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Abstract 

 

A new quadratic digital tracker for efficient tracking control of an unknown 

sampled-data system with a direct transmission term from an input to output 

and subject to input constraints is proposed in this paper. First, the 

observer/Kalman filter identification (OKID) method is utilized to identify 

an appropriate (low-) order state-space innovation model with a feed-

through term, equivalent to the unknown linear system; this identified model 

is used for the design of the controller and observer. The newly proposed 

input-constrained quadratic digital tracker also comprises a new systematic 

mechanism for tuning the weighting matrix in the cost function of interest. 

Further, the realizable current output-based digital observer with a direct 

transmission term is developed for the system whose states are 

immeasurable. An illustrative example is given to demonstrate the 

effectiveness of the proposed approach. 

 

Keywords: Direct transmission term, Input-constrained quadratic tracker, 

Observer/Kalman filter identification 

 

Acknowledgments: This work was supported by Ministry of Science and 

Technology of Republic of China under contacts MOST 103-2221-E-006-

023 and NSC 102-2221-E-006-208-MY3. 

 
 



ATINER CONFERENCE PAPER SERIES No: IND2015-1739 

 

4 

Introduction  

 

The identification of linear/nonlinear systems has been well-studied in 

the literature (Ljung and Soderstrom, 1983; Goodwin and Sin, 1984; Sinha 

and Rao, 1991). There have been many successful methods to identify the 

parameters of a state-space model. Early studies on this subject go back to 

the work of Ho and Kalman (1965), who considered the concept of minimal 

realization of the identified state-space model, i.e. to obtain a model that is 

both controllable and observable. In this paper, we utilize the 

observer/Kalman filter identification (OKID) method (Juang, 1994) for 

system identification. This method is a time-domain technique to identify a 

discrete input-output mapping in general coordinates, from the input-output 

sampled data; also, through an extension of the eigensystem realization 

algorithm (ERA), the method can solve the order-determination problem 

that arises in the system identification. It has been reported (Juang, 1994) 

that, by means of the OKID method, a nonlinear system can be identified 

and represented as a linear model for the design of a controller and an 

observer.  

In order to reduce the effect of the modeling error in the identified 

model, a sub-optimal digital redesign approach is proposed in this paper, for 

the design of a digital high-gain observer which improves the digital 

observer obtained via the OKID method (Juang, 1994). But the current 

measured output-based observer for estimating the current state in order to 

determine the current control input requires having the current measured 

output and the current control input first. Therefore, there is a causal 

problem for the current output-based state estimate tracker. An approach 

will be proposed in this paper to overcome the above causal problem. 

As it is well-known, a high-gain tracker (Tsai et al., 2012) can make the 

system track the desired input rapidly. Nevertheless, due to its high gain, the 

magnitude of the control input might exceed the physical limits of the 

actuator input, leading to deterioration of the closed-loop performance. 

Recently, many researchers have used linear matrix inequality (LMI)-based 

optimization to design an anti-windup controller for the input-constrained 

linear systems (Hu et al., 2008; Shieh et al., 1992; Wu and Lu, 2004; 

Zaccarian and Teel, 2004). In this paper we propose the use of the model 

identified by the OKID method, to develop an effective optimal linear 

quadratic digital tracker and its associated observer, for an unknown system 

with a feed-through term and subject to input constraints. First, we construct 

a linear quadratic continuous-time performance index (cost function) 

containing the hard constraints of the actuator inputs (Tarbouriech and 

Turner, 2009). Since for the digital control of the sampled-data system, a 

zero-order hold (Z.O.H.) will be placed between the digital controller and 

the actuator, the input signal to the latter will be a piecewise-constant signal. 

As a consequence, the original continuous-time state-space model can be 

represented by an exactly equivalent discrete-time state-space model.  

Then, a discrete-time performance index (cost function) with a 

constrained input is pre-specified; in addition, a new systematic mechanism 
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is developed for tuning the weighting matrix in the cost function. When the 

states and model of the sampled-data system with a direct transmission term 

are not available for measurement, a realizable digital observer is proposed 

in this paper for the given system. 

