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Stochastic Forecasting of Demographic Components Based on Principal 

Component Analyses 

 

Patrizio Vanella 

 

Abstract 

 

Adequate forecasts of future population developments that are based on cohort-

component methods demand an age- and sex-specific analysis; otherwise, the 

structure of the future population cannot be specified correctly. Age-specific 

demographic measures are both highly correlated and highly dimensional. Thus, a 

methodology that not only considers the correlations between the random variables 

but also reduces the effective dimensionality of the forecasting problem is needed: 

principal component analysis serves both purposes simultaneously. This study 

presents principal component analysis, from a mathematical-statistical perspective, to 

users from the field of population studies. Furthermore, important aspects of time 

series analysis, which are vital for an accurate stochastic forecast, are explained. The 

application is illustrated via the simultaneous projection of selected age- and sex-

specific survival rates with projection intervals for Germany, Italy, Austria, and 

Switzerland. 

 

Keywords: Forecasting, Multivariate Methods, Principal Component Analysis, 

Quantitative Population Studies, Time Series Analysis. 
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Introduction and Motivation 

 

Official population projections are commonly conducted on the basis of 

deterministic cohort-component models (Alho, 1990; Pötzsch and Rößger, 2015). 

Stochastic forecasts are favorable compared to deterministic approaches (Keilman 

and Pham, 2000) since, in addition to the most probable scenario, they identify 

and quantify with respective probabilities infinitely many possible scenarios. 

Stochastic models may also be based on the components of fertility, migration and 

mortality. Autocorrelation and cross-correlation must be considered in future 

forecasts because there are correlations between the different age groups and 

genders as well as between observations at different points in the time series. 

Therefore, this paper first presents a short introduction to principal component 

analysis (PCA), where the focus is on explaining its use and a short illustration of 

its functionality.  

Moreover, important concepts of time series analysis (TSA) are considered, 

with the explanation restricted to the aspects that are required for practical 

applications, with no claim on completeness in mind. This contribution therefore 

may be understood as a guide for statistical offices or demographic research 

institutes; the concrete projections serve only illustrative purposes and should not 

be mistaken as actual forecasts for future development. The methods are not 

restricted to population studies; forecasters from various disciplines might find 

this contribution interesting reading material. The explanation of the method is the 

focal point of the paper, especially the implementation of the illustrated statistical 

concepts of modeling and forecasting the components of demographic developments. 

The method is demonstrated by simulating selected age- and sex-specific survival 

rates (ASSSRs) for Germany, Italy, Austria, and Switzerland, but the model could 

be applied to other countries or regions as well. Application to other problems in 

demography or in other fields is not shown but may be done in principle the same 

way it is presented in this contribution. 

 

 

Introduction to Principal Component Analysis 

 

Detailed population forecasts by sex and age show a high degree of 

dimensionality, since for two genders up to 116 age groups should be investigated 

(see Vanella, 2017). Moreover, these quantities are highly correlated with each 

other. Forecasters have to address these two problems with appropriate methods. 

PCA is recommended because it simultaneously addresses both problems. PCA 

was originally developed by Pearson (1901) geometrically and involves applying 

an orthogonal transformation to the original variables into the same number of 

new, uncorrelated variables, which are labeled principal components (PCs). The 

method is especially well suited for situations in which no causal relationship 

between the variables is quantified, as is the case for regression analyses. Therefore, 

PCA is especially appropriate for forecasting age- and sex-specific measures in a 

demographic context. Each PC is a linear combination of N original variables. Let 
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 be the i
th

 ASSSR in period t. Then, the j
th 

PC  in the same period is 

calculated by the following (Chatfield and Collins, 1980): 

 

 

(1) 

where  can be interpreted as a correlation coefficient between the i
th

 ASSSR 

and the j
th

 PC in period t. 

Within the PCA framework, the PCs are deduced in decreasing order of the 

magnitude of the total variance they explain. This means the first PC explains the 

largest share of the variance in the original variables. Through the transformation, 

a complex system with many variables can effectively be reduced to few 

dimensions since the first few PCs explain the majority of the variance.  

