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Abstract 

 

In recent years, the subject of different representations of the same field in 

mathematics has seen considerable development. This includes different 

representations of certain theorems, such as the very important Ceva’s theorem. 

This development is a complement of the subject of fusion of fields in 

mathematics, where the solution of a particular problem is achieved using 

mathematical tools from the same field or from different fields, thus exhibiting 

the beauty of mathematics as a tree built from interwoven branches and sub-

branches. The present paper describes different representations of Ceva’s 

theorem and shows how the use of these theorems brings about surprising and 

wide-ranging results in the study of the geometric properties of a triangle. 

 

Keywords: Ceva's theorem, cevians, triangle geometry. 

 



ATINER CONFERENCE PAPER SERIES No: EMS2014-1171 

 

4 

 Introduction 

 

Ceva’s theorem was originally published by the Italian mathematician 

Giovani Ceva in 1678 (see for example [1,2,3]). This theorem plays an 

important role in Euclidean geometry, and especially in the geometry of the 

triangle. Since Ceva’s theorem concerns segments in the triangle which 

connect its vertices with the opposite sides, these segments are named cevians 

after Ceva. Ceva’s theorem provides a sufficient and necessary condition for 

the three cevians to meet at the same point (such cevians are called concurrent 

cevians). Ceva’s theorem is related and constitutes a link to many other 

theorems in geometry. This theorem has many different proofs and several 

different representations which result in surprising and interesting results. 

Some of them are given in the paper. 

 

 

Different Representations of CEVA’S Theorem 

 

The Classical Representation 

Three concurrent cevians AD, BE, CF which intersect at the same point O 

are given in the triangle ABC (see Figure 1). 

 

Figure 1.  

 
Hence, 

1
FB

AF

EA

CE

DC

BD
 (I) 

One of the known proofs of Ceva’s theorem is by means of Menelaus’ 

theorem. 

Menelaus’ theorem states that for the triangle ABD that is intersected by a 

straight line passing through the points C, O, F, there holds: 

1
FB

AF

OA

DO

DC

BC
,  therefore 

FB

AF

DC

BC

DO

AO
  (1). 

By using Menelaus’ theorem again for the triangle ADC that is intersected by a 

straight line passing through the points E, O, B, we obtain: 

1
EC

AE

OA

DO

BD

BC
, therefore 

EC

AE

BD

BC

DO

AO
  (2) 
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From relations (1) and (2) we obtain that 
ECBD

AEBC

FBDC

AFBC









, and therefore 

1
FB

AF

EA

CE

DC

BD
. 

 

Note 1: 

As we have shown, Ceva’s theorem follows simply and directly from Menelaus’ 

theorem. It is therefore surprising that some 1700 years have passed between 

discoveries of these two theorems.  

 

Representation by Van Aubel’s Theorem 

From relations (1) and (2) it can be easily obtained that 

EC

AE

FB

AF

BC

BD

BC

DC

DO

AO









 . Since 1




BC

BC

BC

BDDC

BC

BD

BC

DC
, we obtain 

that 
EC

AE

FB

AF

DO

AO
  (II). 

This is a famous theorem by Van Aubel (see for example [4]), that claims that 

if three cevians AD, BE, CF intersect at the point O, then (II) holds. The Van 

Aubel theorem is an alternative representation of Ceva’s theorem, where the 

classical representation has a multiplicative nature and the representation by 

Van Aubel’s theorem has an additive nature. 

 

Representation by Ratios of Areas 

We give a proof to Ceva’s theorem by considering the areas of the 

triangles AOB, AOC, BOC, which we shall denote by SAOB, SAOC, and SBOC 

respectively). 

The following relations hold for the areas: 

DC

BD

S

S

S

S

DOC

BOD

AOC

AOB   (3) 

AE

CE

S

S

S

S

OEA

OEC

AOB

BOC   (4) 

FB

AF

S

S

S

S

BOF

AOF

BOC

AOC   (5) 

We multiply the relations (3), (4) and (5) and obtain that 
FB

AF

EA

CE

DC

BD
1 . 