At last, the digital design method is utilized to develop the input-

constrained observer-based digital controller for the unknown model with a 

direct transmission term from input to output. This digital controller is 

capable of closely matching the states between the digitally controlled 

sampled-data model and the theoretically controlled fictitious continuous-

time model (Guo et al., 2000). As a result, the proposed input-constrained 

observer-based linear quadratic digital tracker makes the unknown model 

show a good performance in tracking the reference signal, while also 

maintaining the control input within the upper and lower bounds of 

saturation. To the authors’ knowledge, the optimal digital tracker for an 

unknown model containing a direct transmission term from input to output 

and subject to input constraints has not been proposed in literature. 

This paper is organized as follows. The problem description is given in 

the next section. In the “Observer/Kalman Filter Identification” section, the 

OKID method is introduced to determine the discrete-time linear observer 

with an appropriate (low-) order for an unknown linear system. The 

following section proposes the design methodology of the discrete-time 

quadratic tracker for a sampled-data linear model with a direct transmission 

term from the input to output and subject to input constraints. Section “A 

Realizable Current-Out-Based Digital Observer for the Model with a Feed-

Through Term” presents the input-constrained observer-based digital 

tracker, according to the prediction-based digital observer design, when the 

system states are immeasurable. Then, the design procedure is summarized 

and an illustrative example is provided right after. Finally, the conclusions 

are given at the end. 

 

 

Problem Description 

 

Consider the unknown linear system with constrained actuator 

described by 

 0( ) ( ) ( ), (0) ,d d d dx t Ax t Bu t x x    (1a) 

 ( ) ( ) ( ),d d dy t Cx t Du t   (1b) 

where 0x  is the vector of the initial system states, ( ) m

du t   is a piecewise-

constant input vector, such that ( ) ( )d du t u kT  for ( 1)kT t k T   , and 

0T   is the sampling period. 

First, we use the off-line observer/Kalman filter identification (OKID) 

method to determine an appropriate (low-) order discrete-time linear 

observer for the unknown system (1). The identified state space model is 

formulated as an equivalent linear model with a direct transmission term, 

which is used to design the input-constrained high-gain digital controller, 

and the prediction-based digital observer. When the digital control input 
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( )du kT  exceeds the limit of input saturation, ( )du kT  will be iteratively 

adjusted through a proposed algorithm until it is within its specified bounds 

and minimizes the absolute value of the difference between the control input 

and the saturation limit as possible. It is desired to propose a new input-

constraint current output-based state-estimate tracker for the unknown 

system with an input to measured output feed-through term. Figure 1 shows 

the flowchart of the proposed methodology for the design of the input-

constrained digital tracker and the corresponding prediction-based digital 

observer. 

 

Figure 1. Observer-Based Input-Constrained Digital Tracker 

Z.O.H.
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The proposed discrete-time state-feedback control law ( )du t  is given by 

the form 

 
*( ) ( ) ( ) ( ) ( ) ( )d d d d consu kT K kT x kT E kT r kT C kT    , (2) 

where ( ), ( ), ( )d d consK kT E kT C kT  will be determined as indicated in what 

follows, and 
*( )r kT  is a digital reference input vector which, for tracking 

purpose, is specified as 
*( ) ( )r kT r kT T  [Guo, 2000].  

 

 

Observer/Kalman Filter Identification 

 

The off-line OKID (Juang, 1994) method is summarized as follows. The 

discrete-time state-space model of a multivariable linear system can be 

represented in the following general form 

 ( ) ( ) ( ),x kT T Gx kT Hu kT    (3a) 

 ( ) ( ) ( ),y kT Cx kT Du kT   (3b) 

where ( ) nx kT  , ( ) mu kT  , and ( ) py kT   are state, output, and 

control input vectors, respectively, and 
n nG  , 

n mH  , and 
p nC   
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are system, input, and output matrices, respectively. The Hankel matrix 

obtained from the combined Markov parameters is associated with the 

system and the observer as  

  

1 1

1 2

1 2

1 ,

k k k

k k k

k k k

H k





   

  

  

     

   
 
  

  
 
 
    

 (4) 

where   and   are two sufficiently large but otherwise arbitrary integers, 

and 
1 1[ ]k k

k okCG H CG F   , and okF  is the observer gain to be 

determined based on input and output measurements. When the combined 

Markov parameters are determined, the Eigen system realization algorithm 

(ERA) is used to obtain the desired appropriate (low order) minn  and the 

discrete system and observer realization  , , , ,ok ok ok ok okG H C D F  through 

the singular value decomposition (SVD) of the Hankel matrix.  

