
ATINER CONFERENCE PAPER SERIES No: LNG2014-1176

1

Athens Institute for Education and Research

ATINER

ATINER's Conference Paper Series

COM2019-2640

Carsten Lecon

Professor

Aalen University

Germany

Marc Hermann

Lecturer

Aalen University

Germany

Flexible Search Function for Online Courses

in the Sense of Attribute Grammars

ATINER CONFERENCE PAPER SERIES No: COM2019-2640

2

An Introduction to

ATINER's Conference Paper Series

Conference papers are research/policy papers written and presented by academics at one

of ATINER‟s academic events. ATINER‟s association started to publish this conference

paper series in 2012. All published conference papers go through an initial peer review

aiming at disseminating and improving the ideas expressed in each work. Authors

welcome comments.

Dr. Gregory T. Papanikos

President

Athens Institute for Education and Research

This paper should be cited as follows:

Lecon, C. and Hermann, M. (2019). "Flexible Search Function for Online

Courses in the Sense of Attribute Grammars", Athens: ATINER'S Conference

Paper Series, No: COM2019-2640.

Athens Institute for Education and Research

8 Valaoritou Street, Kolonaki, 10671 Athens, Greece

Tel: + 30 210 3634210 Fax: + 30 210 3634209 Email: info@atiner.gr URL:

www.atiner.gr

URL Conference Papers Series: www.atiner.gr/papers.htm

Printed in Athens, Greece by the Athens Institute for Education and Research. All rights

reserved. Reproduction is allowed for non-commercial purposes if the source is fully

acknowledged.

ISSN: 2241-2891

22/07/2019

 ATINER CONFERENCE PAPER SERIES No: COM2019-2640

3

Flexible Search Function for Online Courses in the Sense of

Attribute Grammars

Carsten Lecon

Marc Hermann

Abstract

Attribute Grammars are mostly used when specifying a compiler or a software

program: A context-free grammar is enriched by variables (attributes) rules and

conditions. This approach can also be adapted for a flexible search function – in

our case in the context of online courses for e-learning: In general, a course

consists of chapters – each composed of subsections (and sub-subsections, etc.).

Furthermore, chapter as well as subsections have some metadata, for example title,

learning matter (subject), points (of exercises), level (beginner, well advanced,

expert), prerequisites, etc. Our data model allows defining inferred attributes

alongside the hierarchical connections between objects (parent/ children

relationship). By doing so, it is also possible to apply aggregate functions like sum

or average. For example, if a chapter has the title „SQL‟, this value can inherit to

the subsections, so that a search for „SQL‟ will not only results in the chapter but

also in the subsections – with less weighting. One the other hand, the points of

exercise subsections can be transferred to the superior chapter using a sum

function, so that a search for all exercises with a specific total point is possible.

Furthermore, another way of structure oriented searching is possible: The

(recursive) structure of the learning object can be described by object-valued

attributes. For example, the titles of all objects of a hierarchy can be described as a

character string o6.titlepath='Databases/ Languages/SQL'. In this manner, also

regular expressions can be used, for example in order to look for all subsections of

chapters with the title 'Data Models' or 'SQL':*/('Data Models'|'SQL')/*. When

generating online courses, we use an XML document, so an easy access to

structure information as well as to the metadata is possible.

Keywords: e-learning, Attribute Grammar, XML, Search Function.

Acknowledgments: Parts of this project was funded by the federal state of

Baden Wuerttemberg (Germany) („Programm hochschuldidaktische Projekte‟),

2017. The authors would like to thank the students Angelika Svoboda, Michael

Probst, Marcel Hudy, and Ufuk Karaali for the implementation of parts of the

implementation of our tool, as well as Marius Glaess for preparing a course.

 ATINER CONFERENCE PAPER SERIES No: COM2019-2640

4

Motivation/Background

The heterogeneity of the students is increasing. In Germany, one of the

reasons is that the qualification rules and conditions have changed over the last

decades. In addition, Germans are starting to study earlier. Formal learning can

easily lead to a heavy burden on students who do not have the same previous

knowledge as others. Lecturers, on the other hand, cannot respond to these

different knowledge bases. However, general conditions cannot be further

minimized. Informal learning could be the solution to meet all students. For

example, additional learning material can be offered by lecturers or students

themselves. Letting the students create the additional learning material is also

referred to as learning through teaching, which is beneficial for all involved.

