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Abstract 

 

Although there are many approaches in the existing literature which have 

attempted to treat education enrollments with specific forecasting models such 

as moving average, exponential smoothing, Markov chain, regression, Fuzzy 

time series, and others, the results were not enough to understand the moving 

data evolution, or not enough accuracy. Knowing that the Auto Regressive 

Integrated Moving Average (ARIMA) is one of the most powerful approaches 

to forecasting, mostly used to financial time series, this paper aims to see if 

data on students’ enrollment in higher education can be adjusted to ARIMA 

models for estimation and forecasting purposes. The paper analyzes data from 

higher education enrollments within the ARIMA framework given by Box 

Jenkins Methodology. The empirical study revealed the best ARIMA validated 

model to be used to forecast future values for the next eight years. Even though 

such approach generally helps understanding data or predicts future points, 

after the steps of identification, estimation and verification followed here to 

build the best ARIMA model, the findings are not providing the foresight of 

the causes that may influence what will happen in the future years. 

 

Keywords: Box-Jenkins methodology, ARIMA models, higher education 

enrollments forecasts. 
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Introduction 

 

In higher education sector, the enrollment forecasting provides information 

to decision making and budget planning. The senior forecaster McCalman 

(McCalman 2012) gives three reasons for which decision makers need 

forecasts: ”the state of the world in the future is unknown; the success or 

failure of a decision made today will depend on the future; and decisions 

cannot be corrected afterwards (at least not without cost)”. Of course, the data 

limitations may restrict the decision makers to one or the other forecasting 

method. So that, in some cases, the higher education institutions are planning 

processes both a short term, ratio-based enrollment forecast as well as long-

term, time series-based enrollment forecast. 

Knowing that the Auto Regressive Integrated Moving Average (ARIMA) 

is one of the most powerful approaches for forecasting, mostly used to 

financial time series, this paper aims to see if data on student enrollment can be 

adjusted to ARIMA models for estimation and forecasting purposes.  

The paper analyzes data from higher education enrollments within the 

ARIMA framework given by Box Jenkins Methodology. The data analyzed in 

this paper represent the percentage of the population 18 and 19 years old 

enrolled in higher education in United States, for the selected years 1963 

through 2012. The source of data is the Digest of Education Statistics which 

includes a selection of data from many sources, both government
1
 and private, 

and draws especially on the results of surveys and activities carried out by the 

National Center for Education Statistics (NCES).  

There are many approaches to forecasting enrollments in education (Zhang 

2007), such as: moving average, exponential smoothing, Markov chain 

(Sullivan and Woodall 1994), the traditional regression, Fuzzy time series 

(Chen and Hsu 2004) and a more complete list may continue as can be seen in 

the reference (Chen 2008). The moving average approach use projected values 

for the next years beyond historical data and this might result in large errors. 

The exponential smoothing method forecast one point at a time, adjusting its 

forecast as new data come in. The traditional regression is not advisable when 

the violation of the assumption of uncorrelated errors occur. Concerning 

reunification in Germany, Boes and Pflaumer (2005) analyzed the university 

student enrollment forecasts with outliers by structural ratios, using ARIMA-

methods. Chen and Hsu (2004) proposed a Fuzzy time series method that 

belongs to first order and time-variant methods for a higher forecasting 

accuracy rate than the previous methods and apply it to forecasting 

enrollments.  

In this paper we use fifty annually observations data, from 1963 to 2012, 

to model the time series of the percentage of the population 18 and 19 years old 

enrolled in higher education, noted here HEENROLL in order to identify a 

forecast model, estimate its parameters, check the model’s performance, and 

                                                           
1
United States Census Bureau; CPS Historical Time Series Tables on School Enrollment, and 

Current Population Survey (CPS), October, 1970 through 2012 
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finally use it to forecast. The data have the advantage that they are being 

reasonable percentage values instead of nominal values, but the interpretation 

of the results will also be reported to the according population. Even though it 

is about fifty annually observation data, the length of the series could be quite 

small for the purpose. This limitation of students’ enrollment data is a 

characteristic of the most countries. 

An Autoregressive Integrated Moving Average (ARIMA) model is 

developed here using the Box-Jenkin’s methodology in order to fit the best 

ARIMA model to the previous HEENREOLL time series. This model has to 

support the forecast of future values of HEENROLL. The empirical study 

revealed the best ARIMA validated model to forecast future values for the next 

eight years. 

