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Surprising Investigation of Loci Using Dynamic Software 
 

Ruti Segal 

 

Moshe Stupel 

 

Victor Oxman 

 

 

Abstract 

 

The locus is a very important concept in Euclidean geometry since it serves as 

a tool for solving different problems, and allows geometric constructions to be 
carried out. The teaching of the subject of loci in various mathematics courses 

includes the solution of different exercises in which the student is required to 
find the locus in accordance with the data of the question. The present paper 

offers a different view of the subject of loci, which brings about the conceptual 

understanding of the subject with the identification of conserved properties and 
suitable generalizations obtained through investigation that includes the use of 

dynamic geometric software (Geogebra). 

 

Keywords: combining technology and mathematics, dynamic geometric 

software, locus 

 

 



ATINER CONFERENCE PAPER SERIES No: EMS2015-1779 

 

4 
 

Introduction 
 

The locus is defined as a geometric shape, whose points, and only these 

points, share a common property. Or, using the language of set theory: a locus 
is the collection of all the points that satisfy a certain condition [1, 2].  

In the traditional approach for studying loci, students are asked to prove 
that a certain curve is the locus that satisfies the requirements that are given in 

the problem. In mathematics, as an investigating science, the sought locus is 

usually not known beforehand, and one tries to guess its form based on 
experience, intuition, particular cases, computer applications, etc. In the end, 

one has to prove that the indicated locus really satisfies the requirements of the 
problem. 

The use of dynamic geometric software allows the subject of the locus to 

be studied using a similar method to that of the mathematical researcher, 
allowing the student to carry out research-like work. 

The use of dynamic software allows the students to solve problems by 
learning from examples. The students infer the essential steps from the 

examples, follow the critical properties of the concept, internalize them and 

subsequently implement them in the solution of the problems. The ability of 
the computer to generate many diverse examples fast, to save and repeat steps 

and to provide qualitative feedback, rather than just judgmental feedback, gives 
the student information on the mathematical concept that serves as a basis for 

generalizations and hypotheses that require proof [3-6]. 

There are different ways by which loci are formed. Using the following 
tasks will present different methods in which loci can be formed, where each 

example is dependent upon: 
a) Showing the locus using an applet of dynamic software. 

b) Giving mathematical proofs of the shape of a locus. 

Bellow we will illustrate this approach to teaching about locus with several 
examples. 

 
 

Task 1 – Loci Formed by the Points of Intersection of Special Lines in a 

Triangle Inscribed in a Circle 
 

The triangle ABC  is inscribed in a circle, such that the vertices of 

its base, B and C, are fixed, and its vertex A moves on the circular arc 

BC (see Figure 1). When point A moves to point A' , the locus moves 

from point G to point G' . Find the locus for each of the following cases: 
(a) What is the locus of the point of intersection of the mid 

perpendiculars in each of the triangles? 
(b) What is the locus of the point of intersection of the altitudes in each 

of the triangles?  
(c) What is the locus of the point of intersection of the angle bisectors 

in each of the triangles? 

(d) What is the locus of the point of intersection of the medians in each of the 
triangles? 

 

A

B C

A'

G'G

Figure 1 
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The Loci 
Case (a) 

It is well-known that the point of intersection of the mid perpendiculars in any 

triangle is the center of the circle that circumscribes it. In the present case all 
the triangles are circumscribed in the same circle, therefore its center is the 

locus, in other words the locus is only a point. 

 

Case (b) 

As shown in Figure 2, point G is the point of intersection of the 

altitudes of the triangle. We denote: αBAC  , by calculating 

angles in the triangle we obtain α180BGC o  . As the vertex A 

moves on the arc of the circle, the angle CBA'  remains fixed 

(inscribed angle), and therefore the angle CBG'  also remains fixed. 

Hence it follows that from any point G'  the segment BC is observed 
at the same angle, and therefore it moves on a circular arc. Since the 

sum of the angles o180CBG'CBA'  , the locus is a circle with 

a radius that equals the original radius, as shown in Figure 2. Since 
the altitudes of the triangle can intersect outside the triangle (in an 

obtuse triangle), it follows that a part of the locus lies outside the 

original circle. 