The ERA processes a factorization of the block data matrix in (5), 

starting from 1,k   using the singular value decomposition formula
T(0)H V S  , where the columns of matrices V  and S  are orthonormal 

and   is a rectangular matrix of the form 

 
0

,
0 0

n 
   

 
 (6) 

where 
min min1 2 1[ , , , , , , ]n n n ndiag        contains monotonically 

non-increasing entries 
min min1 2 1 0.n n n            In order 

to construct a minimal order observer for the system, let’s define 
minn   

min1 2[ , , , ]ndiag    . The observer with realizations of the system 

parameters and observer parameters by the ERA is given as 

  ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ,ok ok okx kT G x kT T H u kT T F y kT T y kT T         (7a) 

 ˆ ˆ( ) ( ) ( ),ok oky kT C x kT D u kT   (7b) 

where 

 
min min min min

1/2 T 1/2(1) ,ok n n n nG V H S     (7c) 

    
min min

1/2 T, First columns of ,ok ok n nH F m p S    (7d) 

 
min min

1/2First rows ofok n nC p V  , and 0okD Y . (7e) 

In system identification, the SVD is very useful in determining the 

system order. If the data length is sufficiently long and the order of the 

observer is sufficiently large, the truncation error is negligible (Juang, 

1994). 
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A New Tracker for the Mathematical Model with a Feed-Through 

Term 

 

Through the OKID method (previous section), a discrete-time state-

space model (3) equivalent to the unknown system can be identified. 

Consider the discrete-time state-space model (3), with the input-output feed-

through term D . The discrete linear quadratic tracker (DLQT) is given by 

the optimal state-feedback control law 

      *

d d d du kT K x kT E r kT    (8) 

with 
m n

dK   the digital feedback gain and 
n m

dE   the forward gain, 

that minimizes the performance index 

         T

1

1

2
d dk

J y kT r kT Q y kT r kT



          

    T .d du kT Ru kT  (9) 

In the past, the Lagrange multiplier approach and the well-developed 

optimal control theory (Ogata, 1987) have been used to minimize (9) and 

determine the optimal quadratic tracker (Tsai et al., 2012) which, due to its 

high gain (Tsai et al., 2012), often requires high magnitude control inputs to 

achieve a good tracking performance.  

Hence, for the practical implementation of this high gain optimal 

tracker using a gain-limited actuator, some constraints must be defined as 

discussed in the following. Let us assume that the system of interest has m  

control inputs defined as
T

1 2( ) [ ( ), ( ), , ( )]d mu kT u kT u kT u kT , and 

constant upper bound 
max max max

1 2[ , , , ]mu u u  and lower bound 

min min min

1 2[ , , , ]mu u u  are independently defined for each input. In other 

words, the constraints 

 

 

 

 

min max

1 1 1

min max

2 2 2

min max

,

,

,m m m

u u kT u

u u kT u

u u kT u

  


 


  

 (10) 

must be satisfied, which can be written as the vector inequality 

 1 1,m c mu u u     (11) 

where 1mu   and 1mu   are the collection of the lower and upper bounds of the 

control input, respectively. The constraint (11) should be decomposed into 

two parts given as 

 0du u    (12a) 

and 

 0,du u     (12b) 

which can be expressed in matrix form as 

 0,dMu N    (13) 



ATINER CONFERENCE PAPER SERIES No: IND2015-1739 

 

9 

where 
m m

m m

I
M

I





 
  

 
 and 

u
N

u

 
  

 
. The inequality constraints ( )dMu kT  

N  as in (13) may comprise active constraints and inactive constraints. An 

inequality ( )i d iM u kT N  is said to be active if ( )i d iM u kT N  and inactive 

if ( )i d iM u kT N , where iM  together with iN  form the i
th

 inequality 

constraint and are the i
th

 row of iM  matrix and the i
th

 element of iN  vector, 

respectively (Wang, 2009).  

Then, considering the constraint (13) and the discrete-time state-space 

model (3) with a feed-through term, the cost function (9) can be modified as 

             T T

1

1

2

fk

d d d dk
J y kT r kT Q y kT r kT u kT Ru kT


           

        
T

act d act actM kT u kT N kT W kT     

       ,act d actM kT u kT N kT      (14b) 

where 

        0 and 0i d i iM kT u kT N kT w kT     (14c) 

for   , 1 2 ,acti S kT i m    

        0 and 0i d i iM kT u kT N kT w kT     (14d) 

for   , 1 2 ,acti S kT i m     

 1 2 1 2 2, , , , , , 0m m m mW diag w w w w w w    is a weighting matrix to 

penalize the cost of inequality constraint, 0Q   is the positive semi-definite 

matrix, 0R   is the positive definite matrix, ( ) Pr kT   is the reference 

input; ( ), ( ),act actM kT W kT and ( )actN kT  are the corresponding dimension-

reduced matrices/vectors of , , and ,M W N  which contain only those 

corresponding terms for 0, ( ).i actw i S kT   The time interval over which 

we are interested in the behavior of the plant is [ 0, ]fk , where fk  is the 

final time index. 