The first principal component (PC 1) is chosen to explain as much of the 

variance as possible. Statistically, this means that the coefficients (or loadings, as 

they are also called in this context) of the first linear combination are adjusted to 

maximize the amount of covariance in the original variables that is explained. The 

calculation is now illustrated with ASSSRs. For simplicity, the loadings are 

assumed to be invariant through time;
1
 thus the index t is omitted. Given the 

covariance matrix of S (the matrix of all ASSSRs), labeled , the variance of PC 1 

is given by equation (2):  

 . (2) 

The vector  can be chosen arbitrarily. To reach a unique solution of the 

maximization problem, a restriction for the elements of  (also called the 

eigenvector) must be stated. Normalizing  to a length of one ensures an orthogonal 

transformation. A vector has length one if its scalar product with itself is one (Handl, 

2010):  

 . (3) 

Due to the method of Lagrange multipliers, the stationary points
2
 of a function 

 under condition  can be identified through the identification of the 

stationary points of the affiliated Lagrange function . The Lagrangiana is 

defined as follows: 

  (4) 

Therefore, the maximization problem for the variance can be solved by 

finding the stationary point of the following Lagrange function: 

                                                           
1
Hyndman and Ullah (2007) have proposed a different approach with variable loadings. 

2
Those might be either local minima, maxima or saddle points. 
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 . (5) 

Accordingly, the stationary point is determined as follows: 

 

 

 (6) 

Here, I is an identity matrix, which for  consisting of p elements with 

dimensions  becomes the following: 

 . (7) 

The first equation in (6) indicates that the matrix on the left-hand side of the 

equation must be singular. Since  must not be a null vector, guaranteeing a 

nontrivial solution, it follows that the determinant of the matrix  has to 

equal zero (Chatfield and Collins, 1980): 

 . (8) 

This is illustrated with a practical example. From age- and sex-specific data 

on deaths and the end-of-year population, provided by the federal statistical 

offices of Germany, Italy, and Austria and complemented by downloads from the 

Human Mortality Database and the Eurostat Database, the ASSSRs for Germany, 

Italy, Austria, and Switzerland are calculated for the years 1952-2016 (Destatis, 

2005, 2015a, 2015b, 2015c, 2016, 2017a, 2017b, 2018a, 2018b; Eurostat, 2018; 

Human Mortality Database, 2018a, 2018b, 2018c, 2018d; Istat, 2018a, 2018b, 

2018c, 2018d, 2018e, 2018f; STATcube, 2018). For illustration, PCA is 

performed on the covariance matrix of the logit transformed ASSSRs of 25-year-

old (cohort based) males for the four mentioned countries for the years 1952-

2016. Survival rates can only take values greater than zero and less than one, so 

their projections are made through simulation of their logits. A logistic 

transformation of an ASSSR s can be calculated as follows (Johnson, 1949):  

 
 

(9) 

The transformation leads to new unrestricted variables, whereas the 

underlying ASSSRs cannot take simulation values outside the open interval (0,1) 

in the forecast. After simulation, the results must be transformed back through the 

inverse logit to obtain the final ASSSR trajectories. 

The solutions of the optimization problem in this case are approximately 

, and , which are also called the 

eigenvalues (EWs) of the covariance matrix. The sum of the EWs is equal to the 
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sum of the covariance of the original variables; therefore, the EWs are sorted in 

decreasing order. As mentioned earlier, one of the two reasons to apply PCA is to 

reduce the original statistical problem into a small number of variables that 

explain as much of the covariance in the original variables as possible. This means 

the first eigenvalue (EW) represents the variance that is explained by PC 1. 

Therefore, we can derive that PC 1 explains approximately 92.4% of the overall 

covariance of the four time series (TS), whereas PC 1 and PC 2 already explain 

over 97%. 

Plugging the EWs into (6) individually leads to the respective EVs, e.g., EV 1:  

 

PC 1 is negatively loaded with all of the four logit-ASSSRs, therefore indicating 

a type of general mortality index, similar to the Lee-Carter index (Lee and Carter, 

1992). The associated PCs can be easily derived by (1).  

One important question is the determination of the number of PCs for the 

analysis. There is no trivial answer; the determination of the number of PCs to use 

is subjective. Nevertheless, criteria have been proposed to simplify the decision. 

