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Abstract 

 

In the production process of faucets, large tolerances, mainly caused by the 

casting process of the raw part, lead to wide variations in faucet geometry. 

Additional effort is thus required to manually set the parameters for the robot-

guided grinding process. As design products with a complex geometry consisting 

of several convex and concave surface elements, faucet manufacture poses 

significant challenges for the robot programmer. 

Our contribution towards solving this problem is an analytic description of 

the manufacturing process to improve the parameters. The developed model of 

the grinding process consists of a belt grinding machine with contact wheel and 

the robot which holds the workpiece during the entire manufacturing process. By 

means of Perturbation Theory, these systems can be divided into a slow and a fast 

process. The multi-body dynamic system of this model consists of the robot and 

grinding machine dynamics and additionally of the grinding machine-robot-

interaction. This interaction induces a strong nonlinearity, namely the possible 

loss of contact. Moreover, the behavior of the robot itself is nonlinear, which 

results in varying compliances depending on the actual position, orientation and 

trajectory of the robot. For the theoretical analytical model, these influences are 

respected. In order to validate the derived system model, an experimental setup 

was designed and analyzed to parameterize, or estimate, significant parameters 

within the model. As a consequence of the applied research, three representations 

of the grinding process were obtained and the fundamentals are provided to 

improve the process by means of control systems. 

Keywords: robotics, belt grinding, systems modeling, manufacturing process, 

industrial automation, non-linear dynamics 
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Introduction 

 

The main challenge in the production process of design faucets is posed by the 

complex geometry of their surface. Furthermore, the quality of the finished 

surface has to be flawless in all transitions between the convex and concave 

radii which characterize the faucet. Even a minor irregularity on the finished 

surface means the product must be rejected. 

 

Figure 1. Black Box Model with difficulties that might arise 

 
Within the overall production process, the grinding process has the greatest 

influence on the final appearance of a faucet. Usually the inner part of the 

brazen casting is made by conventional machining, e.g. by means of turning 

machines. The grinding process however requires six dimensions of freedom 

(DOF) to machine the complete surface. For this reason, this process step used 

to be performed manually before the industrial robot manipulator became state 

of the art. Nowadays the path planning and programming of the robot has to be 

carried out by skilled workers who must have a competent knowledge of 

grinding. These workers are responsible for product quality and have to 

compensate all tolerances in the preproduction processes. Since the process is 

continuously changing it requires regular fitting, see Figure 1. 

Figure 2 illustrates the scope of this work. The grinding process is 

performed by a robot and a belt grinding machine with a contact wheel. The 

grinding path and the characteristics of the workpiece are also taken into 

account. 

 

Figure 2. Schematic Outline of the Manufacturing Process 

 



ATINER CONFERENCE PAPER SERIES No: IND2013-0818 

 

7 

Research Approaches 

 

To overcome the known obstacles inherent in this process, several 

approaches have been tried, namely various attempts with adaptive training 

algorithms such as echo state network [1] and an approach to simulate and 

visualize the belt grinding process [2]. In the field of robotic machining 

applications an analysis of the system’s stiffness was carried out in [3]. Another 

strategy is to improve the calibration of the robot and the tools in combination 

with force control [4]. In addition to these procedures the grinding path 

planning can be optimized using a variety of methods, for instance see [5]. 

 

Model of Robot aided Belt Grinding Manufacturing Process 

The grinding process requires two mechanical systems: the robot 

manipulator and the grinding contact wheel, see Figure 3. The analytical model 

describes the dynamics of each separate system and of the coupled systems. As 

a third element of the process description, the "robot-contact wheel" interaction 

force S(t) is taken into account. The nonlinear interaction conditions are also 

presented in this section. 

 

Figure 3. Analytical Model of the Robot-Grinding Contact Wheel Interaction 

 
 

 

Grinding Process Dynamics 

 

The modeling of the process is based on conventional modeling approaches 

[6]. Consider the robot as two linked masses that experience a dynamic force at 

the end-effector. The system therefore consists of two DOFs in two dimensions 

(x and y). The third dimension in z-direction can be neglected for the sake of 

simplicity in the formulation of the grinding process. The analytical approach to 

describing this problem is based on a two-link-planar robot model with elastic 

joints, see Figure 4. The modeled flexibility is considered to be linear and 

concentrated at the joints, according to [6]. The resulting equations will be 

derived by the Newton-Euler formulation. 
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Figure 4. Model Describing the Robot Dynamics as a Two-Link Planar Robot 

with Flexible Joints 

 
 

 