The active set (Wang, 2009) is to define at each step of an algorithm a 

set of constraints that is to be treated as the active set. The working set is 

selected to be a subset of the constraints that are actually active at the 

current status, and thus the current status is feasible for the working set. 

While moving on the working set, a new constraint boundary is often 

encountered. It is necessary to add this constraint to the working set and 

then proceed to the re-defined working surface. 

Now, we have the state equation (3a) and the co-state equation (Lewis 

and Syrmos, 1995) 

          T T ,d dkT G kT T C Q Cx kT Du kT r kT         (15) 

where ( )kT  is the Lagrange multiplier with the stationary condition 

          T T T

d act act act dD QCx kT D QD R M kT W kT M kT u kT    
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         T T T 0act act actD Qr kT M kT W kT N kT H kT T      

or 

         
1

T T

d act act actu kT D QD R M kT W kT M kT


     

           TT

d act act actD Q Cx kT r kT M kT W kT N kT    

  TH kT T     (16) 

Let ( )kT  be denoted as the following form 

         ,dkT P kT x kT V kT    (17) 

where ( )P kT  and ( )V kT  are parameters to be determined in the sequel.  

Equation (17) can be shown as 

        .dkT T P kT T x kT T V kT T        (18) 

Substituting (18) into (16) yields 

          1 T 1 T( )d d du kT K kT x kT R kT D Qr kT R kT H       

        1 T ,act act actV kT T R M kT W kT M kT    (19) 

where 
1 T T( ) ( )[ ( ) ],dK kT R kT N H P kT T G    

T( )R kT D QD R   

T ( ) ( ) ( )act act actM kT M kT W kT  and 
TN C QD . 

Equation (15) can be rewritten as 

         T T T T .d dkT G kT T C QCx kT C QDu kT C Qr kT       (20) 

Similarly, substituting (17) into (20) yields 

          T T

d dP kT x kT V kT G kT T C QCx kT     

    T T .dC QDu kT C Qr kT   (21) 

Subsequently, substituting (19) into (21), one has 

          T T T

d dP kT x kT V kT G kT T C QCx kT C QD      

           1 T 1 T( )d dK kT x kT R kT D Qr kT R kT H V kT T       

          1 T T .act act actR kT M kT W kT M kT C Qr kT   (22) 

Organizing (18) and (22) yields 

           T T T

dP kT x kT V kT C QC G P kT T G G P kT T H N      


 

           T T T T T T

d d d dK kT x kT K kT D C Qr kT K kT H G            

          T T 0.d act act actV kT T K kT M kT W kT M kT     (23) 

Accordingly, one obtains 

       T T T ( )dP kT C QC G P kT T G G P kT T H N K kT       (24) 

and 

          
T T

d dV kT C DK kT Qr kT G HK kT V kT T            

        T T .d act act actK kT M kT W kT M kT  (25) 

From (19), one has 

        1 T( )d d du kT K kT x kT R kT D Qr kT    
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            1 T 1 T ,act act actR kT H V kT T R kT M kT W kT M kT     

where 

      1 T T .dK kT R kT N H P kT T G       (26) 

Based on (26), (25) becomes 

          T T T T

dV kT G V kT T C Qr kT K kT D Qr kT     

        T T .act act actH V kT T M kT W kT M kT    (27) 

In steady state, (27) and (24) can be respectively rewritten as 

          
1

T T

d dV kT I G HK kT C DK kT Qr kT


    
 

 

     
1

T T

d dI G HK kT K kT


   
 

 

      T

act act actM kT W kT M kT  (28) 

and 

    T T T T .dP C QC G PG G PH C QD K kT     (29) 

By solving (29), one can have the positive definite matrix P . Finally, 

the optimal control law is determined from (19) and (28) as 

             ,d d d d consu kT K kT x kT E kT r kT C kT     (30) 

where 

         
1

T T

d act act actK kT D QD R M kT W kT M kT


    