One possibility is to define a minimum percentage of the variation to be 

explained. If we would, e.g., target covering at least 95% of the variance in the 

ASSSRs, we would take the first two PCs into our model. Another common 

method to select the number of PCs is graphically analyzing the EVs of the 

covariance matrix with a scree plot (see Handl, 2010), as shown in Figure 1. 
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Figure 1. Scree Plot for the Principal Components 

 
 

Only the PCs that lie on the left-hand side of the elbow are included in the 

model; moreover, there is no clear consensus whether the PC at the elbow itself 

should be included as well. In this case, the scree plot suggests one or two PCs. From 

a practitioner‟s point of view, it is generally worthwhile to include the PC at the 

elbow when making forecasts; otherwise, in many cases, a relatively large share of 

the variance would be ignored, leading to biased results when constructing prediction 

intervals (PIs). This result can be observed in many practical applications. Vanella 

(2017) proposed a simulation method that includes the uncertainty arising from 

omitting most of the PCs to prevent excessively narrow forecast PIs. This topic is not 

considered further in this paper.
3
 Kaiser‟s and Jolliffe‟s criteria are additional 

alternatives. Kaiser‟s criterion suggests using only PCs with EWs that are larger than 

the mean EW (Handl, 2010). Jolliffe (2002) proposed 70% of the mean as the lower 

limit. Nevertheless, the choice of criterion is subjective.  

The focus of this section was the general description of PCA in a semimanual 

practical application for a better understanding of the method. Nevertheless, PCA can 

be performed relatively easily using R
4
.  

                                                           
3
For further reading on this issue, see the aforementioned article. 

4
The standard commands prcomp and princomp, which are pre-installed, can be used for this. 
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Main Features of Time Series Analysis 

 

In the section, some aspects of TSA, which are highly relevant in the context of 

PC forecasting, will be explained.  

A TS is a variable that generates one observation in each period. The 

fundamental concept of modern TSA is stationarity, which will be explained briefly. 

The TS of the ASSSR (in period t) of the 25-year-old males in Germany is defined as 

. Stationarity (also called weak stationarity in the literature) is sufficiently defined 

by two conditions: mean stationarity and auto covariance stationarity (Shumway and 

Stoffer, 2011). The mean stationarity is defined by the equality of the TS mean in 

each period: 

 . (10) 

Autocovariance stationarity means the theoretical auto covariance between 

two observations of the TS does not depend on the point in time but on the length 

of the time interval separating the two observations: 

 
 (11) 

Autoregressive integrated moving average (ARIMA) models, developed by 

Box and Jenkins (Box et al., 2016), are of major importance for practical 

applications, as subsequently explained (Shumway and Stoffer, 2011). A moving 

average of order q (MA(q)) is defined as  

 

 

(12) 

where  is a stochastic nuisance parameter in period t, which in practical 

applications, is normally assumed to follow a Gaussian
5
 distribution with a mean 

of zero and a variance : 

 . (13) 

The stationarity assumption is beneficial because stationarity allows the 

assumption that the nuisance parameter is identically distributed in each period. This 

assumption is especially helpful for running simulations. An MA(q) model thus starts 

from the premise that the current observation of the variables emerges exclusively as 

a weighted sum of the last q manifestations of the nuisance parameter and the error in 

the current period. In this notation,  is the correlation coefficient of the TS with 

respect to the error in period .  is restricted between -1 and 1: 

 . (14) 

                                                           
5
An alternative is to assume a Student‟s t-distributed nuisance parameter, as proposed by Raftery 

et al. (2014). 
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A feasible alternate representation for an MA(q) process is the lag notation, 

where L is the so-called lag operator
6
. The lag notation for an MA(q) process is as 

follows: 

 

 

(15) 

The exponent of L indicates which past period is being considered. For 

example,  signifies .
7
 

Another common type of TS model is an autoregressive model of order p 

(AR(p)): 

 

 

(16) 

or in lag notation:  

 

 

(17) 

In an AR(p) model, the TS in period t is regressed on its previous p 

observations (taking the error in period t into account). In this case, 

. Similar to the MA(q) model,  

 . (18) 