 

Case (c) 
As shown in Figure 3, point G is the point of intersection of the 

angle bisectors. We denote αBAC  , and by calculating the angles 

we obtain: α/290BGC o  . In this case as well, as the point A 

moves along the arc of the circle, the angle BG'C remains constant, 

and therefore point G'  moves on the arc of the circle in which BC is 
a chord. The radius of the circle which forms the locus is different 

than the radius of the original circle. The radii shall be equal only for 

the case   . Since the point of intersection of the bisectors of 
the triangle is always inside the triangle, in this case the locus is 
inside the triangle.  

  
Case (d) 

As shown in Figure 4, point G is the point of intersection of the medians of 

the inscribed triangle. In this case, there is no fixed relation between the angles 

BA’C and BG’C, but there is a conserved property. As point A moves on 

the arc BC, the relation always takes place A'G' 2 G'M , where point M is the 
middle of the chord BC. The relation follows from the intersection ratio of the 

medians in the triangle. Since point M is a fixed point when the point A 
moved, this point is the center of the homothety. Therefore, point G moves on 

a similar trajectory on which point A moves on, in other words, point G moves 

on a locus, which is a part of the circle that is contained entirely in the given 
circle.  

 

Figure 2 

A

B C



GF

E

Figure 3 

A

B C



D

G

2
90


 
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Summary of the Cases (a)-(d) 
In the cases (b)-(d) the locus of the points of intersection of the 

straight lines is a circle or a part of a circle, in case (a) the locus is only a 

point, which is in fact a degenerate circle. 
 

 

Applets 

GeoGebra applets were prepared for cases (b)-(d), in which one can 
move the vertex A of the triangle and observe dynamically how the loci 

formed. 
Note 1: When using the applets, drag only point A, on the arc of the 

circle, while the vertices B and C remain fixed in their places. 

Note 2: The points T, L on the circle of applets allows to change the size 
of the circle. 

Link 1: An apple for demonstrating the loci formed by the intersection point of 
the altitudes of the triangle inscribed in a circle (case b). 

http://tube.geogebra.org/student/m892907 

Link 2: An applet for demonstrating the loci formed by the intersection point of 
the angle bisectors of the triangle inscribed in a circle (case c). 

http://tube.geogebra.org/student/m892927 
Link 3: An applet for demonstrating the loci formed by the intersection point of 

the medians of the triangle inscribed in a circle (case d). 

http://tube.geogebra.org/student/m892945 

 

 

General Formulas for the Equation of the Locus of the Inscribed Center 

and the Point of Intersection of the Altitudes when two Vertices of the 

Triangle are Fixed and the Third Vertex Moves on a Given Curve 

 

In Task 1 we considered the case where point A moves on the circular arc. 
Now let us consider a general case where point A moves on a given 

curve ( )y f x . 
 

Without loss of generality, let the vertices B and C lie at 

1 0( , ) and 1,0( ) , respectively. Point A moves on some 

curve ( )y f x , and the point of intersection of the altitudes 

shall be O X Y( , ) , as shown in Figure 5. 

The triangles BOD  and ADC  are similar, 

therefore
DO DC
BD AD

 . By substituting the coordinates of the 

vertices in the similarity ratio, one obtains:  

      

  

2 21 1 1Y
1

Y
( )

x x x
x y y f x

  
      

And since for the points A, O, D there holds Xx  , the point A moves on 

the curve
  

21

X
Y

( )
x

f
 . 

Figure 5 

y

x

A( , )x y

C 1 0( , )B 1 0( , )

O X Y( , )

D(x,0) 

Figure 4 

A

B C

G

M

A'

http://tube.geogebra.org/student/m892907
http://tube.geogebra.org/student/m892907
http://tube.geogebra.org/student/m892907
http://tube.geogebra.org/student/m892927
http://tube.geogebra.org/student/m892927
http://tube.geogebra.org/student/m892945
http://tube.geogebra.org/student/m892945
http://tube.geogebra.org/student/m892945
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Examples 

(1) Let us assume that point A moves on the straight line ay  ( 0a  ), a 

line parallel to the x-axis. Then point O – the intersection of the altitudes, 

moves on the curve
2

1
Y a a

x    that shaped as a 

parabola. 
(2) Let us assume that point A moves on a circle 

whose center lies on the y-axis at the point 0( ,a) , and 

whose radius is 
2

1a   (which passes through the 

points B and C as shown in Figure 6). 

