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Abstract 

 

This study focuses on the links between concepts in physics and the mathematical 

formalisms that translate them. A physics concept ought to be explored from an 

epistemological disciplinary perspective, one that shouldn‟t be confused with the 

formalization process that aims at translating it. The notion of divergence of a 

vector field can be used to highlight the confusions that might exist between 

concept and formalization. Using an internet survey, an important proportion of 

French professors of higher education were asked to give the definition of the 

divergence of a vector field. 80% of the answers defined that term as the sum of 

the partial derivatives of the components of the field in relation to the corresponding 

coordinates. The paper shows how Maxwell and Heaviside have clarified this 

concept and how they have shown that an intrinsic definition based on vector 

analysis leads to the correct articulation between former concepts and new ones. By 

defining divergence as the limit of the electric flux per unit volume through a closed 

surface when the volume tends towards zero, the introduced concept takes root in 

previous knowledge whose limits were highlighted; it helps in pursuing the initial 

reflection and hence in making more sense. The poll showed surprisingly that this 

definition rarely appears. One might wonder about the introspection of teachers 

concerning the meaning of the elements they teach in physics. This article shows that 

much work on Science teaching combined with History of Science remains necessary 

despite substantial results that the discipline has already achieved.  

  

Keywords: electrodynamics, introductory physics, divergence, history of science, 

teachers‟ representation. 
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Introduction 

 

The ties between physics and mathematics, its main writing system, has been 

an important research issue for a long time, at the level of high school as well as 

for introductory physics in higher education and also in upper levels.  

Bagno, Berger and Eylon (2008) have described the student‟s attitude towards 

the activity focused on the interpretation of formulae. Bing and Redish (2009) 

have analyzed how intermediate level students connect mathematical skills with 

physical concepts and situations and propose a classification of the so-called 

“warrants” that is capable of identifying student‟s epistemological framings. 

Bollen, Van Kampen and De Cock (2015) have shown that even if students are 

quite skilled at doing calculations in the field of electrodynamics, they struggle 

with interpreting graphical representations of vector fields and applying vector 

calculus to physical situations. As they write, “We have found strong indications 

that traditional instruction is not sufficient for our students to fully understand the 

meaning and power of Maxwell‟s equations in electrodynamics”. Chasteen, Pollock, 

Pepper and Perkins (2012) have shown that using student-centered methods at the 

upper-division may improve outcomes. Hudson (1977) has shown that though good 

mathematical skills are not a guarantee of success in physics, performance in the 

physics will be poor unless the student possesses good mathematical skills. A number 

of studies (for example, Guisasola, Almudí, Salinas, Zuza and Ceberio (2008), 

Guisasola, Zuza and Almudi (2013) or Kesonen, Asikainen and Hirvonen (2011)) 

have shown the inherent difficulties associated at the concept of electric and magnetic 

field. Among other results and papers, one may note that there is often some 

confusions in the student‟s mind between the physics concepts and their mathematical 

formulations (Yeatts, 1992, Pepper, Chasteen, Pollock & Perkins, 2012). McMillan 

and Swadener, (1991) have shown in the context of electrostatics, that though 

students may calculate properly, they exhibit major misconceptions about the 

problem situation. Savelsbergh, De Jong and Ferguson-Hessler (2002) show also in 

the context of electromagnetism that expertise, the so-called situational knowledge, 

comes along with time and experience and, though teaching is also the art of 

accelerating the process, teachers have to remain modest in what they can expect 

from their students. Last but not least, Kuo, Hull, Gupta and Elby (2013) have shown 

that once the difficulties are overcome and once students have developed their own 

mental representation of how maths and physics are bound together, they obtain good 

results in problem solving. 