 

 

Auto Regressive Integrated Moving Average (Arima)  

 

The ARIMA model has three parts:  1) the autoregressive part is a linear 

regression that relates past values of data series to future values 2) the 

integrated part indicates how many times the data series has to be differenced 

to get a stationary series, and 3) the moving average part that relates past 

forecast errors to future values of data series.  The processes type are AR(p), 

MA(q), ARMA(p,q), ARIMA (p,d,q). The questions in mind we have are: how 

does one know whether it follows a purely AR process or a purely MA process 

or an ARMA process or an ARIMA process.  

 
1

:  
p

t i t i t

i

AR p x x 
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 
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  11 :   t t tAR x x    which is a random walk for 1   

 

  11 :   t t tMA x    , where the residuals t  are White Noise 

distributed:   2. . . 0,t i i d N  . The stochastic process  t  is called White 

Noise (WN), if at every moment, the random variable t is normally 

distributed, with zero mean and constant variance, i.e. meet the conditions: 

      2 20;  E ;  Cov , 0,  t t t t kE t k          

When using the delay operator (lag)   1t tL x x  , the processes can written: 

   
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Methodological Approach for "Heenroll" Series of Data 

 

The Box Jenkins (BJ) methodology (Johnston & DiNardo, 1997) is an 

iterative process, as in the figure 1. To use the Box-Jenkins methodology (Box-

Jenkins 1976), we must have either a stationary time series or a time series that 

is stationary after one or more differencing. 

 

Figure 1. Logical Scheme of Box and Jenkins Methodology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 1: Stationarity of the Data      

The reason for assuming stationarity is to provide a valid basis for 

forecasting. A stochastic process is called stationary in the broad sense if it 

satisfies: 

       
2 2;  E ;  Cov ,t t x t t kE x x x x k   

    
 

 

 

Figure 2.  HEENROLL Graph 
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The first inspection of data from the plot of HEENROLL on time (Figure 

2) suggests that the process is not stationary and that it is necessary to 

differentiate it. We study the stationarity of the data series HEENROLL by 

applying two tests where we check the null hypothesis 0H : "series is not 

stationary": a) unit root test Dickey-Fuller Augumented (ADF) in figure 3, and 

b) Phillips-Perron unit root test (PP) in figure 4. 

 

Figure 3. Augmented Dickey-Fuller Unit Root Test on HEENROLL 
Null Hypothesis: HEENROLL has a unit root  

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -1.803694  0.3745 

Test critical values: 1% level  -3.571310  

 5% level  -2.922449  

 10% level  -2.599224  

 

 

Figure 4. Phillips-Perron Unit Root Test on HEENROLL 
Null Hypothesis: HEENROLL has a unit root  

     
        Adj. t-Stat   Prob.* 

     
     Phillips-Perron test statistic -1.802055  0.3753 

Test critical values: 1% level  -3.571310  

 5% level  -2.922449  

 10% level  -2.599224  

 

In case of ADF test we have p-value higher than the significance level 

0.05%, so we can not reject the hypothesis that the series is not stationary. 

According to PP tests from figure 4, we have the same conclusion, that the 

HEENROLL series of data is not stationary. The Autocorrelation Function 

(ACF) and the Partial Auto Correlation Function (PACF) also confirmed the 

HEENROLL series is not stationary, so we think to apply some 

transformations, such as logarithms and differentiating data series to ensure 

that the assumption of stationary of the ARIMA model is satisfied. 

_ ( )HEENROLL LN LOG HEENROLL  

Because we checked again the stationary condition for the new 

transformed data series, and as it is still not stationary, we differentiate it. The 

following transformation is named the difference of first order of the time 

series HEENROLL_LN, and is noted HEENROLL_LN_D.  

 _ _ _ ( 1)D HEENROLL LN HEENROLL LN HEENROLL LN    
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Figure 5. HEENROLL_LN_D graph 
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Figure 6. Augmented Dickey-Fuller Test Statistic for D (HEENROLL_LN) 
Null Hypothesis: HEENROLL_LN_D has a unit root 

Exogenous: Constant   

Lag Length: 0 (Automatic based on SIC, MAXLAG=10) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -6.476943  0.0000 

Test critical values: 1% level  -3.574446  

 5% level  -2.923780  

 10% level  -2.599925  
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Finally, the first difference of HEENROLL_LN turns out to be a stationary 

process, because the Augmented Dickey Fuller test confirms that we can reject 

the null hypothesis that the first difference HEENROLL_LN_D has a unit root 

(non-stationary) at the 5% significance level. 