AR and MA models can also be combined; the combination of an AR(p) 

model and an MA(q) model produces an ARMA(p,q) model, which is formally 

defined as follows: 

 

 

(19) 

or 

 

 

(20) 

                                                           
6
Alternatively, some authors write about the backshift operator, which is the same. 

7
In practical applications, one has to be careful about the explicit definition of the coefficients. Some 

statistical packages give a slightly different output, e.g., the output in R changes the sign of the 

coefficient relative to this contribution.  
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As mentioned previously, the stationarity assumption is fundamental for 

ARMA processes. The question is how to identify whether a TS is stationary; 

graphical analysis is recommended as the first step in the investigation. Figure 2 

illustrates a simulated stationary TS
8
. 

 

Figure 2. Stationary Time Series 

 
 

It is clear that neither the mean nor the variance show trending behavior. 

Furthermore, the stationarity hypothesis should be confirmed using statistical 

tests, such as the augmented Dickey-Fuller (ADF) test and the Kwiatkowski-

Phillips-Schmidt-Shin (KPSS) test. The standard ADF test checks the null 

hypothesis, i.e., whether for the following equation 

 
 (21) 

the condition 

 

                                                           
8
The TS is generated by 1,000 computer simulations of a Gaussian random variable. 
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holds. This condition corresponds to a random walk process (Dickey and Fuller, 

1979). Several variants of the test exist. One variant of interest is the one with the 

alternative hypothesis  

, 

which corresponds to a stationary or asymptotically stationary process. The test 

statistic in this case is 

 

 
(22) 

matching the common Student‟s t-test. However, the test statistic is not compared 

to the quantiles of a t-distribution but to an empirical distribution produced by 

Dickey and Fuller from Monte Carlo simulations (Fuller, 1996).
9
 In the example, 

 is approximately -10.31, which means that the null hypothesis is rejected at all 

major significance levels. The statistical evidence indicates stationarity of the TS. 

By contrast, the KPSS test is a Lagrange multiplier test with a test statistic 

 

 
(23) 

where SSR is the sum of squared residuals of the regression, T is the number of 

periods and  is the sum of the residuals from the regression 

 
 

 

until time t. The critical values for the underlying distribution were estimated by 

Kwiatkowski et al. (1992) through a Wiener process
10

. The KPSS test
11

 checks the 

null hypothesis of stationarity for the TS. Large values lead to rejection of . In 

the example, the test statistic is approximately 0.0625 for  and 

approximately 0.0552 for , well below the critical values at all common 

confidence levels,
12

 so the null hypothesis cannot be rejected in either case. 

Therefore, the KPSS test does not provide evidence against the assumption of 

stationarity for the random variable. 

Another important test that should be considered is the ARCH-LM test for 

conditional heteroscedasticity. Given that our TS has the standard deviation  in 

time t, the test for the equation  

                                                           
9
The ADF test is implemented in common statistics software, e.g., in R, using the command adf.test 

from the package tseries (see Trapletti and Hornik, 2018). 
10

The process grows each period by a stochastic value, which is drawn from a Gaussian random 

variable. 
11

The KPSS test is usually implemented in standard statistics software as well, e.g., in R, using 

kpss.test from the package tseries. 
12

For α=0.1, the critical value is approximately 0.347 for the mean stationarity hypothesis and 0.119 for 

the variance stationarity hypothesis. 
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checks the null hypothesis 

 

where  is some constant. If  cannot be rejected, we find no evidence for 

heteroscedasticity in the TS
13

 (Engle, 1982). 

If the modeler concludes nonstationarity in the TS based on the statistical 

tests, a transformation is needed. In this case, it is commonly assumed that the TS 

was integrated, which is represented by the middle part of the ARIMA notation. A 

d-times-integrated TS in the simplest case is denoted as an ARIMA(0,d,0) process 

(Shumway and Stoffer, 2011): 

 
 (24) 

In principle, a nonstationary TS can be transformed into a stationary TS by 

differentiating it one or more times (Shumway und Stoffer, 2011). The first 

difference of a TS is calculated as follows:  

 
 (25) 

As known from calculus, this operation asymptotically leads to a reduction of 

the power of the target function (here: the TS) by one. Figure 3 illustrates the 

result of the differentiation by visualizing the TS of the logit-ASSSR of 25-year-

old males in Germany with its first and second difference for the time horizon 

1952-2016. 