Students in the role of a teacher are more aware of the topic. Students that get

the additional learning material get an alternative explanation and a different

perspective. And last but not least, the lecturers do not have to respond to the

heterogeneity of the students too much in the lessons.
Learning by teaching is usually done face-to-face or in tutorial. A more

sustainable approach is to provide the learning matter electronically in a way

that is easily accessible and extensible. This makes it possible to add additional

learning material at any time, if some students need more information or

knowledge in the topics. In order to give the students a “red thread”, the

learning matter should be well structured. This can result in a „mini-online-

course‟ with exercises for self-monitoring.
The learning matter can be divided in several ways to support different

preferences of learning and different approaches. For example, alternative trails

can be made available which support learning approaches for students that

prefer pictorial representation of information, or for students, that only want to

recapitulate the learning content with exercises and summaries.
 In some cases, the students only want information to a very specific or

relevant topic. In this case, it is advantageous to have a search function at hand.

Beyond standard search, where a full-text search or a search in titles is

provided, there is more interesting data in an online learning-course that can be

made available for searching: the level of difficulty, prerequisites, type of

media, etc. This will be the main focus in this work.
In Learning Management Systems (LMS), it is often possible to generate

own content. However, the resulting learning material often can‟t be exported

to other systems and so is bound to the LMS itself; besides, the use of the

appropriate tools for constructing good learning content can be rather complex.
To simplify this process, we have developed a tool for rapid content

generation (Lecon and Hermann, 2018). In our approach, the content consists

of arbitrary assets (media object), which then are put together to a mini-course.

The assets could also be reused in other courses as well. An XML schema was

specified for describing the structure of the mini-course. The composition of an

XML file can be done by a graphical user interface. A special XML parser then

generates a set of HTML pages from the XML file and the asset files. The

 ATINER CONFERENCE PAPER SERIES No: COM2019-2640

5

resulting HTML course can then be used online or offline on almost any

desktop or mobile device, only restricted by the media used.
Our approach allows a very flexible search functionality – going beyond

the classical full text search: Besides, of many (also pedagogical) metadata, we

can also profit from structure information given by the XML document.
The rest of this paper is organized as follows: First, we show the

background, in which this work is integrated and we give a short overview of

comments about the general problem of the heterogeneity of the students at

universities (next section). In section “Search Functionality” we describe our

search functionality and how it will be implemented. The paper ends with a

short summary and an outlook with further work.

Classification of this Project and Related Work

The aim of this project is to install a kind of Blended Learning at

universities. However, we see this project as an addition to the existing

curriculum; we do not intend to reorganize the study organization like – for

example – described in Chamberlain and Reynolds (2007). We address two

aspects:

 Our intention is to make students to be more self-dependent – in order

to react to the „comfort‟ of sitting in the lecture hall. One possibility to

address this problem is to bring students to be active learners. This can

be done by an alternative access to the learning subject as an addition to

the lectures by our „mini courses‟. In doing so, the students are forced

to learn self-independent. We hope, this also will lead to more self-

discipline, which – in turn – results to an increasing motivation (Gong

et al., 2009).

 Another aspect of our work is to react to the increasing heterogeneous

previous knowledge of the students at the beginning of the study. In

online courses the learning behavior can be tracked. Via Learning

Analytics (e.g. Lockyer and Dawson, 2011) it is possible to react to the

specific needs of the individual learner. In a presence learning scenario

(as in the most universities), the teacher can observe the students.

However the possibilities to adapt the lecture to individual needs are

very highly limited. And, the data for a learning analytics analysis come

from a learning management system (Santos et al., 2012). However,

often the students are learning outside the learning management system,

for example by web searching. Therefore, we propose an approach, in

which various learning material can be constructed very fast.

Nowadays, the students are used to get information from online resources;

also commenting and even the generation of own content (Web 2.0) is usual.

Hence, our „mini courses‟ are a conventional learning tool.

In the following we describe flexible search functionality, where we

 ATINER CONFERENCE PAPER SERIES No: COM2019-2640

6

combine good practices from database technology and compiler construction.

In doing so, structure information can be integrated in queries. This approach is

not new: Among others, we combine scientific findings on queries in semi

structured data - for example from (Abiteboul, 1999) –, in using attribute

grammars for modeling of (semi) structured data – for example from (Neven,

1999) –, and in combining structure and content information – for example

(Berlanga et al., 1999); in Zhang et al. (2010) a model (Structure and Content

Model) is used for comparing (semi) structured documents regarding the

structure and the content.

The specification of our data model is inspired by Attribute Grammars,

which are used at compiler construction. In particular, we use the concept of

inherited and synthesized attributes (Slonneger and Kurtz, 1995).

