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A Stochastic Approach of Dynamical Systems by 
Means of Cocycles 

 
Codruta Stoica 

 
 

Abstract 
 

As not all systems of differential equations that describe real world 
phenomena are deterministic, their approach has to combine the classic 
study with methods of stochastic analysis, which also provides sharp 
instruments for the study of deterministic ordinary infinite dimensional 
equations. A remarkable aspect is that of using the analytic method of the 
dynamical systems theory, such as the cocycles approach, in order to study 
the existence problems and long-time behavior for stochastic differential 
equations. The aim of this paper is to emphasize some dichotomic 
asymptotic behaviors in mean square for stochastic evolution cocycles. Our 
approach is based on the extension of some techniques from the 
deterministic framework constructed initially for skew-evolution semiflows 
on Hilbert spaces. 
 
Keywords: Measurable projections, Stochastic dichotomic behaviors, 
Stochastic evolution cocycles. 
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Introduction 
 

The approach of the dynamical systems by means of associated operator 
families allows obtaining answers to some open problems by involving 
techniques of functional analysis and operator theory. To this purpose, the 
skew-evolution cocycles that we have defined in [8], are generalizations for 
evolution operators, semi-groups of operators and skew-product semi-flows. 
The asymptotic properties of skew-evolution semi-flows on infinite 
dimensional spaces were published in [9] - [13]. 

Several authors have focused their interest on the problem of the 
existence of stochastic semi-flows associated to stochastic evolution 
equations, as, for example, G. Da Prato and J. Zabczyk in [6] or F. Flandoli 
in [7]. For linear stochastic evolution equations with finite-dimensional 
noise, a stochastic semi-flow was obtained by A. Bensoussan and F. 
Flandoli in [2]. The property of non-uniform stability for stochastic 
differential equations is studied, for example, by G. Da Prato and A. 
Ichikawa in [5]. The exponential dichotomy in a stochastic setting was 
discussed by many authors, such as A.M. Ateiwi in [1] or T. Caraballo et al. 
in [4]. 

The problem of existence of stochastic semi-flows for the semi-linear 
stochastic evolution equation is a non-trivial one, mainly due to the well-
established fact that the finite-dimensional methods for constructing, even 
continuous, stochastic flow break down in the infinite-dimensional setting 
of semi-linear stochastic evolution equations (see [14] and [15]). 

The asymptotic behaviors in mean square for stochastic cocycles that 
we aim to emphasize in this paper are various classes of dichotomies, such 
as the exponential dichotomy in mean square, the exponential dichotomy of 
(α,β)-type in mean square, the polynomial dichotomy in mean square and 
the polynomial dichotomy of (α,β)-type in mean square. The (α,β)-type 
behaviors in mean square are generalizations of asymptotic properties given 
in [3].  
 
 
Notations and Definitions  
 

Let X be a real separable Hilbert space, L(X) the set of all X-valued 
bounded operators defined on X, B(X) the collection of all Borel sets on X, 
T = (t, s)∈ R+

2 | t ≥ s ≥ 0{ } . The norm of vectors on X and of operators on 

L(X) is denoted ⋅  and the identity operator on X is IX.  
Let (W, F, {Ft}t≥0, P) be a standard filtered probability space, i.e. (W, F, 

P) is a probability space, {Ft}t≥0 is an increasing family of σ-algebras such 
that F0  contains all P-null sets of F and Ft = ∩  Fs, s ≥ t, for all t ≥ 0. We 
will consider the set Y = W×X. 
 
Definition 2.1. The measurable random field ϕ : (T ×W,B(X)×F)→ (W,F)  
is called stochastic evolution semiflow if: 
(s1) ϕ(t, t,w) = w , ∀(t,w)∈ R+ ×W ; 
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(s2) ϕ(t, s,ϕ(s, t0,w)) =ϕ(t, t0,w) , ∀(t, s), (s, t0 )∈ T,∀w ∈W . 
Definition 2.2.  The mapping Φ : (T ×W,B(X)×F)→ L(X)  is called 
stochastic evolution cocycle over an stochastic evolution semiflow ϕ  if:  
(c1) Φ(t, t,w) = IX , ∀(t,w)∈ R+ ×W ; 
(c2) Φ(t, s,φ(s, t0,w))Φ(s, t0,w) =Φ(t, t0,w) , ∀(t, s), (s, t0 )∈ T,∀w ∈W . 
 