The French tendency to over-represent mathematical formalisms in the teaching 

of physics has already been highlighted. In a previous article, Authors, (2013) showed 

that the didactic contract between students and teachers implicitly lies on the 

symbolic manipulation of formulae which are, however, emptied of their meaning. In 

that previous article, the authors showed that the students respond to a question in 

physics using a mathematical formula – a formula that is often wrong and sometimes 

even absurd. The physical significance of the concept which is at the core of the 

question being asked, is clearly not understood. That same article also showed that 

this didactic contract is probably correlated to the proportion of French textbooks in 
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physics used, which makes one think that the epistemology of physics is intimately 

related to the symbolic manipulation of formulae.  

In this article, our aim is to show that this didactic contract also draws its 

negative strength from the confusions that exist between the conceptualization and 

the formalization of physics but, this time, within the very mind of teachers. This 

assertion, if sustained, shouldn‟t be too surprising to us – since teachers are, to a large 

extent, the very authors of the textbooks that tend to over-emphasize the symbolic 

manipulations of the terms being taught to the detriment of their meaning in physics.  

This article presents the results of a survey carried out in France using some five 

to six hundred physics higher education teachers. Before giving its results, we‟ll 

present the concept of physics on which it focused, its mathematical formalization 

and the subtle links that can lead one to not detect the hidden pedagogic agenda that 

could generate the negative effects of over-representation of mathematics. 

 

 

Theoretical Background: Divergence of a Vector Field 

 

In order to define the concept of divergence of a vector field, one needs to 

consider the case of the Gauss theorem for an electric field. It is generally in this 

context that students first encounter the concept of the integral of flux of a field 

through a surface.  It might not be the best context in which to reflect, since there 

is no transport of matter (mass or electric charge) which would somehow reassure 

the student who is intuitively used to relating the notion of flux to a phenomenon 

of transport. It might be more helpful to present the concept of flux of a field 

through a surface in the context of a microscopic model of electric current or of 

mechanics of fluids.  

Whichever way, let us first remind ourselves of the Gauss theorem. The flux 

of an electric field through any type of enclosed surface equals the total electric 

charge in the volume enclosed by this surface divided by the dielectric constant. 

Classically, one can write this as follows:  

 

 

(1) 

 

Expressed as an integral, the Gauss theorem deals with a macroscopic surface 

and volume in that one can make them as big as one wishes. However, this result 

doesn‟t tell us anything concerning the way in which the total charge enclosed by 

the surface is being distributed within the inside volume. If one wishes to know 

more about the distribution of charges, one needs, for instance, to divide the 

volume corresponding to the Gauss surface by two and to apply the theorem on 

two new objects. This operation allows one to refine the understanding of the 

distribution of charges within the initial volume. If one wants to refine the results 

further, one can, in absolute terms, divide the volume ad infinitum. One can thus 

define the divergence of the electric field as the limit of the electric flux per unit 

volume leaving the closed surface when this volume tends towards zero.  
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The definition that emerges from this reasoning therefore makes more sense 

and leads to important and classical results. We consider this definition as the first 

one in the rest of this article.  

 

 

(2) 

 

When one re-writes the classic Gauss theorem (in its integral form) and when 

one applies to the two members of equation (1) the division by the volume and 

then the passage to the limit when this volume tends towards zero, one clearly 

obtains the divergence of the electric field in the left member of the equation 

whilst the total electric charge divided by the volume tends towards the local 

density of charge. Hence the first equation of Maxwell, called the Maxwell-Gauss 

equation, is nothing more than a reformulation of its integral form:    

 

 
(3) 

 

To a large extent, this new concept of divergence is quite close to the elementary 

concept of instantaneous speed. If one defines the total time covered in one journey, 

one cannot say much about how the journey was effectively travelled. One starts by 

defining the average speed by dividing the distance covered by the time spent 

travelling, and then one makes the travelling time tend towards zero in order to define 

the instant speed. Thus, the divergence of a vector field can be defined as an operation 

of spatial differentiation. It allows one to obtain the local flux per unit volume, 

defined in each spatial point in a similar way to obtaining the instantaneous speed at 

each temporal point.  

