, whereas the local 2-direction is 

perpendicular to this. The angle α is defined in the mathematical positive 

direction from the global x-axis to the local 1-axis (Schürmann, 2007). 

 

Figure 3. 2D-Transformation of the Material Properties from the Local 

Coordinate System into the Global Coordinate System 

 
 

Thus, the global strains        in dependence of the winding angle α and 

the global tensions        for the tube can be specified. Therefore, the 

compliance matrix     has to be converted to the transformed compliance 

matrix [  ] as 

           
            (7) 
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with the 3D transformation matrix        for a rotation about the z-axis 

(Schürmann, 2007). This is useful because the assignment of the fiber direction 

is ensured to the coordinates. The 3D transformation matrix        is defined 
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and       
  is the transpose matrix of the 3D transformation matrix        of 

the stresses (Altenbach et al., 2004; Ehrlich, 2004). 

At a winding angle of         , a monotropic material behavior for a 

single layer is resulting, which is expressed according to Schürmann (2007) in 

the constitutive equation (9) 

 
 
 

 
 

  

  

  
   

   
    

 
 

 
 

 

 
 
 
 
 
 
 
   
       

       
         

    

    
       

         
    

     
         

    

      
       

     

          
     

        
     

 
 
 
 
 
 

 

 
 
 

 
 

  

  

  
   

   
    

 
 

 
 

  

                    

(9) 

 

Cylindrical Coordinate System  

 

For the use of the relations of Lekhnitskii (1963) it is essential to transform 

the material behavior into a Cylindrical coordinate system. This is realized by a 

redefinition of the Cartesian axes of Figure 2 in the Cylindrical coordinates in 

Figure 4. However, the transformation with the prevalent used Cartesian 

coordinate system in Figure 2 is not equal to the coordinate system 

transformation by Lekhnitskii (1963), who defined the longitudinal tube axis 

with z and remained constant during the transformation process. The reason for 

further assignment of the Cartesian coordinate system as in Figure 2 is the 

description of the material behavior. For the associated transformation a 

rotation around the z-axis, shown in Figures 2 and 3, is defined. Opposed to 

Lekhnitskii (1963) the x-axis defines the longitudinal pipe axis. 

The tube longitudinal x-axis in the Cartesian coordinate system is the   -
axis of the Cylindrical coordinate system. The tilde over the z serves to ensure 

that no confusion occurs with the z-axis of the Cartesian coordinate system. 

The equations of Lekhnitskii (1963) are indicated by z, so the corresponding 

parameters with    should be used here. In the Cylindrical coordinate system, 

the z-axis corresponds to the radius  , which is always orthogonal to the 

laminate surface. The circumferential angle Θ correlates to the y-axis and is 

oriented by a clockwise rotation over the   -axis. This is due to the original xyz-

coordinate system the rotation is around the x-axis and the rotation direction is 

defined from the positive y-axis to the positive z-axis. 
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Figure 4. Cylindrical Coordinate System to Describe the Stress-strain 

Relationships of the Fiber-reinforced Plastic Tube 

 
 

The stress tensor in the Cylindrical coordinate system according to Figure 

4 equates to equation (1) with 

        

           

         

         

   (10) 

The stress tensor in cylindrically coordinates can be written as a 6x1 vector 

depending on the Voigt’s notation (Voigt 1966) 
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and the strain vector        applies to the same indexing. According to equation 

(9), the constitutive equation in Cylindrical coordinate system is 

 
 
 

 
 

   

  

  
   

    
     

 
 

 
 

 

 
 
 
 
 
 
 
   
       

       
         

    

    
       

         
    

     
         

    

      
       

     

          
     

        
     

 
 
 
 
 
 

 

 
 
 

 
 

   

  

  
   

    
     

 
 

 
 

  

                    

(12) 

But the stress and strain vector entries are in a different order due to the 

definition of the x-axis as the radius   and the z-axis as longitudinal axis for the 

coordinate transformation according to Lekhnitskii (1963). The stress tensor 

         by Lekhnitskii (1963) is defined as 



ATINER CONFERENCE PAPER SERIES No: IND2016-1988 

 

12 

          

         

         

           

  (13) 

and therefore the constitutive equation in the Cylindrical coordinate system 

 
 
 

 
 

  

  

   
    

    
    

 
 

 
 

 

 
 
 
 
 
 
 
   
       

       
       

      

    
       

       
      

     
       

      

      
      

          
       

    

        
     

 
 
 
 
 
 

 

 
 
 

 
 

  

  

   
    

    
    

 
 

 
 

  

                       

(14) 

with the new nomenclature for the transformed compliance matrix to 

Lekhnitskii     . This renaming is necessary, because on the one hand, for 

instance, Jolicoeur and Cardou (1994) indicated the transformed compliances 

by     and Lekhnitskii (1963) specified them by    . On the other hand, the 

indices only specify the space in the matrix and not the actual transformed 

compliances according to equation (12). However, to define the compliance 

matrix      a changeover of the transformed compliance matrix      of equation 

(12) in the relationship of equation (14) is necessary. In equation (15) the 

compliance matrix, with the indexing according to equation (12) related to the 

stress and strain vector notation by Lekhnistskii (1963), is demonstrated. 