The next stage is to determine the p, d and q in the ARIMA (p, d, q) 

model. 

 

Step 2: Identification/Specification through Correlogram: ACF and PACF 

This step is to find out the appropriate values of p, d, and q using 

correlogram and partial correlogram and Augmented Dickey Fuller Test.  

After we have estimated more models, the correlogram allows us to determine 

the possible candidates ARIMA (p,d,q) models. One of the candidates is the 

ARIMA (1;1;1) model: 

HEENROLL_LN_D = C(1) + C(2)*HEENROLL_LN_D(-1) + C(3)*MA(1) 

 

Figure 7. Correlogram on HEENROLL_LN_D 

 
 

Step 3: Estimation (Estimation of Equation, Estimation of Coefficients) 

This step is to estimate the parameters of the autoregressive and moving 

average terms included in the model (simple least squares or nonlinear in 

parameter estimation methods). The estimation is handled here by statistical 

package EViews ( Johnson n.d.). 
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Figure 8. Equation Estimation of ARIMA(1,1,1) model  
Dependent Variable: HEENROLL_LN_D  

Method: Least Squares   

Sample (adjusted): 1965 2012   

Included observations: 48 after adjustments  

Convergence achieved after 18 iterations  

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.003043 0.002083 1.460860 0.1510 

HEENROLL_LN_D(-1) 0.520764 0.228868 2.275394 0.0277 

MA(1) -0.775724 0.188332 -4.118916 0.0002 

     
     R-squared 0.183924     Mean dependent var 0.009073 

Adjusted R-squared 0.147654     S.D. dependent var 0.040184 

S.E. of regression 0.037099     Akaike info criterion -3.689973 

Sum squared resid 0.061936     Schwarz criterion -3.573023 

Log likelihood 91.55936     Hannan-Quinn criter. -3.645778 

F-statistic 5.070965     Durbin-Watson stat 1.615521 

Prob(F-statistic) 0.010326    

     
      

Step 4: Diagnostic Checking 

At this step we check that model is fit to the data, obtain residual, obtain 

ACF and PACF of residual, and apply different tests for diagnostic in order to 

validate the models and then to chose the best of them. 

One simple test of the chosen model is to see if the residuals estimated 

from this model are white noise; if they are, we can accept the particular fit; if 

not, there is evidence of autocorrelation of errors, we need to go back to the 

identification stage and re-specify the model, by adding more lags.  

 

Figure 9. Actual, Fitted and Residual Graph 
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Figure 10. Correlogram of Residuals 

 
 

a. Jarque-Bera test of normality is illustrated in figure 11, and tests whether 

standardized residuals are normally distributed. 

   
3 4

0
ˆ ˆ: 0 ( )  3 ( )st stH E skewness si E kurtosis  

 

   
3 4

1
ˆ ˆ: 0  3 st stH E sau E  

 
The null hypothesis of residuals normality is accepted as the p-value 

associated with the test has higher value than the chosen significance level. 

 

Figure 11. Jarque-Bera Test for Residuals 
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Mean       4.56e-11

Median   0.158956

Maximum  3.292401

Minimum -3.725305

Std. Dev.   1.502753

Skewness  -0.239789

Kurtosis   2.791535

Jarque-Bera  0.558300

Probability  0.756426

 
 

b. Tests for autocorrelation of residuals: Ljung - Box Q test statistics and 

Breusch - Godfrey (LM). 

In order to validate the model, the residuals of the estimated equation have 

to be a white noise process, i.e. without any correlation errors. 
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Ljung-Box Q test statistics:    2

1
2 /

s

LB kk
Q T T r T k


   , where T is 

the number of observations. The Null Hypothesys 0 :  H  „does not exist 

autocorrelation up to s”, ( 0, 1,...,kr k s  , where 
 

 
=

0
k

k
r




) is rejected for 

large values of Q or p-values less than the chosen significance level. 

 

Figure 12. Correlogram of Residuals  

 
 

The test leads to the acceptance of the null hypothesis of non 

autocorrelation of errors. The same conclusion is reached also if it is observed 

that the autocorrelation functions ACF and partial autocorrelation PACF are 

similar to those of a white noise process.  