Using the definition of the divergence as the limit of flux per unit volume when 

the volume tends towards zero, this can be transformed into the integral definition of 

the divergence which leads to the famous Green-Ostrogradsky formula, that we will 

consider as our second definition in the rest of this article: 

 

 

(4) 

 

Using again the previous analogy with the instantaneous speed, what is useful to 

understand is the fact that the Ostrogradsky formula is nothing but an integral re-

formulation of the definition of the divergence in a similar way to obtaining the two 

following equations are strictly equivalent (in the case of an object moving along the 

x-axis): 

 

 
and 

 
There is neither more nor less information in the integral formulation than 

there is in the differential formulation. Thus, equations (2) and (4) are equivalent. 
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From a pedagogical perspective, however, which one is best to use? It seems to us 

that the differential formulation is quite clearly more meaningful. In the same way 

that it would be strange to define an instantaneous speed using an integral relation, it 

seems obvious that it is best to define the divergence of a vector field using a 

differential formulation.  

When the vector field is described using Cartesian co-ordinates, a simple 

calculus can help express its divergence in an operational way. The method consists 

in defining a rectangle box that is infinitely small, defined by small variations dx, dy 

and dz of the three co-ordinates. The calculus is described in the Physics lesson of 

Berkeley (Purcell, 2011). 

The final result is as follows:  

 

 
(5) 

 

Is it relevant to present this result as the original definition of the divergence of a 

vector field? We do not think so. This definition was derived from our first definition 

(differential formulation). It will be easy, from this first definition, to come up with 

the expression of the divergence into other systems of (cylindrical or spherical) co-

ordinates.   

To conclude on this first part, we would like to reaffirm that the three outcomes 

are derived from a didactical hierarchy which stops us from considering them as 

definitions that are equally meaningful.  

The first definition derives from the need to go beyond the integral formulation 

of the Gauss law which does not allow for an identification of a precise distribution of 

charges within the macroscopic volume under consideration. The second definition 

derives from the first one and comes from its integral reformulation, in view of 

highlighting the link between the flux integral and the volumic integral of the 

divergence. The didactical hierarchy relates to the students‟ culture – that is: their 

ease with differentiating rather than integrating. Finally, the third result should not be, 

in our view, interpreted as a definition per se – one could even say that it is difficult to 

attach a meaning to it. It is, rather, an operational formula which helps in expressing 

in a concrete way, the divergence of a field when one knows the actual co-ordinates 

of that field. 

It is important to understand the pedagogical or didactical dilemmas that one can 

derive from the values of these definitions or formulations of one similar concept in 

physics. The first definition is necessary in order to go beyond the limits of the 

formulation of the Gauss theorem in its integral form; it extends it, refines it, and is 

naturally articulated around what comes before it. Thus, the new concept is truly 

rooted in a continuity of ideas. It does not fall from the sky, but it is strongly related to 

what the student is supposed to have already understood – provided that he/she 

reasonably „digested‟ the concept of „ascending ideas‟. Provided that the student has 

understood the necessity of the concept, he is progressively in a position to associate 

to that concept a profound meaning that can help him/her structure his/her 

understanding of it and his or her capacity to implement it. One must also insist on the 

fact that the concept of divergence corresponds to a spatial differentiation. We have 
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already seen that, to a large extent, it is quite close to the definition of instant speed 

which is a founding concept in physics, one that most students understand and use 

well and, most of all, one that becomes, in higher education, an integral part of 

learning outcomes and culture. When one has the opportunity to discover a new 

concept that has integrated the learning culture of the students, it becomes quickly 

very clear that, as a teacher, one has to grab that opportunity.  

Teaching with analogies has been investigated a lot. Research shows that 

analogies may be a powerful tool provided a few conditions are fulfilled. Harrison 

and Treagust (1993) have argued that it is  „essential that the analogy be familiar to as 

many students as possible, that shared attributes be precisely identified by the teacher 

and/or students, and that the unshared attributes should be explicitly identified‟. In 

this case, instantaneous speed is for sure a known concept at this level, the main 

shared attribute is differentiation or the limit in one point and the main unshared is 

that the differentiation is temporal in the case of speed whereas it is spatial in the case 

of divergence. Haglund and Jeppsson (2012) have argued that self-generated 

analogies may help provided that some precautions are taken. It seems possible to 

guide students to discover themselves the need to divide the macroscopic volume to 

overcome the question of how the total inner charge is distributed and hence, to find 

out by themselves the analogy with instantaneous speed. 