                                                           
13

The ARCH-LM Test should be implemented in common statistics software as well, i.e., it can be 

applied easily by ArchTest, included in the package FinTS (Graves, 2013). 
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Figure 3. Logits of ASSSRs of 25-year-old Males with First and Second Differences 

 
Sources: Destatis, 2005, 2015a, 2015b, 2015c, 2016, 2017a, 2017b, 2018a, 2018b; Own calculations 

and design. 

 

The trending behavior of the original TS is weakened by differentiation. 

Graphically, we can conclude that the first difference may already be stationary, and 

the second difference is even smoother. 

The next question to consider for a TS that has been transformed to a supposedly 

stationary TS is what type of ARMA model best fits the asymptotically stationary TS. 

Several information criteria can be applied, including Akaike‟s information criterion 

(AIC), the Bayesian information criterion (BIC), which is also known as the Schwartz 

criterion (see, e.g., Greene, 2012), and the Hannan-Quinn criterion (HQC) (Hannan 

and Quinn, 1979). These criteria follow a similar principle, relying on the log-
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likelihood as the goodness-of-fit measure. The difference between the criteria is the 

magnitude of the penalty for model complexity. The best model is the one that 

minimizes the criterion of choice. The specifics of the criteria are not presented here 

because they rely heavily on asymptotics. Thus, the reliability of the information 

criteria strongly depends on the length of the TS (i.e., how much data is available as 

base data) used as the model input. The availability and quality of data used in typical 

population studies, especially regarding population forecasts, are relatively poor. 

Therefore, the information criteria should be considered carefully. Graphical analyses 

based on the autocorrelation function (ACF) and the partial autocorrelation function 

(PACF) are recommended for investigating demographic TS
14

. For the logit-ASSSR 

example, both the ADF and KPSS test suggest one-time differentiation as suitable. 

From a practical perspective, the KPSS and ADF tests generally show poor 

performance for short histories, tending to mark stationarity too early. The ARCH-

LM test gives a p-value of 0.5128 for the first differences-TS. Thus, the first 

differences are stationary with a high probability. Figure 4 shows the ACF and the 

PACF of the first differences for the ASSSR of 25-year-old males in Germany for the 

period under study. 

 

Figure 4. ACF and PACF of the Lagged Logit-ASSSR 

 

                                                           
14

For a more detailed description of the ACF and PACF, see, e.g., Shumway and Stoffer, 2011. 
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The graphical representations provide evidence of which lag length to choose 

and therefore which values of p and q are best. The graphical analysis is not trivial 

and requires the user to have some experience. However, some basic attributes, which 

ideally are observable in the figures, are associated with AR and MA processes. First, 

the dashed line
15

 indicates the statistical significance of the lags. An AR(1) process is 

relatively easy to identify since the related ACF decreases exponentially, whereas the 

PACF has a large value for the first lag and then abruptly falls to approximately zero. 

An MA(1) process behaves inversely, with an exponentially decreasing PACF and an 

ACF with significant values for the first lag only. Figure 4 does not suggest any 

autocorrelation, as the estimates of the values are not statistically significant at the 

chosen level, which would suggest that the ASSSR-TS is simply a random walk 

process. This conclusion can additionally be confirmed by the information criteria.
16

 

The use of the lag notation will now be explained. The general ARIMA(p,d,q) 

process can be described as follows: 

 

 

(26) 

In the case of an ARIMA(1,1,1) process, the lag notation is 

 
 

 

which may be multiplied out to 

 
 

 

From the definition of the lag operator, it follows that 

 
 

 

or equivalently, 

 
 

 

Even complicated functional forms can be written in a simple way with the lag 

operator, which is especially helpful in the context of simulation studies in 

forecasting.  