The equation of the circle on which point A is drawn 
is: 

2 2 2
1( a) ax y     

or: 
2 2

1( ) a af x y x       

When the equation of the curve is substituted in 

the relation
  

21

X
Y

( )
x

f
 , where Xx  , we obtain that the locus on which the 

point O moves (the point of intersection of the altitudes) 

is
2 2 2

X Y 1( a) a    , which is a circle whose center lies at 0( , a) , and 

whose radius is 
2

1a  . 

This conclusion can also be reached from geometric considerations. In the 
same manner, one can find the equation of the locus on which the point of 

intersection of the altitudes moves for any function ( )f x , on which point A 

moves. 

 

 

Task 2 – Sliding Ruler in a System of Coordinates 

 

A ruler AB with a given length k slides in a system of 

coordinates, such that its ends A and B remains on the axes x 
and y, as shown in Figure 7. On what geometric trajectory do 

the points M and C move? (Point M is the middle of the 
segment, while point C lies somewhere on the segment AB)?  

 

Proof Using Method (a) – Trigonometry 

From the point C( , )x y  we draw perpendiculars to the 

axes, and denote by  the acute angle between the ruler and the 

x axis. Point C divides the segment AB into two parts, the ratio 

of whose lengths is p m : n  (
BC
CA

m
n p  ).  

Based on the definitions of trigonometric functions we 

have
n

Y
sin , 

m

X
cos . By substituting these values in the 

Figure 6 

y

x

A

C 1 0( , )B 1 0( , )

O
0( ,a)

Figure 7 

y

x

B 0( , )y

O A 0( , )x

X

Y



 C(X,Y) 
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relation
2 2

1sin cosx x  , we obtain
22

2 2
1

m n

yx   , in other words point C 

moves on an ellipse. We have

   

2 2

2 2

c c

kp k
1 p 1 p

1
x y

 

  , therefore point C moves on 

the perimeter of an ellipse. For the case 1p   (m n ), when point C 

coincides with the point M, the equation of the locus is  
2

2 2

c c 2
kx y  , in 

other words the locus is a canonic circle with a radius of 
2
k

. For 1p   the 

large axis of the ellipse and the foci are located on the y axis, and when 1p  , 

the large axis of the ellipse and the foci are located on the x axis. 

Surprising note: as the ruler slides, and depending on the location of the 

point C, one can obtain three different loci: a circle and two ellipses, which 
differ from each other in the location of the foci on the axes of the system. 

In terms of the location of the point C on the ruler, one can distinguish 
between three cases: 

(1) m n : Point M moves on the circle whose radius is 
2
k

 and whose center 

is at the origin O. This result is not surprising because the distance OM is 

fixed, since 
2
k

OM   is a median on the hypotenuse in a right-angled 

triangle. The ancients knew this fact, and therefore, when they wanted to 
slide at beam downwards, fearing that during its slide it would move 

sideways, they fastened it using a strong metal chain from the center of the 
beam to the point O. 

(2) m n : Point C moves on an ellipse whose foci lie on the y-axis. 

(3) m n : Point C moves on an ellipse whose foci lie on the x-axis. 
 

Proof Using Method (b) – Analytic Geometry 
In accordance with the formula for division of a segment, the coordinates 

of point C are: 

   
   

  c c c

1 pm m n
m n m p

xx x x x


     

 

  c c

n
1m n ( p)

y
y y y    , 

Based on the Pythagorean Theorem, we have
2 2 2kx y  . We substitute 

the values of x and y in the Pythagorean Theorem and obtain the equation of 

the locus on which point C moves. 
Note: it is possible to prove the formation of these loci also by using 

mathematical tools from other fields, but the methods are long and quite 
complex, therefore it seems artificial to present them. 

As in the subsequent tasks, we will construct an applet, which presents the 

formation of these loci by changing the position of point C along the ruler, 
while sliding it dynamically on the axes of the system. 
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Link 4: An applet for demonstrating the loci formed by a point on sliding ruler 
in a system of coordinates. 

http://tube.geogebra.org/student/m892949 

 

Task 3 – Observing Known Loci at a Right Angle  

 
This task shall present the following cases: 

(a) What is the locus from which a circle observed at a right angle? 