 
 
 

 
 

  

  

   
    

    
    

 
 

 
 

 

 
 
 
 
 
 
 
   
       

       
       

      

    
       

       
      

     
       

      

      
      

          
       

    

        
     

 
 
 
 
 
 

 

 
 
 

 
 

  

  

   
    

    
    

 
 

 
 

  (15) 

wherefore the definition of      is 

     

 
 
 
 
 
 
 
   
       

       
       

      

    
       

       
      

     
       

      

      
      

          
       

    

        
     

 
 
 
 
 
 

 

 
 
 
 
 
 
 
   
       

       
       

      

    
       

       
      

     
       

      

      
      

          
       

    

        
     

 
 
 
 
 
 

  (16) 

The changeover to the transformed compliance matrix      can be realized 

by exchanging the first and third as well as the fourth and sixth row and 

column while retaining the respective elasticity relations and taking into 

account the indexing of the stresses and the strains in the Cylindrical 

coordinate system like in equation (14). Therefore, it is necessary to establish a 

permutation matrix     that performs this changeover process 
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  (17) 

The permutation matrix     is formed from the identity matrix [E] and the 

exchange of the required line is realized by shifting the element 1 in the new 

row/column from the main diagonal. For row-interchanges, the permutation 

matrix [ ] must be included in the multiplication before the transformed-to-

exchange compliance matrix     . For a column-exchange, the permutation [ ] 

is subsequently inserted (Schmidt and Trenkler, 2015). Hence, the cylindrical 

permuted compliance matrix      for the calculation according to Lekhnitskii 

(1963) results to 

                 (18) 

Considering the two equations (16) and (18) and Lekhnitskii (1963) the 

reduced elastic constants     for the bending models can be calculated with 

       
     

   
        

    

   
    

  (19) 

According to Chouchaoui and Ochoa (1999) all reduced constants with the 

following indices are 

          (20) 

and finally the reduced elastic constant matrix     is 

    

 
 
 
 
 
 
            
            
      

            
          

           
 
 
 
 
 

  (21) 

 

 

Example  

 

To illustrate the permutation, an example with material properties of 

GFRPs will be presented. At first, the material properties are defined and 

transformed with the winding angle  . Finally, the changeover of compliances 

in the Cylindrical coordinate system with the permutation matrix is presented. 

The material values are shown in tendered form, so that the calculation method 

can be comprehended. In reference to literature values (Ehrenstein 2006, Moser 

1992) a single-layered tube is defined by the material properties of a glass fiber 

and epoxy resin in Table 1. Glass fibers and epoxy resin both have isotropic 

material properties. 
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The homogenization of the properties of the fiber and the matrix to the 

material characteristics of a unidirectional single layer are given with each 

applied rule of mixtures in Table 2. 

 

Table 1. Material Properties of a Glass-fiber-reinforced Plastic with Epoxy 

Resin (Ehrenstein, 2006; Moser, 1992)  

 Material Properties Quantification 

G
la

ss
 F

ib
er

 Longitudinal modulus of elasticity              

Transverse modulus of elasticity                  

Poisson‘s ratio         

Shear modulus    
  

       
           

E
p

o
x

y
 R

es
in

 Longitudinal modulus of elasticity             

Transverse modulus of elasticity                 

Poisson‘s ratio         

Shear modulus    
  

       
          

 
Fiber volume content (ideal)        

 

Table 2. Homogenization of the Unidirectional Layer 

Material Properties Quantification 

Longitudinal modulus of elasticity  

according to Moser (1992) 
             

Transverse modulus of elasticity 

according to Puck (1967) 
             

Longitudinal-Transverse Shear modulus 

according to Förster and Knappe (1971) 
             

Poisson‘s ratio according to Jones (1999)          

Poisson‘s ratio with the Maxwell-Betti 

Reciprocal Relation 
       

  

  
       

Poisson‘s ratio according to Foye (1972)          

Transverse-Transverse shear modulus 

(Transversely isotropic UD-layer) 
    

  

        
          

 

A fiber-reinforced UD layer has a transversely isotropic material behavior, 

and therefore all properties in the transverse direction are equal. The material 

properties in Table 2 and the equation (5) result in the compliance matrix 
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  (22) 

The following transformed compliance matrix in the Cartesian coordinate 

system results in connection with the equations (7), (8) and (9) for a winding 

angle of       in 
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and thereby the constitutive material law in the Cylindrical coordinate system 

according to equation (12) results in 
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The permutation matrix     in accordance with equation (17) and the given 

stress tensor in the Cylindrical coordinate system by Lekhnitskii (1963) from 

equation (13) follows the HOOKE's law (see equations (14) and (15)) 

 

 
 
 

 
 

  

  

   
    

    
    

 
 

 
 

 

 
 
 
 
 
 
                        

                    
               
          
                  
           

 
 
 
 
 

 

   
 

 
 
 

 
 

  

  

   
    

    
    

 
 

 
 

  (25) 

The transformed redenominated compliance matrix      in equation (25) 

under the convention of Lekhnitskii (1963) can be used to calculate the 

mentioned bending models. 

 

 

Conclusions  

 

With the presented method of calculation, it is possible to enter the correct 

material laws for the bending models of composite tubes only with the 

knowledge of the individual layer parameters. For this purpose, the 

transformed compliances which are related to the stresses and strains must not 

be resorted separately from Cartesian converted into Cylindrical coordinate 

system and reversed due to the relationships by Lekhnitskii (1963). This step 

will automatically be transferred by the introduced permutation matrix, which 
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can be easily integrated for programming the analytical bending models. 

Therefore, calculation errors due to the inconsistent notation of the 

compliances are avoided and correct coordinate systems are defined which 

have a technical and production-related connection to fiber-reinforced plastic 

tubes. In comparison, Lekhnitskii (1963) refers its Cartesian coordinate system 

for generally anisotropic materials and does not consider the fiber orientation, 

which is according to its definition in the radial direction in the tube cross-

section and has for this reason no technical application. Nevertheless, the 

relations of Lekhnitskii (1963) are necessary to use the bending models and 

therefore the technically meaningful coordinate system definition and 

transformation was presented in this publication, and the relationship for the 

Lekhnitskiis’ (1963) definition was established with the permutation. 
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