 

 

Forecasting Demographic Rates 

 

This section will explain how the TS methods can be used to forecast the 

previously identified PCs. A first comparable approach was proposed by Bell and 

Monsell (1991) for forecasting age group-specific mortality in the United States. That 

                                                           
15

The figures were generated in R using acf() and pacf(). The dashed lines are plotted by default, 

according to the chosen significance level. 
16

Standard optimization algorithms exist. In R, this may be checked using auto.arima() in the package 

forecast (see Hyndman et al., 2018). 
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contribution was built upon earlier proposals by Ledermann and Breas (1959) as well 

as Le Bras and Tapinos (1979) for modeling and projecting age- and sex-specific 

mortality in France. Lee and Carter proposed a simplified version of the model of 

Bell and Monsell for mortality (Carter and Lee, 1992; Lee and Carter, 1992) and later 

fertility (Lee, 1993) forecasting. The Lee-Carter models are currently very popular in 

mortality and fertility forecasting. Some scientists in Germany have recently used 

similar models to forecast age- and sex-specific fertility and mortality rates (see, e.g., 

Fuchs et al., 2018; Härdle und Myšičkova, 2009; Lipps and Betz, 2005, Vanella, 

2017). Deschermeier (2015) applied the Hyndman-Ullah (2007) model, which is a 

PCTS model adjusted for robustness and with functional PCs, allowing for the 

loadings explained in Section “Introduction to Principal Component Analysis” to 

vary over time. Vanella and Deschermeier (2018) applied a PC model for migration 

forecasting in Germany. 

Returning to the four TS introduced in Section “Introduction to Principal 

Component Analysis” (ASSSRs of 25-year-old males in Germany, Italy, Austria, and 

Switzerland), a simple Lee-Carter model is used to estimate their future course until 

2080.
17

 The first step in such a forecast should be the identification of the long-term 

trending behavior. An accurate interpretation of the PCs for this is of high 

importance, since the forecaster needs to put some qualitative judgment into the initial 

forecast model as well. Forecasts certainly are best, when they are derived 

quantitatively, but can be explained qualitatively as well. In our example, the PC in 

Section “Introduction to Principal Component Analysis” has been identified as a 

general mortality index. A first graphical analysis of Figure 5 gives an idea of the 

long-term behavior of the PC. 

                                                           
17

Disclaimer: The simulations presented here are purely of illustrative nature to show the practical 

application of the methods presented in Sections “Introduction to Principal Component Analysis” and 

“Main Features of Time Series Analysis” and should by no means be mistaken as actual forecasts. 
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Figure 5. Historical Course of Mortality Index 

 
 

From the historical course, we might conclude a progressively decreasing 

course, corresponding to a clear positive trend in the survival rates. The next step 

is then the smoothing of the index by fitting an appropriate model by ordinary 

least squares (OLS) estimation
18

 to the data. The fit of a quadratic model
19

 renders 

the forecast model for the long-term trend 

 
 

(27) 

 

which is statistically highly significant at the individual level (for the coefficients) 

and due to the overall model significance. The fit is shown in Figure 6. 

                                                           
18

See, e.g. Wooldridge (2013) for an introduction to OLS fitting. 
19

The OLS estimation is easily done in R with the lm() command. 
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Figure 6. Long-Term Trend of Mortality Index 

 
 

An ARIMA model is then fit to the resulting residuals. As described in Section 

“Main Features of Time Series Analysis”, we first investigate the residuals for 

stationarity. The graphical analysis of Figure 7 suggests that the residuals are not 

stationary, but their first differences might be. 
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Figure 7. Residuals and First Differences of Residuals from the Model Fit  

 
 

This is confirmed statistically by the ADF test
20

 and the ARCH-LM test
21

. 

The ARMA degrees are determined by the ACF and PACF, which are illustrated 

in Figure 8. 

                                                           
20

. 
21
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Figure 8. ACF and PACF of First Differences of Residuals 

 
 

Figure 8 suggests that the first differences of the residuals might follow an 

AR(1) process with a negative coefficient, since the values alternate and decrease 

in tendency for the ACF, whereas they are almost zero after the first lag in the 

PACF. The OLS fit of an ARI(1,1) model to the residuals is highly significant and 

gives the model 

 

 ,  

 

which becomes 

 

  (28) 

 

where  is the residuum in period t and . The combination 

of (27) and (28) yields 

 

 . (29) 
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with representing the PCs value in t. Equation (29) can then be used for 

simulation of the future development of the Mortality Index with Wiener 

Processes
22

. In the example, 10,000 future paths of the PCs are simulated.  