(b) What is the locus from which a canonic ellipse observed at a right angle? 
(c) What is the locus from which a canonic hyperbola observed at a 

right angle? 
(d) What is the locus from which a canonic parabola observed at a 

right angle? 

 
Case (a) 

It is known that the locus from which a circle is observed at a right 
angle is a circle whose center coincides with the center of the original 

circle, and whose radius is R 2 , as shown in Figure 8 (the explanation 
is left to the reader).  

 

Case (b) 
In this case the locus is also a canonic circle whose 

equation is 
2 2 2 2a bx y   , where a and b are the 

parameters of the ellipse. The proof of this case is simple but 

very long and therefore left to the reader. If we do indeed 
know that the locus is a canonic circle and we wish to find its 

radius, it is possible to draw tangents to the ellipse at the ends 
of the ellipse’s axes. These tangents are perpendicular to each 

other and they intersect at the point A as shown in Figure 9. 

Hence the radius of the locus is 
2 2

R AO a b   . 

 

Case (c) 
The locus in the case of the hyperbola is also a canonic 

circle, whose equation 
2 2 2 2a bx y   , where a and b are 

the parameters of the hyperbola (Figure 10). The proof that 
this is a circle is similar to the one in Case (b). 

 

Case (d) 
The locus from which a canonic parabola observed at a 

right angle is a straight line that is perpendicular to the x-
axis (Figure 11). The result is surprising because in cases 

(a)-(c) the locus was a circle, and therefore it was expected 

that for a parabola the locus would also be a circle. This fact 
is a warning sign for those who wish to generalize. 

 

R

R 2

Figure 8 

Figure 9 

y

x
O

R

a

b

A

Figure 10 

y

x

Figure 11 

y

x

2
2py x

2

p
x  

1 1( , )x y

2 2
( , )x y

A X Y( , )

http://tube.geogebra.org/student/m892949
http://tube.geogebra.org/student/m892949
http://tube.geogebra.org/student/m892949
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Proof of Case (d) 

We denote the tangency points by 
1 1( , )x y  and 

2 2
( , )x y and the point of 

intersection of the perpendicular tangents byA X Y( , ) .  

In accordance with the notation, the equations of the tangents shall be: 

1 2
1 2

p p
( ) ( )y yy x x y x x   , .  

From the condition that the tangents are perpendicular, we obtain: 

1 2

2

1 2

p p
1 py y y y       .  

To find the point of intersection we equate the expressions for the 

tangents: 
1 2

1 2

p p
( ) ( )y yx x x x   .  

Instead of 
1

x  and 
2

x  we substitute
2 2

1 2

1 22 2p p

y y
x x , , and obtain that at 

the point of tangency there holds
2

p
x   . In other words, the locus from 

which a parabola observed at a right angle is the straight line
2

p
x   , the 

directrix of the parabola. This is a surprising result.  
Task 3 can expanded by using the strategy of “what if not?” [7], which in 

this case leads us to ask what if the angle from which we observe the known 

loci is not a right angle? What if the angle is acute? What if the angle is 
obtuse? 

The expansion of the task while using the technological tool to obtain the 
hypothesis allows one to include wider investigative activity and to inspect the 

conservation properties for other cases. 

The expansion of the task gives us a wider and more profound view of the 
mathematical objects integrated in the task, and makes the task a powerful one. 

 
 

Summary 

 
The use of the dynamic geometric software permits immediate tracking of 

the formation of the locus. Such tracking visually represents the trajectory of 
the motion of the derived point and the trajectory of the second point whose 

movement is the result of dragging the first point. Such tracking simplifies the 

mathematical method of finding the function that describes the locus on which 
the second point moves. 

The tasks we presented throughout the paper may serve as fertile ground 
for developing and extending the mathematical knowledge of pre-service 

teachers in the subject of loci. Tasks are relevant for integration both in the 

environment of teaching students/teachers and in the classroom environment. A 
task that is relevant for integration in the classroom environment encourages 

the pre-service teachers and the teachers to cooperate, to be surprised and to 
reflect of their mathematical knowledge while interacting with the tasks [8, 9]. 
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