 
Families of Measurable Projections 

 
Let us consider a stochastic evolution cocycle Φ over a stochastic 

evolution semi-flow φ and let us suppose that the phase space X is 
decomposed, at every moment and for all w ∈W , into two subspaces, i.e. 
X = X1(w) ⊕  X2(w). We denote by {Qk(w)}k=1,2 the family of measurable 
projections associated with the considered decomposition. The F-
measurable subspaces X1(w) and X2(w) are called the stable subspace, 
respectively the instable subspace.  
 
Definition 3.1. The subspaces X1(w) and X2(w) are said to be invariant 
relative to the stochastic evolution cocycle Φ if: 

Φ( t ,s ,w )X k (w )⊂ X k (ϕ( t ,s ,w )) , ∀( t ,s )∈ T ,∀w ∈W , k=1,2. 
 
Remark 3.2.  
(i) The subspace X1(w) is finite dimensional with a fixed non-random 
dimension; 
(ii) The subspace X2(w) is closed with a finite non-random co-dimension. 
 
Definition 3.3. The family of measurable projections {Qk(w)}k=1,2 is called 
compatible with the stochastic evolution cocycle Φ if: 

Qk (ϕ( t ,s ,w ))Φ( t ,s ,w )=Φ( t ,s ,w )Qk (w ) , ∀( t ,s )∈ T ,∀w ∈W . 
 
 
Stochastic Dichotomic Behaviors  
 

In what follows, we will give some asymptotic behaviors in mean 
square for a stochastic evolution cocycle Φ over a stochastic evolution semi-
flow φ. 
 
Definition 4.1. A stochastic evolution cocycle Φ is said to be exponentially 
dichotomic in mean square (e.d.m.s.) relative to a family of measurable 
projections {Qk(w)}k=1,2 compatible with Φ if there exist N ≥1, α1,α2 > 0  
such that the relations: 

eα1t E Φ( t ,s ,w )Q1(w )x
2
≤ Neα1s E Q1(w )x

2 , 

eα2t E Q2(w )x
2
≤ Neα2s E Φ( t ,s ,w )Q2(w )x

2
, 

hold for all ( t ,s )∈ T  and for all (w ,x )∈Y . 
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Definition 4.2. A stochastic evolution cocycle Φ is said to be (α,β)-
exponentially dichotomic in mean square ((α,β)-e.d.m.s.) relative to a family 
of measurable projections {Qk(w)}k=1,2 compatible with Φ if there exist N 
≥1, α1,α2 ,β1,β2 > 0  such that the relations: 

eα1t E Φ( t ,s ,w )Q1(w )x
2
≤ Ne β1s E Q1(w )x

2 , 

eα2t E Q2(w )x
2
≤ Ne β2s E Φ( t ,s ,w )Q2(w )x

2
, 

hold for all ( t ,s )∈ T  and for all (w ,x )∈Y . 

 
Definition 4.3. A stochastic evolution cocycle Φ is said to be polynomially 
dichotomic in mean square (p.d.m.s.) relative to a family of measurable 
projections {Qk(w)}k=1,2 compatible with Φ if there exist N ≥1, α1,α2 > 0  
such that the relations: 

tα1E Φ( t ,s ,w )Q1(w )x
2
≤ Nsα1E Q1(w )x

2 , 

tα2E Q2(w )x
2
≤ Nsα2E Φ( t ,s ,w )Q2(w )x

2
, 

hold for all ( t ,s )∈ T  and for all (w ,x )∈Y . 

 
Definition 4.4. A stochastic evolution cocycle Φ is said to be (α,β)-
polynomially dichotomic in mean square ((α,β)-p.d.m.s.) relative to a family 
of measurable projections {Qk(w)}k=1,2 compatible with Φ if there exist N 
≥1, α1,α2 ,β1,β2 > 0  such that the relations: 

tα1E Φ( t ,s ,w )Q1(w )x
2
≤ Ns β1E Q1(w )x

2 , 

tα2E Q2(w )x
2
≤ Ns β2E Φ( t ,s ,w )Q2(w )x

2
, 

hold for all ( t ,s )∈ T  and for all (w ,x )∈Y . 

 
 
Connectors between Stochastic Dichotomic Behaviors 
 

Obvious connections between the considered dichotomic properties in 
mean square are given by the following remarks. 
 