 Although the second definition (the Green-Ostrogradsky) is, mathematically 

speaking, strictly equivalent to the first one, it is certainly less relevant due to the way 

in which it cumulates a new idea and its integral reformulation. If the concept and its 

immediate mathematical reformulation does not present a particular problem to a 

physicist, it might to a student who will tend to prefer, as much as possible, to isolate 

the concept in its „purest‟ form, from its subtle mathematical reformulation - which 

tends to add some difficulty to the already challenging experience of being confronted 

to a new idea.  

Finally, the operational formula given by equation (5), if presented as a definition 

of the divergence of a vector field, deprives the student of the rational chain of ideas 

from which it derives, from the Gauss theorem, and thus implicitly implies that the 

concept simply appears, ex nihilo, and insidiously communicates the idea that physics 

emerges from the revealed truth, from magical thoughts. One then sees physics as 

„hocus pocus‟, a modern form of alchemy, in which the construction of formulae 

derives from divine art forms; the resolution of problems is reached thanks to a 

wizard chanting the right spell – privilege which, of course, only belongs to the best 

few initiated to that sort of mystery.    

One will note that the elements mentioned above have been presented in the 

order in which they had been written in the famous „Berkeley lecture in physics‟ 

(Purcell, 2011). 

To conclude with this paragraph, Huang, Wang, Chen and Zhang, (2013) in a 

distinguished paper have shown that this teaching approach obtains good results. 
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A Brief Historical Study 

 

The history of science, and in particular that of vector analysis, is also likely 

to shed some light on these questions.  

Research on science teaching has been carried out for a long time. Pocoví 

(2007) has argued that history may help in the context of conceptual change. 

Karam and Krey (2015) have investigated the subtle connections between physics 

concepts and their writing system, mathematics, on a historical and philosophical 

point of view. The following lines are written with the very same point of view. 

These historical events have mainly been compiled in Michael Crowe‟s book 

(Crowe, 1994), of which the elements explored below are derived. One may also 

refer to Stolze (1978). 

Since Descartes, the manipulation of vectors had been reduced to that of 

triplets of coordinates. However, the state of knowledge at that time was such that 

it was impossible to multiply or divide those triplets since those operations hadn‟t 

been defined.  The evolution of physics and the mathematicians‟ will to identify a 

vector analysis at the third dimension first led people to explore vectors through 

complex numbers. It was in that context that Sir William Rowan Hamilton invented 

quaternions, defined as an extension of complex numbers at the third dimension. The 

Hamilton quaternions theory was well received and, to a large extent, allowed vectors 

of the third dimension to be formalized in the context of that tool.  James Clerk 

Maxwell was one of the main researchers to appreciate its relevance in the context of 

his studies in electromagnetism.   

Thus, from the development of field theory in physics emerged the need for 

vector analysis, in particular in the area of electromagnetism. It is therefore not 

surprising to notice that whilst, in the 1860s, Maxwell initially presented his equations 

using Cartesian coordinates, he reformed them in 1873 in his “Treatise on Electricity 

and Magnetism”, jointly presenting them using coordinates and quaternions notations. 

In that reference, Maxwell starts with a chapter covering mathematical preliminaries. 

After mentioning Descartes‟s discovery of his system of coordinates, he writes 

(Maxwell, 1873, 8-9): 

 

“But for many purposes of physical reasoning, as distinguished from calculation, 

it is desirable to avoid explicitly introducing the Cartesian coordinates, and to fix 

the mind at once on a point of space instead of its three coordinates, and on the 

magnitude and direction of a force instead of its three components. This mode of 

contemplating geometrical and physical quantities is more primitive and more 

natural than the other, although the ideas connected with it did not receive their 

full development till Hamilton made the next great step in dealing with space, by 

the invention of his Calculus of Quaternions. 