The following parameters are used for the two-link planar robot with 

flexible joints: 

 i [-] index of the corresponding rigid body 

 mi  [kg] mass of robot arm i 

 Ji  [kgm
2
]  moment of inertia of robot arm i according to local xi axis 

 θi0  [rad]  angle between robot arm i and x axis, is considered to be the 

robot path planning value 

 Δθi  [rad]  infinitesimal difference of robot angle i from the 

theoretical value i0 

 g [m/s
2
] =9.81 

 S [N]  grinding force, contact force between robot and grinding 

contact wheel 

 li, si  [m] geometrical parameters of robot arm i  

 Mi  [Nm] torque moment acting on robot arm i 

 Mi0  [Nm] I0 

 ΔMi0 [Nm] infinitesimal torque moment taking into account additional 

disturbing effects such as robot arm elasticity, grinding 

force, etc. 

Using the principle of virtual energy, the following equations of the robot 

dynamics result: 

 

 

 

Describing the nonlinear vibrations of the angular DOF 1 and 2, the 

following approach is used:  

 
 

 

Based on Perturbation Theory, the dynamic forces that we observed can be 

divided into two separate categories: 
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I. fast, vibrating dynamics of Dqi 

II. slow, smooth dynamics of qi, according to the chosen path planning of 

the robot. The robot actuators are able to generate the driving torques 

M1 and M2 required for holding the planned path. 

This can be expressed in Equation 3: 

 

 

 

(3) 

 

In addition, the elastic behavior of the robot manipulator is modeled as spring 

and damping force elements, so that: 

 

                       , e.g.     

                

(4) 

 

Notably, the acting grinding Force S can be regarded as an added disturbance 

to the system, thus: 

 

 

 

(5) 

 

It can be shown that by applying the addition rules and taking the 

linearized terms of Δθi into account, the following disturbance equations for 

the vibration dynamics of the robot are obtained: 
 

 

 

 

 

(6) 

 

The averaging formula [7] for the robot dynamics can be given in matrix form: 
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Equation (7) shows the mathematical nature of the linearized infinitesimal 

angles Δθi of robot arm i. To solve this problem an approach as referred to in 

Equation (8) might be chosen: 

 

 (8) 

 

Due to the nonlinear contact condition between the robot and the contact 

wheel, Ai and Bi are analytical functions with respect to time t, e.g. using the 

method of the Variation of Constant or the Averaging Method. The excitation 

frequency f is given by the rotating speed of the eccentric grinding contact 

wheel, while the angular velocity is given by ω=2πf. In order to apply the 

Averaging Method, the assumption of the existence of at least two different 

time scales has to be made. Regarding the stated problem this means: 
ii qq  D0
. 

Within the grinding process, an appropriate model for the contact wheel is 

derived as follows. First, considering the case where the robot is in contact with 

the grinding contact wheel, the stiffness kt and damping coefficient dt are elastic 

parameters of the contact wheel’s elastic covering. The contact wheel itself has 

an eccentricity e, caused particularly by the manufacturing accuracy of the 

wheel and the unidirectional pressure of the belt. This eccentricity leads to a 

centrifugal force mseω
2
 that excites the whole "robot-contact wheel" system 

with frequency f. Since the actual rotary speed of the wheel is controlled and as 

a consequence of centrifugal forces acts on the elastic cover, the radius r of the 

wheel may change with respect to frequency f, thus r=r(f). 

 

 
 

Corresponding to Figure 5 and applying Newton’s Law as well as 

respecting the Law of Impulse and Momentum Conservation, the following 

equations for the grinding contact wheel are derived: 

 

 

 

(9) 

 

According to Fig. 5, the following geometrical and mechanical parameters are 

used to characterize the grinding contact wheel: 

Figure 5: Part of the analytical model describing the contact wheel of the grinding machine 
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 ms  [kg] mass of contact wheel 

 Js [kgm
2
] moment of inertia of contact wheel 

 ω  [rad/s] angular speed of the contact wheel 

 f [Hz] =wpfrequency of contact wheel 

 N  [N] vertical reaction force 

 r [m] =r(f) radius of contact wheel 

 e [m] eccentricity 

 xs [m] horizontal deflection of grinding contact wheel 

 kt [N/m] stiffness of elastic covering 

 ks [N/m] stiffness of wheel suspension 

 dt [Ns/m] damping of the elastic covering of contact wheel 

 ds [Ns/m] damping of contact wheel suspension 

 M [Nm] torque moment of contact wheel drive 

 S0 [N] force due to the prestressed belt 

 

The robot manipulator’s end-effector and the contact wheel of the grinding 

machine usually interact during the actual grinding process. This interaction can 

be characterized by the grinding force S(t) and includes the normal contact force 

as well as the tangential force (grinding force), hence: 

 

normal contact force:   

tangential (grinding) force:             (10) 

 

The relation of both forces is based on Coulomb's Law of Friction, whereas 

the regime of sliding dry friction is applicable for the grinding process. In brief 

this is expressed in: 

 

 

(11) 

 

The grinding removal is controlled by the acting contact force S(t), the 

contact angle q30 and a and also by the friction coefficient μ. Notably, the 

coefficient of friction μ is a function of the grinding belt’s condition and should 

be measured during the grinding process. 