Hence it follows that the three cevians passing through the point O divide the 

triangle into 6 triangles with areas of S1, S2, …, S6 (Figure 2), so that 

1
642

531 




SSS

SSS
 (III). 

This last relation is an alternative representation of Ceva’s theorem using 

area ratios. 
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Figure 2. 

 
 

Trigonometric Representations  

 

The First Trigonometric Representation 

It can be seen that 

DC

BD

AAC

AAB

S

S

ADC

ABD 
2

1

sin

sin
 (6) 

EA

CE

BAB

BBC

S

S

BAE

BCE 
2

1

sin

sin
 (7) 

FB

AF

CBC

CAC

S

S

CBF

CAF 
2

1

sin

sin
.  (8) 

We multiply the relations (6), (7) and (8) and obtain: 

FB

AF

EA

CE

DC

BD

A

C

C

B

B

A


2

1

2

1

2

1

sin

sin

sin

sin

sin

sin
 (9). 

By using the Law of Sines in the triangles AOB, BOC and COA, it follows that 

AO

BO

B

A


2

1

sin

sin
, 

BO

CO

C

B


2

1

sin

sin
, 

CO

AO

A

C


2

1

sin

sin
. It therefore also follows that the left-

hand side in relation (9) is equal to 1, and therefore we conclude that the three 

cevians in the triangle ABC that pass through the point O divide the angles of 

the triangle into pairs of angles A1, A2, C1, C2, B1, B2 (Figure 3), such that 

22.211.1 sinsinsinsinsinsin CBACBA   (IV). 

This is the alternative representation of Ceva’s theorem using trigonometry. 

 

Figure 3. 
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The Second Trigonometric Representation 

The area ratios (Figure 4) can be written as: 

BF

AF

DBD

DAD

S

S

BDF

ADF 
1

2

sin

sin
 (10) 

AE

CE

DAD

DDC

S

S

ADE

CDE 
3

4

sin

sin
 (11) 

From relations (10) and (11) we obtain that 
EA

CE

DC

BD

BF

AF

DD

DD






31

42

sinsin

sinsin
 (12). 

From relation (12) one can formulate the second trigonometric representation 

of Ceva’s theorem as follows: the three cevians in the triangle ABC that pass 

through the point O divide the angle D (Figure 4) into four angles D1, D2, D3, 

D4, such that:  1
sinsin

sinsin

31

42 




DD

DD
 (V).  

 

Figure 4. 

 
 

 

Surprizing Applications of Representations of Ceva’s Theorem 

 

Proposition 1 

Three concurrent cevians divide the given triangle (whose area is S) into 6 

triangles. It is clear that the area of at least one of them does not exceed S/6. 

What is surprising is that there is at least another triangle whose area also does 

not exceed S/6. 

Proof: 

6

6

1

6

1

66






 
i

i
i

i

S

S
S

. From (III), 3
642

3
531

6

6

1

SSSSSSS
i

i 


.  

Therefore ),,(
6

531 SSSMin
S
  and ),,(

6
642 SSSMin

S
 . 
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Proposition 2 

Three concurrent cevians divide the angles of the triangle to produce 6 

angles. It is clear that at least one of them does not exceed 30°, but it turns out 

that there is at least another angle whose value also does not exceed 30°. 
Proof: 

)2/(sin))2/(sin21)(cos(5.0)cos)(cos(5.0sinsin 22
21212.1 AAAAAAAAA 

 Hence, 

)2/(sin)2/(sin)2/(sinsinsinsinsinsinsin 222
22.211.1 CBACBACBA  . 

Therefore, from the representation (IV), we have: 

)2/sin()2/sin()2/sin(sinsinsin 11.1 CBACBA  . 

It is known that the following inequality holds for any triangle: 
8/1)2/sin()2/sin()2/sin( CBA  (see for example [5]), therefore: 

8/1sinsinsin 11.1  CBA  and 2/1)sin,sin,(sin 11.1 CBAMin . 

This suggests that at least one of the angles A1, B1, C1 does not exceed 30°. 

In the same manner we obtain that at least one of the angles A2, B2, C2 also 

does not exceed 30°. 