As the methods of Descartes are still the most familiar to students of science, and 

as they are really the most useful for purposes of calculation, we shall express all 

our results in the Cartesian form. I am convinced, however, that the introduction 

of the ideas, as distinguished from the operations and methods of Quaternions, 

will be of great use to us in the study of all parts of our subject, and especially in 

electrodynamics, where we have to deal with a number of physical quantities, the 
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relations of which to each other can be expressed far more simply by a few 

expressions of Hamilton‟s, than by the ordinary equations.” 

 

Here, Maxwell clearly demonstrates how concepts and their intrinsic definitions 

must be understood and exist independently from their re-formulations in a system of 

coordinates and this, whilst recognizing that, for practical reasons, it is also necessary 

to generally re-formulate them in a system of Cartesian coordinates.  

However, quaternions became disused and could not survive the criticisms 

addressed by the inventors of modern vector analysis towards them – mainly Josiah 

Willard Gibbs and Oliver Heaviside. At the end of the 19th century, independently of 

each other and yet nearly simultaneously, these two scholars had invented a type of 

vector analysis that is very similar to that being taught today. Since Oliver Heaviside 

did so mostly in the context of electromagnetism, it is on his writings that we will 

focus next.    

Oliver Heaviside (Heaviside, 1882) emphasized the need for a method based on 

vector analysis and, yet, discredited the Quaternions method: 

 

“Against the above stated great advantages of Quaternions has to be set the fact 

that the operations met with are much more difficult than the corresponding ones 

in the ordinary system, so that the saving of labour is, in a great measure, 

imaginary. There is much more thinking to be done, for the mind has to do what 

in scalar algebra is done almost mechanically. At the same time, when working 

with vectors by the scalar system, there is a great advantage to be found in 

continually bearing in mind the fundamental ideas of the vector system. Make a 

compromise; look behind the easily-managed but complex scalar equations, and 

see the single vector one behind them, expressing the real thing.” 

 

In these few lines, Heaviside acknowledges the operational characteristic of 

the calculations being carried out on the scalar components of a vector but he also 

highlights the need to reason using the fundamental ideas derived from a vector 

system.  

Oliver Heaviside (Heaviside, 1893, p.298) reflects on the intricate links that 

exist between the concept of vector and its re-formulation in the Cartesian system: 

 

“And it is a noteworthy fact that the ignorant men have long been in advance of 

the learned about vectors. Ignorant people, like Faraday, naturally think in 

vectors. They may know nothing of their formal manipulation, but if they think 

about vectors, they think of them as vectors, that is, directed magnitudes. No 

ignorant man could or would think about the three components of a vector 

separately, and disconnected from one another. That is a device of learned 

mathematicians, to enable them to evade vectors. The device is often useful, 

especially for calculation purposes, but for general purposes of reasoning the 

manipulation of the scalar components instead of the vector itself is entirely 

wrong.” 
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It is in this context that he defines the divergence of a vector following our 

first definition of it. Heaviside (Heaviside, 1893, p.50) writes (p. 50):  

 

“This being general, if we wish to find the distribution of electrification we must 

break up the region into smaller regions, and in the same manner determine the 

electrifications in them. Carrying this on down to the infinity small unit volume, 

we, by the same process of surface-integration, find the volume-density of the 

electrification. It is then called the divergence of the displacement. 

That is, in general, the divergence of any flux is the amount of the flux leaving 

the unit volume”. 

 

Here is thus the justification, fully backed up by the written works of two 

renowned physicists of the 19th century, of our first paragraph assertion following 

which the concept of divergence must be understood in the context of vector analysis 

rather than be introduced in the form of manipulations of its scalar components using 

a system of Cartesian coordinates which, as Heaviside explains, “is entirely wrong”. 