As Fig. 6 demonstrates, the geometric relationship of the distance between 

the global center point of the robot and the axle of the rotating contact wheel is 

given by: 

 

 

(12) 

 

The nonlinear contact between the robot and the grinding contact wheel is 

simultaneously force and geometrically driven, see Figure 6. Therefore if the 

condition u ≥ u0 OR S≤ 0 is true, we experience no contact between robot and 

wheel, thus the grinding force S=0. 
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The nonlinear interaction between the robot arm and the grinding contact 

wheel could be analytically described as proven in [8], which yields: 

 

(13) 

 

The given formulas for the analytical investigation of the nonlinear "robot-

contact wheel" dynamics can be simplified and transformed into a translational 

model including the same number of DOF. This transformation is described in 

detail in the next chapter, followed by a numerical simulation. 

 
 

The above introduced parameters are defined as: 

 

 u [m] u=u(q,xs), geometric distance in function of qi0 and xs 

 u0 [m] undisturbed distance between the global center point of the 

robot and the origin of the grinding contact wheel 

 μ [-] sliding dry friction coefficient 
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Lumped Parameter Model for Numerical Simulation 
 

For the Lumped Parameter Model, several simplifications using the 

approach of Perturbation Theory could be applied. The main goal of these 

investigations is to derive an applicable description of the grinding process. 

During this process, the speed of the robot axles is low compared to the 

time periods when the robot changes its position to rearrange the workpiece. 

The contact between the robot and the grinding contact wheel is lost for fast 

maneuvers. The removal of material could be neglected at this stage of 

modeling, as the influence on the intersection δ(t) is very small. Figure 7 shows 

an example of the main characteristics of the robot maneuvers and the resulting 

robot parameters qi0 and α. 

Corresponding to Figure 7, the following assumptions in accordance to the 

Perturbation Theory are made: 

 

 The geometrical intersection “robot-contact wheel”  

δ(t):=u-u0 is the command variable of the simplified simulation model. 

 Assuming: 

Therefore: 

Figure 7: Typical robot parameters during grinding process.  

Path planning parameters result in the geometrical intersection δ(t)  

of robot’s tool center point (TCP) and grinding contact wheel surface. 
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 The difference of the angles is ǀθ10-θ20ǀ≈π/2. This assumption does not 

limit the applications of the simulation results in general. 

 

Using Equation 13 for the grinding force while taking into account the 

command variable δ(t) leads to a more elegant expression for the general 

differential equation, see Equation (7): 

 

 

(14) 

 

wherein the moment vector is set equal to gravitational forces: 

 

(15) 

 

 

Consequently, these assumptions lead to the following simplified matrix forms: 

 

 

 

(16) 

 

 

 

(17) 

 

 

 

(18) 

 

Moreover, by respecting the dynamics and the choice of ΔT we derive: 

 

 

(19) 

 

 

As a third equation, the differential equation of the grinding contact wheel is 

attached (9) and induces a three-DOF system: 
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Referring to Figure 8, the Lumped Parameter Model for numerical 

simulations might be defined as follows. The system of differential equations 

describes the grinding process only in cases of contact between the robot and 

the grinding machine and is summarized in the formula below: 

 

(21) 

 

whereby the rotational DOFs might be transformed into translational DOFs 

using a simple arithmetic formula: 

 xi:=Δθi ɑ, wherein the parameter ɑ, the characteristic length in [m], 

might be arbitrarily chosen. 

 Therefore, the mechanical parameters of the robot are transformed. 

Likewise: 

 

 

 The nonlinear forces Si are not touched. 

In conclusion, we obtain the following matrix differential equation: 

 

 

 

 

(22) 

 

For definition of Si, see Equation (20). 

Y

X

Figure 8: Lumped Parameter Model for numerical simulation. 