 

Proposition 3 
Consider the triangle DEF. It turns out that its area is at least 4 times smaller 

than the area of the triangle ABC. 

We denote: BD/DC = ; CE/EA = ; AF/FB = . 

From the representation (I) we have  = 1, and there holds:  21  , 

 21  ,  21  , therefore 88)1)(1)(1(    (13) 

From Routh’s theorem [3, p.382; 6] there holds 
)1)(1)(1(

)1(








 ABC

DEF

S
S , and 

from this and from relation (13) we obtain that 
4

ABC
DEF

S
S  . 

 

Proposition 4 

Representation (II) yields an interesting inequality: 6
OF

CO

OE

BO

OD

AO
. 

Proof: 

From the representation (II) there holds: 
EC

AE

FB

AF

DO

AO
 , in a similar manner 

we have 
FA

BF

DC

BD

OE

BO
 and 

DB

CD

EA

CE

OF

CO
 , and by adding the three 

expressions together with obtain: 

6222 



























CE

EA

EA

CE

BD

DC

DC

BD

AF

BF

FB

AF

OF

CO

OE

BO

OD

AO
 

where equality holds when the three cevians are the medians of the triangle. 
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Proposition 5 

Use of the representation (V) immediately suggests that if one cevian, for 

example AD, is the altitude in the triangle ABC, then for any two other cevians 

that meet on AD, there holds that the angle D1 is equal to the angle D4 (see 

Figure 5). 

 

Figure 5. 

 
Indeed, if BDA=90

o
 then 21 cossin DD  and 34 cossin DD  . From the 

representation (V) we have 1
sinsin

sinsin

31

42 




DD

DD
 therefore 1

sincos

cossin

32

32 




DD

DD
, and 

therefore 32 tgDtgD   and 32 DD  , 41 DD  . 

We note that this suggests that in the triangle known as the orthic triangle 

that is formed by the endpoints of the altitudes of the triangle ABC, these 

altitudes bisect its angles. 

 

Proposition 6 

From representation (III) we have that 1
642

531 




SSS

SSS
. Hence follows an 

interesting fact that in order to calculate the areas S1, S2,…, S6, it is enough to 

know only three of the areas. This proof requires complex algebra 

transformations and it will therefore not be shown.  

We shall demonstrate this fact using a numeric example. Assuming that it is 

given that 4,7,3 321  SSS , we calculate S4, S5, and S6. 

To this end we denote zSySxS  654 ,, . Since there holds 

OD

AO

S

SS

S

SS







4

56

3

21 , we have 
x

zy 


4

10
, or 

2

5x
zy   (14). 

In a similar manner, 
OF

CO

S

SS

S

SS







1

56

2

34 , and hence 
7

4

3




 xzy
 and  

7

)4(3 


x
zy  (15). 
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From relations (14) and (15) we find that 
29

24
x , and therefore 

29

60
 zy . 

From representation (III) one can write zy 
29

24
743 , and therefore 

1247

840
,

43

60
 yz . 

 

Proposition 7 

For the three concurrent cevians there holds: 
GD

AG

OD

AO
 2  (see Figure 4). 

Proof: 

We denote: BD/DC =  CE/EA = , AF/FB = . 

Then 

ABC

DFE

ABC

DFE

ABC

DFE

ABC

AFE

DFE

AFE

S

S

S

S
ACAB

AEAF

S

S

S

S

S

S

GD

AG 1

1

1 












. 

Since 
)1)(1)(1(

2

 


ABC

DFE

S

S
, we have 

2

)1( 




GD

AG
 (16). 

From representation (II) we have 



1


DO

AO
, and therefore from (I), 

)1(
1

1
1

1
























DO

AO
 (17). 

By comparing relations (16) and (17), we have 
GD

AG

OD

AO
 2 . 

 

Note 2: 

From proposition 7 it can be easily deduced that if three points A, O, D lie 

on the same straight line, so that k
OD

AO
 , then one can construct a point G that 

satisfies 
2

k

GD

AG
  using a straightedge only. 

And there are of course other applications of Ceva’s theorem which result 

in interesting and surprising facts. We only presented some of them. 
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