  T TD QC H P kT G    , (31) 

           
1

T T T

d act act actE kT D QD R M kT W kT M kT H P kT H


     

      
1

T TT T ,d dD H I G HK kT C DK kT Q
         

 (32) 

           
1

T T T

cons act act actC kT D QD R M kT W kT M kT H P kT H


     

     
1

TT T

d dI H I G HK kT K kT
        

 

      T .act act actM kT W kT N kT  (33) 

Equations (29)-(33) show that first using { , }Q R  optimization for the 

input constraint-free case and then using actW  to respect the input constraints, 

where the weighting matrices { , }Q R  have been retuned in the sense of 

additive modification, i.e. 
T{ , } { , }e e act act actQ R Q R M W M   for the direct 

transmission matrix D-free case and 
T{ , } { ,e eQ R Q R D QD   

T }act act actM W M  for the case with D matrix. Besides, an extra compensation 

term consC  (33) appears in the modified controller for input-constraint case.  

If amplitudes of some components of control input exceed the specified 

constraints at 
*t k T , (29)-(33) should be modified in terms of 

*k T  as 
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            * * * * * * ,d d d d consu k T K k T x k T E k T r k T C k T     (34) 

where 

        
1

* T T * * *

d act act actK k T D QD R M k T W k T M k T


   
 

 

  T T * ,D QC H P k T G  
 

 (35a) 

           
1

* T T * * * T *

d act act actE k T D QD R M k T W k T M k T H P k T H


     

      
1

T T
T T * * ,d dD H I G HK k T C DK k T Q

          
 (35b) 

           
1

* T T * * * T *

cons act act actC k T D QD R M k T W k T M k T H P k T H


    
 

 

     
1

T
T * T *

d dI H I G HK k T K k T
         

 

      T * * * .act act actM k T W k T N k T  (35c) 

As will be shown in (Tsai et al., 2011), a high-gain controller can be 

obtained by choosing a sufficiently high ratio of Q  to R  in (14). A high-

gain of this input-constrained controller could (i) lead to a high quality 

performance on trajectory tracking, while maintaining control inputs within 

their saturation limits, and (ii) reducing the negative effect of system 

uncertainties, such as nonlinear perturbations, parameter variations, 

modeling errors and external disturbances. For these reasons, this input-

constrained high-gain digital controller is utilized in our approach. 

 

 

A Realizable Current-Out-Based Digital Observer for the Model with a 

Feed-Through Term 

 

The OKID method gives an appropriate observer/Kalman fitter by using 

the one-step past output ( )dy kT T  to estimate the current state ˆ ( )dx kT . 

Since the current output ( )dy kT  is available, a current output-based 

observer will be proposed in this section for the system with the direct 

transmission term from the input to the measured output, associated with a 

new approach to overcome the control input causal problem. Let us assume 

that the state ( )cx t  of the continuous-time model (1) is immeasurable, and 

let the continuous-time observer be described by 

          ˆ ˆ ˆ
c c c c c cx t Ax t Bu t L y t y t      , (36a) 

      ˆ ˆ
c c cy t Cx t Du t  , (36b) 

where ˆ ( ) n

cx t   is the estimated state, ˆ ( )cy t  is the output estimated by the 

observer and 
n p

cL   is the observer gain. 

Define the continuous-time state estimate error ( )ce t  and the discrete-

time state estimate error ( )de kT  respectively as 
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       ˆ
c c ce t x t x t  , (37) 

       ˆ
d d de kT x kT x kT  . (38) 

The aim of digital redesign (Guo et al., 2000) is to make the discrete-

time state estimation error closely match the continuous-time state 

estimation error at each sampling instant, such as 

  ( ) ( )d c t kT
e kT e t


 . (39) 

The discrete-time model corresponding to the analog model (1) is given 

as 

       d d dx kT T Gx kT Hu kT   , (40a) 

       d d dy kT Cx kT Du kT  . (40b) 

After a series of math operations (Guo and Peng, 2005; Tsai et al., 

2007), one has  

      ˆ ˆ
d d d d dx kT T G x kT H u kT    

      ,d d dL y kT T Du kT T       (41a) 

      ˆ ˆ
d d dy kT T Cx kT T Du kT T     , (41b) 

where 

      
1

1 1

d n c p n cL G I A L I C G I A L


     , (41c) 

   d n dG I L C G  ,  d n dH I L C H  , T 1,c o oL P C R   (41d) 

and  

  T T 1 0o o o o o oAP P A P C R CP Q    . (41e) 