The hypothetical history of the PCs is calculated through the matrix notation 

of equation (1): 

 

  (30) 

 

Here, P is a matrix with t rows and s columns. t is the number of observed 

periods, and s is the number of TS. Consequently, P has dimensions of  in 

the example. V is the matrix of all logit-ASSSRs and therefore has the same 

structure as P, i.e., a columnwise collection of all logit-ASSSR-TS. E is a matrix 

of columnwise EVs.   

Through the reverse transformation of (30), the forecasts for the ASSSRs can 

be derived from the simulated future values of the PCs: 

 

  (31) 

 

In this case,   is the simulation matrix
23

 of the PCs in year t. 

 is the inverse of the eigenvector matrix, and the resulting matrix product 

is a  matrix of the simulation values for the logit-ASSSRs, estimated 

indirectly via PC simulation. Since the PCs are uncorrelated, simultaneous and 

independent computer simulations for each PC may be done separately to estimate 

PIs for the ASSSRs. A sufficiently large number of future trajectories must be 

estimated so that the PCs converge. The author performs 10,000 estimates to simulate 

the PCs until the year 2080. The simulation of PC 1 is based on (29). Empirical 

quantiles can be estimated for the PIs based on these trajectories. Finally, we need to 

inversely logistically transform the logit-ASSSRs to obtain the simulation values for 

ASSSRs and derive PIs from them. Figure 9 provides the 95% PIs for the ASSSRs 

for 25-year-old males in Germany, Italy, Austria, and Switzerland. 

                                                           
22

See, e.g., Vanella (2017) on that. 
23

In the example, 10,000 simulations were conducted. Theoretically, this process works for a larger 

number of iterations, but the computation becomes cumbersome.  
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Figure 9. Projected ASSSRs for 25-year-old Males with 95% Projection Intervals 

 
Sources: Destatis, 2005, 2015a, 2015b, 2015c, 2016, 2017a, 2017b, 2018a, 2018b; Eurostat, 2018; 

Human Mortality Database, 2018a, 2018b, 2018c, 2018d; Istat, 2018a, 2018b, 2018c, 2018d, 2018e, 

2018f; STATcube, 2018; Own calculations and design. 

 

We observe a quite similar future development, as could be expected by the high 

correlations among the ASSSRs. It should be stressed once more that this is just a 

simulation study, not a forecast. Counterintuitively, the PIs become narrower over 

time. In general, PIs will become wider, since uncertainty regarding the far future is 

greater than that regarding the near future. In this specific case, the result does make 

sense. Barring that landslide events such as wars or vast pandemics occur, mortality 

will on average decrease further. Since survival probabilities logically cannot become 

larger than one, it follows that in the very long term, survival rates will converge 

towards one in all scenarios, so the intervals become tighter. 
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Conclusion, Limitations and Outlook  

 

The primary goal of this study has been the presentation of PCA and its practical 

implementation. On the basis of PCA, arbitrary age- and sex-specific measures, 

including the quantification of the stochasticity through PIs, may be modeled and 

forecast without bias, which was illustrated for the ASSSRs of 25-year-old males in 

Germany, Italy, Austria, and Switzerland. The presented approach is applied 

internationally on a country level; nevertheless, it may be applied on regional level as 

well if the required data are available. The example was only mortality for one age 

group to keep the paper concise, and mortality trends are the easiest expositions due 

to their clear trends in industrialized countries. Nevertheless, the methods presented 

can also be applied to other demographic phenomena (fertility, migration) or other 

fields (e.g., economics; meteorology), depending on the quality of available data. 

PCA is a powerful tool for the simplification of complex phenomena and 

addressing correlation among different variables; however, PCA needs good data to 

work appropriately. Similar to all quantitative methods, PC forecasts with TSA 

models cannot address trends that have not been observed in the past. Therefore, 

forecasting should always assess the possibility of massive structural breaks occurring 

in the future. Moreover, a qualitative assessment of the PCs is advisable. A PC 

always represents a composition of the original variables. Therefore, an appropriate 

interpretation is very important, and PCA results have to be considered judiciously. 
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