All DOFs are translational according to Equation (22) 
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The parameters of the linearized systems of Equation (22) for numerical 

simulation are: 

 For the robot subsystem: 

 xi [m] translational degree of freedom (DOF) 

  [N/m] translational stiffness of the robot, which depends on the 

current position 

  [Ns/m] translational damping, which may depend on the current 

position 

 mi [kg] mass of link i 

 

 For the grinding machine subsystem: 

 xs [m] translational degree of freedom (DOF) 

 kt, 

ks 

[N/m] translational stiffness of the elastic pad and the pneumatic 

cylinder 

 dt, 

ds 

[Ns/m] translational damping of the elastic pad and the pneumatic 

cylinder 

 ms [kg] mass of contact wheel 

 S0 [N] force due to the prestressed belt 

 Si [N] force due to excitation, e.g. of the contact wheel (i=1, 2) 

 S(t) [N] nonlinear contact force 

 

Numerical Simulation and Validation 

In order to analyze the dynamic behavior of the derived system, a 

numerical simulation model was developed according to Equation (22) with an 

implementation of the nonlinear contact condition according to Equation 13. By 

aid of several practical measurements on the real system, unknown parameters 

of the process model were evaluated. Further internal process factors had been 

estimated to complete the model. 

Regarding the measurement results, the yield model might be extended by 

excitation sources. Considering Equation (9), the acting force on the "grinding 

contact wheel" system is characterized by the rotation of the contact wheel 

itself, but in fact other effects of the grinding machine also come into play. They 

will be summarized as residuals, e.g. the driven wheel, all assistance wheels, 

vibrations of the belt, the transmission of the belted gear, etc. Thus, the right-

hand side of Equation (9) becomes an enhanced equation and can be written as: 

 

(24) 

 

Within the executed simulations, only the dominating amplitudes and 

frequencies are respected, see Figure 11 (r.). 

 ωi [rad/s] frequency of the i 
th 

additional element exciting the system 

 λi [N] force amplitude of the i 
th

 additional element exciting the 

system 
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In order to validate the system description, several sensors are mounted. 

Tri-axial accelerometers are applied. Additionally, an inductive displacement 

transducer, a load cell for tensile and compressive forces and strain gauges are 

directly installed on the grinding machine, see Figure 9. The grinding process is 

consequently fully observable. 

For test measurements, a short, defined grinding period is recorded and step 

by step the process parameters are varied. However, characteristic phenomena 

of the process can be verified with this approach, for instance, the increasing 

radius of the contact wheel, see Figure 10 (left), or the position dependent 

compliance of the tested robot. Moreover, the assumptions made to model this 

process according to the Perturbation Theory can be proved, see Figure 10 

(right.). Where it is shown that the grinding process has a fast periodic influence 

on the robot (right side, left column) and on the other hand, if the robot is not in 

contact, only the motion profile is relevant (right side, right column). 

Figure 9: Measurement setup 
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As a matter of fact, the tested system is an adequate dynamic system and 

therefore frequencies are relevant. The results of the numerical simulation can 

be represented in the time and frequency domains and throughout compared 

with the data from the measurements, see Figure 11 and 12. 

 

 

Figure 11: Displacement of the contact wheel (left). Acting force, measured at grinding machine 

(right) 

Figure 10: Displacement measurement xs compared for different frequencies f while moving along the 

same path (left). 

Measurements of the robot comparing the behavior of the robot’s TCP while in contact with the 

grinding belt (right). 
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Overall, comparing the practical measurements with output of the 

numerical simulation model and the theoretical description a sufficient 

correlation is found. The remaining differences are caused by simplifying the 

robot’s DOFs, idealized system factors such as no disturbing vibrations, 

measurement inaccuracies and errors in the parameter evaluation. 

 
 

Conclusion 
 

Three representations for the grinding process are obtained, first a 

mathematical description, second a numerical simulation model and third 

expressive data based on practical measurements. As a result, a detailed 

description of the grinding process is achieved. Indeed, the practical 

measurements within a real system indicate that this description is valid. A 

notable aspect of this work is its theoretical approach based on Perturbation 

Theory, while respecting the flexibility in the joints, which has a crucial 

influence on the whole system dynamics. 

In practice, several factors are unknown, since the industrial robot 

manipulator is usually a proprietary product with manufacturer-specific 

properties. Hence, as the desired value for removal is considered to be small in 

contrast to the correspondingly large workspace of the robot, it is difficult to 

guarantee the required accuracy for this dynamic process. Nevertheless, based 

on our work and applying approaches from control systems theory, the grinding 

process can be improved. Considering the whole issue, the grinding process is 

purely a force-driven process, whereas a robot is a path-driven manipulator. To 

merge these two contrary systems, it is common practice to use passive 

elements. Hence, solutions consisting of passive elements constantly meet with 

inaccuracies. This work provides fundamentals to develop an active, robot aided 

belt grinding system that guarantees the required forces by means of control 

systems. 

Figure 12: Comparing measurement with simulation in time and frequency domains. 
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