 

 

The Survey: Method 

 

The question is now to identify how these issues are being experienced in the 

classroom. In order to answer this question, a survey was organized in the form of an 

internet questionnaire introduced by a small paragraph explaining the nature and 

objective of the research exercise as being initiated by a lecturer/ researcher interested 

in the didactical dimension of physics and in “exploring the links between the 

concepts of the discipline and the mathematical formalisms which describe them and, 

above all, the ways in which these links are being represented by students and 

teachers”. The very simple questionnaire focused on two questions. The first one was 

formulated as follows: “Please define the divergence of a vector field designated as 

A”. It asked people to give a reply to that question in the form of a text, without the 

help of any document, within 3 minutes, using a standard keyboard with no facility to 

write equations. It was suggested that equations might be referred to in an 

approximate manner (for instance: integral sum from a to b of f(t) dt), in other words, 

in the form of a quasi-equation. The relatively short time scale was identified as 

sufficiently short to encourage certain spontaneity and a rapid reflexion. However, no 

control was made on that time and thus, the person was free to validate his/her answer 

without effective constraint except for the psychological one. This issue matters since 

the results of the poll depend a lot on its material conditions. It is reasonable to affirm 

that for someone claiming to be a specialist, three minutes is not to short. The second 

question was identified as follows: 

 

a) Student (level up to A level +5) 

b) Non-specialist in the domain  

c) It is an important concept for your field (teaching/research) but you do not use 

it intensively 
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d) Specialist: you use this concept on a regular basis in your field of research and 

your teaching domain. 

 

Thus, working on the survey results helped to refine the analysis of the various 

representations provided by the teachers, in relation to the idea that they have of their 

own expertise in this domain. As an internet survey, answers come along with the 

exact time at which they have been given, thus allowing to follow the tendencies in a 

dynamic way. 

The url link presenting the results of the survey was communicated to the 

persons responsible for the Training and Research Scientific Units (UFR) of most of 

the French universities that have such units (forty of them do), together with a few 

lines of explanation concerning the context of the research and the invitation to 

disseminate those results to the physicists working there. Between the lecturers in 

place and the PhD students, one can roughly estimate that the results of the poll could 

potentially reach five to six hundred people. There is, however, no way of 

determining that figure in a precise way.  The objective of the authors was to gather a 

significant number of responses in order to illustrate their point – rather than to carry 

out an exhaustive quantitative study on the whole community of French teachers. One 

should note that the survey was targeted at lecturers (as well as PhD students) rather 

than at students under masters level. We couldn‟t however exclude the possibility of 

reaching students (those representing UFRs, for instance). But in fact, only very few 

took part in the survey.  

Responses were of two types. Firstly, and most frequently, a quasi-equation (thus 

designed in the rest of the article) was given in a very explicit way, despite the rather 

unconventional graphical representation used in it. Secondly, respondents (although 

much more rarely so) gave a definition in plain letters and words. In that case, and 

each time it was possible, that type of response was linked to one of the three 

equations of paragraph 1 (equations (2), (4) and (5)).  It is here useful to note that 

certain of the responses combined the quasi equation type with its „translation‟, 

expressed in words. Some others were making a vague reference to one of the three 

equations of paragraph 1 and were therefore classified in the corresponding category. 

Some responses remained difficult to classify in one of the categories. Thus, the 

translation of raw responses to the survey presented in the tables below reflect the 

author‟s own interpretation – and this, for at least 10% of the responses.  In quite a 

few cases, the quasi equation was sufficiently explicit, for it to present no ambiguity 

at all.        

For the majority, responses were given in the form of an equation or of a quasi 

equation. Occasionally, they were accompanied by a text but, with the exception of 

five cases out of the totality of 76 responses, all responses included an equation or a 

quasi equation.  