For the realization of the discrete time observer, represented (41) as  

       ˆ ˆ
d d d d dx kT G x kT T H u kT T     

     d d dL y kT Du kT    , (42a) 

       ˆ ˆ
d d dy kT Cx kT Du kT  . (42b) 

Equation (42) shows to estimate the current state for determining the 

current control input that requires having the current measured output and 

the current control input first. Therefore, there is a causal problem for the 

current control input. So, the control input  du kT  in (42) is modified as 

        d d d d consu kT K x kT E r kT T C kT      

      ˆ
dd d dK Gxu kT T Hu kT TkT         

     d consE r kT T C kT   . (43) 

It is noted that for a system with an input-output direct transmission 

term, the current-output-based digital observer outperforms the traditional 

OKID-based observer described in (Wang et al., 2013). 
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Design Procedure 

 

For the input-constraint-free case where ( ) 0W kT  , a sufficiently high 

ratio of Q  to R  (Tsai, 2011) should be chosen for good tracking 

performance. If the control input ( )du kT  determined by the pre-specified 

weighting matrices Q  and R  for ( ) 0W kT   satisfies the input constraint, it 

is the desired control force naturally. However, such a high ratio weighting 

matrices Q  and R  could result in a large-magnitude control input, which 

may exceed the saturation limits. In the case, the weighting matrix ( )W kT  

or the compact form of the activated components of ( ),W kT  dented by 

,1 ,2 , ( )( ) [ ( ), ( ), , ( ) ],act act act act m kTW kT diag w kT w kT w kT  where 1 ( ) m kT  

, m  must be searched within a reasonable interval at each sampling instant 

to have a satisfied input constrained digital controller in terms of ( ),dK kT  

( ),dE kT  ( ),consC kT  ( )r kT T  and the estimated state ( )dx kT  in (43), 

where { ( ), ( ), ( ) }d d consK kT E kT C kT  are a function of 

{ , ( ) } { ,e eQ R kT Q R  
T ( ) ( ) ( ) }.act act actM kT W kT M kT Whenever, , ( )d iu kT  

violates the input constraint, it means that the ratio , ,c i c iq r  for the input-

constraint-free case at t kT  is too high already, where 

,1 ,2 ,[ , , , ] c c c pQ diag q q q  and ,1 ,2 ,[ , , , ].c c c mR diag r r r  Thus, if ,c iq  is 

kept invariant, then the corresponding , ( )c ir kT  should be appropriately 

increased to reduce the ratio of ,c iq  to , ( ),e ir kT  where 

,1 ,2 ,( ) [ ( ), ( ), , ( ),e e e e iR kT diag r kT r kT r kT  ,, ( ) ]e mr kT . For simplicity, 

assume penalties on costs of each violated-constraint input are equal, which 

induces to the case where all activated weighting factors , ( )act iw kT  are all 

equal. Notice that the weighting matrices { , }Q R  that appeared in cost 

function (14) have neither the limitation of equal penalties on costs of each 

input nor the limitation such as  c pQ q I  and  c mR r I  required in (Tsai et 

al., 2011). To deal with the case where penalties on costs of each violated-

constraint inputs are not equal, some more sophistical methods (Fogel et al., 

1966; Falkenauer, 1997) such as evolutionary programming (EP), and 

genetic algorithm (GA) may be required. However, the procedure might be 

time-consuming.  

Let the control input constraints be given as , , ,[ , ]sat i d i d iu u u  for 

1, ,i m , where ,d iu  and ,d iu  represent the upper and lower bounds, 

respectively, for the i
th

 input, and define 

      max min ,W kT block diag W kT W kT     (44) 

where 

      max max,1 max,

m m

iW kT diag w kT w kT      

and 
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      min min,1 min, ,m m

iW kT diag w kT w kT      

to be used later. Then, the design procedure is given as follows. 

Step 1: Perform the off-line OKID method to determine the appropriate 

order n  and the system matrices gain ( , , , )G H C D . Determine the 

redesign observer gain dL  and compact parameters ( , )d dG H  for 

the current output-based observer, where  

 
1 1 1( ) [ ( ) ] ,d n c p n cL G I A L I C G I A L       

 ( ) ,d n dG I L C G   ( ) ,d n dH I L C H   
T 1,c o oL P C R    

 
T T 1 0,o o o o o oAP P A P C R CP Q     

 and initial value 
†ˆ (0) (0)d dx C y . 