Remark 5.1. An exponentially dichotomic stochastic evolution cocycle Φ is 
(α,β)-exponentially dichotomic.  
 
Remark 5.2. A polynomially dichotomic stochastic evolution cocycle Φ is 
(α,β)-polynomially dichotomic. 
The main results of this section are given in the next 
 
Proposition 5.3. An exponentially dichotomic stochastic evolution cocycle 
Φ is polynomially dichotomic. 
Proof. According to Definition 4.1, there exist N ≥ 1,α1 > 0  such that  
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E Φ( t ,s ,w )Q1(w )x
2
≤ Ne−α1( t−s )E Q1(w )x

2 , 

for all ( t ,s )∈ T  and (w ,x )∈Y . Following inequalities hold 

0u,
1u
1e u ≥∀
+

≤−

 and 
1st,1st

s
t

≥≥∀+−≤
. 

 
We obtain that  

E Φ( t ,s ,w )Q1(w )x
2
≤ N ( t − s +1)−α1 E Q1(w )x

2
≤ Nt −α1sα1E Q1(w )x

2

 
for all 1st ≥≥  and (w ,x )∈Y .  
 

According to the same Definition 4.1, there exist N ≥ 1,α2 > 0  such 
that  

E Q2(w )x
2
≤ Ne−α2( t−s )E Φ( t ,s ,w )Q2(w )x

2 , 

 
As following inequality holds  

0st,
t
s

e
e
t

s

>≥∀≤
, 

we have that  

E Q2(w )x
2
≤ Ne−α2t eα2s E Φ( t ,s ,w )Q2(w )x

2
≤

≤ Nt −α2 sα2E Φ( t ,s ,w )Q2(w )x
2

 

for all 1st ≥≥  and all (w ,x )∈Y . It follows that the stochastic evolution 
cocycle Φ is polynomially dichotomic.   
 
Proposition 5.4. An (α,β)-exponentially dichotomic stochastic evolution 
cocycle Φ, with α1 ≥ β1  and α2 ≥ β2 , is (α,β)-polynomially dichotomic. 

Proof. According to Definition 4.3, there exist N ≥ 1,α1 > 0  such that 

tα1E Φ( t ,s ,w )Q1(w )x
2
≤ Nsα1E Q1(w )x

2 , 

for all ( t ,s )∈ T  and (w ,x )∈Y . Similarly as in the proof of Proposition 
5.3, for α1 ≥ β1 , we have 

E Φ( t ,s ,w )Q1(w )x
2
≤ Nt −α1e−β1s s β1e β1s E Q1(w )x

2
=

= Nt −α1s β1E Q1(w )x
2

 

for all ( t ,s )∈ T  and (w ,x )∈Y . 
 

Again, according to Definition 4.3, there exist N ≥ 1,α2 > 0  such that 

tα2E Q2(w )x
2
≤ Nsα2E Φ( t ,s ,w )Q2(w )x

2
, 
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for all ( t ,s )∈ T  and (w ,x )∈Y . In a similar way, we obtain for α2 ≥ β2  

E Q2(w )x
2
≤ Ne−α2t e−β2t E Φ( t ,s ,w )Q2(w )x

2
≤

≤ Nt −α2e−β2E Φ( t ,s ,w )Q2(w )x
2

 

for all ( t ,s )∈ T  and (w ,x )∈Y . We obtain that the stochastic evolution 
cocycle Φ is polynomially dichotomic, and, further, according to Remark 
5.2, (α,β)-polynomially dichotomic.                                               
 
Remark 5.5. The connections between the dichotomic behaviors in mean 
square of a stochastic cocycle are given in the next diagram 

 
e.d.m.s. ⇒  p.d.m.s. 

⇓   ⇓  
(α,β)-e.d.m.s. ⇒  (α,β)-p.d.m.s. 

 
 
Conclusions  

 
It is well known that in the qualitative theory of evolution equations, 

either it is deterministic or not, the exponential dichotomy is one of the most 
important asymptotic properties. Also, it is worth mentioning that the 
approach of dynamical systems in cases where randomness is involved is 
more appropriate to be done by means of stochastic cocycles. In order to 
give an answer to both issues, we propose a general framework for the study 
of several stochastic dichotomic behaviors for the random dynamical 
systems. 
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