Table 1 indicates to what extent the responses can be classified between the three 

equations of paragraph 1. It is important to notice the high rate of responses for 

equation (5), always given with a quasi equation that is perfectly explicit and easy to 

read.  The rates for equations (2) and (4) are uncertain because often given in the form 

of a text, somehow interpreted by the authors.  
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Table 1. Allocation Of Responses Between Equations (2), (4) And (5) Of Paragraph 

1. In The Category „Specialists‟, 12% Responded With The Limit Of The Flux Per 

Unit Volume (Equ.2), 13% Responded Using The Green-Ostrogradsky Formula 

(Equ.4) And 75% Responded Using The Sum Of The Partial Derivatives (Equ. (5)) 

Rate of responses (in 

percent. within the 

category) 

Limit of the 

volumic flux 

(equation (2) ) 

Green-

Ostrogradsky 

formulae 

(equation (4)) 

Sum of the partial 

derivatives 

expressed in 

Cartesian 

coordinates 

(equation (5)) 

Student 0% 0% 100% 

Non-specialist 0% 0% 100% 

Person who knows 

about this subject 
9% 12% 79% 

Specialist  in this 

subject 
12% 13% 75% 

 

 

Discussion and Conclusion 

 

In a first instance, we will comment on the number responses received in total. If 

compared with the potential total of the target (five hundred to six hundred), this 

result is disappointing (only seventy six responses). One could object to the validity 

of our research results by highlighting the fact that this sample is too small to allow 

any conclusion to be derived from the study. It is regretful that more responses could 

not be received. Unfortunately, electronic mail is so demanding nowadays that it is 

understandable that the efficiency of using it for such survey is rather low. 

Nevertheless, the fact that the rate of responses corresponding to equation (5) reached 

80% is noticeable (all categories put together). The rate reaches 75% of the so-called 

specialists who are susceptible to give an answer that represents well their conception 

of the concept within three minutes since they are supposed to have thought about it 

for quite a long time. It is important to emphasize the fact that that rate, already 

reached after 10 responses, remained stable after that.  It is therefore safe to assume 

that that rate is representative of the surveyed community, despite the low number of 

answers. 

To the extent that the study carried out presents some weaknesses – those of the 

media relied on to collect the responses; the level of knowledge of the people who 

responded, and the proportion of interpretation on a rather limited number of 

responses – the author wishes to focus the discussion on what seems to be mostly 

based on facts and on what seems most certain in the whole set of results. As it 

happens, this constitutes, anyway, the main lesson of the study. We are here talking 

about the importance taken by the rate of equation (5), equation which encompasses 

the weakest value of definition of the concept, potentially that to which one could 

assign the least value of definition. One will add that the few responses that make 

reference to the local flux do so in a very indirect way, whilst the definition 

specifying that “the limit of the flux per unit volume of A through a closed surface 

when the closed volume tends towards zero” is, in fact, a very explicit definition, not 
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that complex, containing similarities with the concept of instantaneous speed.  So, 

why is this definition lacking so much from the sample of collected responses? Why 

does the overwhelming majority of lecturers, including those who consider 

themselves as specialists in that field, give an equation, though not wrong, is not the 

best one as an intrinsic definition for the concept? Could this be explained by the fact 

that the logical continuum in the articulation of concepts has, somewhere along the 

line, been broken? Although this study does not demonstrate this in a formal way, it is 

clearly worth asking these questions.  

To conclude, this study asks some questions concerning the epistemological 

relationship that the scientific has with its own discipline. It looks like the majority of 

teachers have not thought much about what has already been stressed by, among 

others, Maxwell and Heaviside, two major pioneers of Electrodynamics theory. It 

thus seems that it might be possible to teach some concepts without having fully 

appreciated the didactic challenges that teaching these concepts present despite the 

great amount of research that has been carried out for decades. We have seen the 

importance of History of Science since the question of the best way to introduce a 

concept has already been an issue in the 19
th
 century when electrodynamics was still 

an active field of research. Last but not least, we have also seen the importance of 

epistemology or Nature of Science since the whole thing is about the epistemology of 

physics with respect to its main writing system, mathematics. 

We believe that these issues are fundamental in the education of future Science 

teachers to prevent misleading confusions between concept and their mathematical 

formalization. 
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