Step 2: Reconstruct the current output-based observer for the pre-specified 

case ( ) 0,actW kT   

         ˆ ˆ ,d d d d d d d dx kT G x kT T H u kT T L y kT Du kT         

where 

      ,d d d d consu kT K x kT E r kT T C      

     ˆ ,d d dx kT Gx kT T Hu kT T     

 
1

T T T T

d act act actK D QD R M W M D QC H PG


      , 

      
11 T TT T T ,d d dE R H PH D H I G HK C DK Q


      
 

 

    
11 TT T T T ,cons d d act act actC R H PH I H I G HK K M W N


     
 

 

T T .act act actR D QD R M W M    

Step 3: If ( )du kT  exceeds the limit of input saturation, go to Step 4; 

otherwise, go to Step 5, since it is the desired control force 

naturally. 

Step 4: On-line determine the best weighting factors ( )iw kT  for the input-

constrained case, where each ( )iw kT  gets tuned at each time 

instant kT  to meet the input constraints. To achieve the above goal, 

perform it step by step as follows. 

(i) When , ( )d iu kT j  is outside such bounds, max, ( )iw kT j  and 

min, ( )iw kT j  are initially set as 

   
   

max, , , ,

min, , , ,

if for 1, 2,

if for 1, 2,

i c i d i d i

i c i d i d i

w kT j r u kT j u i m

w kT j r u kT j u i m

   


  

 

for the iterative index 1.j   Re-computes , ( )d iu kT j  based on 

the above-tuned weight matrices. 
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(ii) If re-computed , ( )d iu kT j  is still outside the input saturation 

limits, the following method is utilized to iteratively adjust 

max, ( )iw kT j  and min, ( )iw kT j : 

Compute ( )i kT j  as 

 
 

 

 
 

, ,

, ,

, ,

, ,

if

for 1, 2, ,
.

if

for 1, 2, ,

d i d i

d i d i

i

d i d i

d i d i

u kT j u
u kT j u

i m
kT j

u kT j u
u kT j u

i m



 



 






 

Larger ( )i kT j  implies that ( )iw kT j  must be significantly 

increased, so that the tuned , ( )d iu kT j  could be within the 

upper and lower bounds. On the other hand, smaller ( )i kT j  

indicates that ( )iw kT j  could be significantly decreased to 

have , ( )d iu kT j  to meet the limit condition. To speed up the 

calculation of the new ( )iw kT j , an exponential weighting 

function is used to amplify the effect of ( )i kT j . When 

( )iw kT j  has been updated more than once, max, ( )iw kT j  and 

min, ( )iw kT j  can be modified through the exponential 

weighting function 

, ,

max, max,

, ,

min, min,

if ( )
( ) : ( )

for 1, 2, ,
.

if ( )
( ) : ( )

for 1, 2, ,

d i d i

i i

d i d i

i i

u kT j u
w kT j w kT j e

i m

u kT j u
w kT j w kT j e

i m





 
 





 

 

 

As the rule of thumb, we select ( )i kT j   to amplify the 

effect of ( )i kT j , so that the re-computed , ( )d iu kT j  could 

rapidly meet the limit condition. 

(iii) If an over-penalization of the constraint occurs, to minimize 

the absolute value of the difference between the control input 

and saturation limit as much as possible, change the exponent-

based tuning mechanism of ( )iw kT j  to the fine tuning 

mechanism explained in the following  

 ( 1) : 1.05 ( )i iw kT j w kT j   , for 
* * * : 1, , 1, ,j j j j j   , 

until , ( )d iu kT j  satisfies the input constraint for some j , or 

the termination index j  is reached, where 
*j  is the time index 

which indicates the first time that the re-computed 
*

, ( )d iu kT j  

is re-tuned to within the saturation bound. 
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Step 5: Update the sampling index : 1k k   and go to Step 2.  