The Breusch-Godfrey (LM) test check also for the residuals 

autocorrelation. For a residuals model AR(h), the null hypothesys  

0 :  H
"residuals are not correlated" is rejected for that p-values asociated with 

F și 
2  statistics which are less than the chosen significance threshold. 

Therefore, according to the test result shown in Figure 13, the null hypothesis 

is accepted. 

 

Figure 13. Breusch-Godfrey Serial Correlation LM Test  
     
     F-statistic 1.030304     Prob. F(2,43) 0.3655 

Obs*R-squared 2.032015     Prob. Chi-Square(2) 0.3620 

     
      

c. Heteroskedasticity tests: ARCH-LM, Breusch-Pagan-Godfrey, and White 

The null hypothesis: „homoscedasticity of residuals" is rejected for p-

values associated with F and 
2  statistics below the chosen significance 

threshold. According to the test results shown in Figures 14, 15 and 16, all 
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statistics (F, and LM) are low and, in addition, their respective probabilities are 

higher by 5%, the chosen significance level. Therefore the null hypothesis is 

accepted, i.e. the residuals are homoscedastic. 

 

Figure 14. Heteroskedasticity Test: ARCH 
     
     F-statistic 0.574626     Prob. F(1,45) 0.4524 

Obs*R-squared 0.592598     Prob. Chi-Square(1) 0.4414 

     
     

Figure 15. Heteroskedasticity Test: Breusch-Pagan-Godfrey 

     
     F-statistic 1.554971     Prob. F(1,46) 0.2187 

Obs*R-squared 1.569523     Prob. Chi-Square(1) 0.2103 

Scaled explained SS 1.594840     Prob. Chi-Square(1) 0.2066 

     
     

Figure 16. Heteroskedasticity Test: White   

     
     F-statistic 2.406075     Prob. F(9,38) 0.0286 

Obs*R-squared 17.42402     Prob. Chi-Square(9) 0.0425 

Scaled explained SS 17.70508     Prob. Chi-Square(9) 0.0388 

     
     

 

Step 5: Selection of the Best Model 

If there are more than one ARIMA models validated for the same time 

series, we can choose the best of them corresponding with the minimum value 

of the Akaike Information Criterion (AIC) and Schwarz-Bayes Criterion (SBC) 

where the AIC characterize the quality estimation and SBC is a key penalty. 

Finally we choose the model with the lowest AIC or SBC value, that is the 

ARIMA(1;1;1) model: 

 1 1 2 1_ _ 0.003043 0.520764 _ _ 0.775724t t t t t tHEENROLL LN HEENROLL LN HEENROLL LN HEENROLL LN          

Breaking down the lags and first differences yields the final forecasting model 

that is used to forecast the HEENROLL data series. 

The forecasts of the HEENROLL time series, for the next period reveal a 

constant tendency of the time series values for the next eight years. The mean 

absolute percent error, a measure often used to assess the accuracy of 

forecasting, and also for future comparing reasons  

 

Conclusions 

 

After the candidates models have been estimated and validated, and the 

SIC criteria above used to select the model ensures maximum efficiency, the 

selected model and validated is ARIMA(1,1,1): 
 1 1 2 1_ _ 0.003043 0.520764 _ _ 0.775724t t t t t tHEENROLL LN HEENROLL LN HEENROLL LN HEENROLL LN          

Here the econometric model was based on the Box-Jenkins’s methodology to 

model the historical enrolments for fifty annually observations data, from 1963 

to 2012. The time series of the percentage of the population 18 and 19 years 

old enrolled in higher education in USA were used to identify a forecast model, 

estimate its parameters, check the model’s performance, and finally use it to 
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forecast. The empirical study revealed the best ARIMA validated model to 

forecast future values of the time series for the next eight years.  One of the 

reasons for popularity of the ARIMA modeling is its success in forecasting. 

Unfortunately, even if the model helps us see where it's going enrolling 

students in the coming years, it does not help us to go behind this evolution of 

data. According with the senior forecaster McCalman, „forecasting methods 

based on univariate techniques like Box–Jenkins techniques tend to have high 

historical coherence but low conceptual coherence. These methods are 

generally very good at replicating historical movements, but provide limited 

insight into the causes of these movements”. Because the accuracy is what 

matters most when it comes to forecasting, the present research will continue to 

compare the same data series of students’ enrollment with the results of other 

methods that have been proposed for forecasting enrollments in the last years. 
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