From the view point of the multi-objective optimization, it is natural to 

tune the weighting matrices of Objectives 1, 2, ,  sequentially. The 

purpose of the well-tuned Q  and R  guarantees Objective 1 (i.e. input-

constraint-free tracking performance) is satisfied. Then, tune the weighting 

matrix ( )W kT  to yield a satisfied Objective 2 for the input constraints. In 

general, ( )r kT  for 0,1, 2,k   is a smooth sequence except for some 

isolated points with acute variations, so it is natural to assume that only 

Objective 1 is concerned by forcing ( )W kT  be zero initially. Here, we 

would like to point out that the optimal weighting matrix ( )W kT  based on 

the above mechanism is the optimal one so that the violated input is scaled 

down to the input constraint at each sampling index k  with a minimal 

variation from the input constraint as possible, which induces a better 

tracking performance for the input-constrained problem. Furthermore, the 

proposed mechanism works for the case where the input constraints 
max

, ( )d iu kT  and min

, ( )d iu kT  are time varying also, if there is a necessary for 

some situation. 

 

 

An Illustrative Example 

 

Consider a non-square multi-input multi-output controllable and 

observable unstable system in (1), where 

9.0 4.0 4.5 2.0

3.0 0.4 0.7 6.0
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4( )cx t  , 
2( )cy t  , and the control input 

3( )cu t  . The initial state is 

 
T
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and assume that the system equation is unknown. The desired reference is 
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The input constraints are 
max

min

d

d

u
N

u

 
  

 
, where  

Tmax 150 20 50du   and 

 
Tmin 50 20 30du     . Then, let the system be excited by the white 

noise signal 
T

1 2 3( ) [ ( ), ( ), ( )]e e e eu kT u kT u kT u kT  with zero mean and a 

standard deviation of 0.1. 

The identified system matrices and the observer gain for the system are 

obtained as 
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where the Eigen values of okG  are 

    { 0.9125, 0.9721,1.0406AT

okG e    ,1.0769 }.  The performance of 

the traditional observer (Juang, 1994) is shown in Figure 2. 

 

Figure 2. Comparison between the Actual System Output and Identified 

Output Based on the Traditional OKID Method (Juang, 1994): (a) Outputs 

1( )dy kT  and 1( )oky kT , (b) Outputs 2 ( )dy kT  and 2 ( )oky kT  

  
(a) (b) 

 

To further improve the performance of the observer, an improved 

observer with a high-gain property based on the digital redesign approach 

has been used, where 
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for 
6

410oQ I  and 2oR I . Figure 3 shows the performance of the proposed 

observer. 

 

Figure 3. Comparison between the Actual System Output and Identified 

Output Based on the Proposed Current-Output-Based Observer: (a) 

Outputs 1( )dy kT  and 1( )propy kT , (b) Outputs 2 ( )dy kT  and 2 ( )propy kT  

  
(a) (b) 

 

Figures 2-3 reveal that the proposed observer outperforms the traditional 

OKID-based observer. Then, according to the “A Realizable Current-Out-

Based Digital Observer for the Model with a Feed-Through Term” section, 

the constraint-free feedback gain dK  and feed-forward gain dE  of the 
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The corresponding computer simulations for the observer-based 

trackers without and with input constraints are given in Figures 4-5, 

respectively. 
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Figure 4. Comparison between Output, Reference, and Control Input   

without Input Constraint: (a) 1( )dy kT , 2 ( )dy kT , 1( )r kT , and 2 ( )r kT , (b) 

1( )du kT , 2 ( )du kT , and 3( )du kT  

  
(a) (b) 

 

Figure 5. Comparison between Output, Reference, and Control Input  under 

Input Constraint: (a) 1( )dy kT , 2 ( )dy kT , 1( )r kT , and 2 ( )r kT , (b) 1( )du kT , 

2 ( )du kT , and 3( )du kT  

  
(a) (b) 

 

Figure 5 shows that  
T

1 2 3( ) ( ), ( ), ( )d d d du kT u kT u kT u kT  are 

compressed under the boundary for both channels successfully with a good 

tracking performance even though the system equation is unknown. 
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of minimizing the input-constraint-free quadratic cost function in terms of 

the equivalent weighting matrices { , }.e eQ R  Although, based on our pre-

study, an explicit connection of the equivalent weighting matrix pairs 

between the QP algorithm-based optimization and the linear quadratic 

Riccati equation-based optimization for the system with a non-vanished D 

matrix is supposed to be available, but it still needs a great effort to prove 

and verify it. Besides, due to our best knowledge, no literature investigates 

this topic, so it will be considered as a further research topic. Simulation 

results show that the proposed input-constrained observer-based linear 

quadratic digital tracker demonstrates good tracking performance, while 

maintaining the control input within its lower and upper bounds. 
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