An evaluation is not part of this paper, because the search functionality for

the tool is still in progress as are other parts like the graphical user interface

and HTML templates.

Search Functionality

The main use of mini courses are in the sense of microteaching: In contrast

to a complete curriculum, the mini course serves as an additional learning

material. Thus, it should be easy to decide, if one mini course is suitable and it

should be easy to find the actual relevant topics (as part of the mini course).

This requires a powerful query language.

Mostly, when using a search formula only one input field is given.

Internally, a search engine typically uses words that appear in the document

(full text search). The ranking of the search results often is determined by the

frequency of the words and the position inside the document (headline, capture

of a figure …). The weighting of the search result also depends on how often a

website is linked by other pages. This is kind of structure information.

However, we argue, that the structure inside a website (hierarchy of the web

pages and the hyperlinks between the pages) can also be used to enrich the

power of a query. If a web for example page for example has an HTML

heading like „Java Course‟, this title is also applied to the subpages implicitly.

In our approach, all information about a course is described by an XML

document. Thereby, structure information is available in form of the hierarchy

of the XML elements and by the linking between elements. Also, several

metadata are represented as attributes. The structure (hierarchically order,

sequences) exists implicitly (XML structure). There is semi a structured data

view to the data, which already was described in (Abiteboul, 1999).

Attributes, which can be determined automatically, are for example: file

type, size of the file, date. Other attributes can be specified by the author

during the creating phase of the course.

Based on this metadata, flexible search functionality is possible. For

example one can seek for

 ATINER CONFERENCE PAPER SERIES No: COM2019-2640

7

 full text

 metadata like

o title

o level (difficulty)

o content type(s) (definition, example, exercise, etc.)

 structure (see below)

More comprehensive search functionality can be inferred not only from the

content but also from the structure (see above), which is described by the

hierarchy and sequences, as well as by learning trails and hyperlinks. Hence,

we extend the standard search functionality to so-called structure-describing

attributes, reference attributes and inherited attributes.

Structure-Describing Attributes

The (recursive) structure of the learning object can be described by object-

valued attributes. For example, the titles of all objects of a hierarchy can be

described as a character string (referred to Figure 1):

o6.titlepath='Databases/Languages/SQL'

In this manner, also regular expressions can be used, for example in order

to look for all subsections with the title 'Data Models' or 'SQL':

/('Data Models'|'SQL')/

In our case (Figure 1), the objects 2 and 6 would result.

Figure 1. Short Example of a Course

 ATINER CONFERENCE PAPER SERIES No: COM2019-2640

8

Reference Attributes

The data model can define attributes, which are object-valued. That is,

they are references to one or more objects. For example:

 o1.children={o2,o3,o4}

 o6.parent=o3

 o4.link=o7

The search expression o1.children results in the objects 2, 3 and 4. o1 itself

can be the result of another search. This means that a search result can be a

component of a complete query expression (see below „component based query

language‟). In other words, every query component is like an individual „view‟

to the data.

Derived Attributes

In addition, our data model allows defining inferred attributes: Attributes

can „inherit‟ the values alongside the hierarchical connections between objects

(parent-/ children relationship, links, trails). By doing so, it is also possible to

apply aggregate function like sum or average.

As an example, consider exercise sheets (see Figure 2), which are

organized in a hierarchical structure (see Figure 2, left side): At the top, the title

of the exercise is described („Exercise SQL‟), this exercise consists of three

sheets, each which a subtitle and points. The points can be inherited upwards,

whereby the sum of all points is calculated, so the top element „Exercise 1‟

offers the total number of points, which can be got at best. On the other hand,

the title of the top element can be inherited to the subjacent sheets downwards.

In Figure 2, the inherited attributes are written in italic.

Figure 2. Inheriting of Attributes and Attribute Values

This means, searching for objects with the title „SQL‟ results not only in

 ATINER CONFERENCE PAPER SERIES No: COM2019-2640

9

the top element („Exercise 1‟), but also in the dependent objects „Exercise 1 a‟,

„Exercise 1 b‟ and „Exercise 1c‟.

In order to distinct origin and inherited attributes, the inherited values can

be weighted. This will be used to rank the search results. If the sub objects also

has an attribute „title‟, the title of the super object („Exercise 1‟) can inherit via

an union operator; so that both attribute values are considered; generally with

different weighting of each value.

Also, it is possible to pass attribute values along a (learning) trail. For

example, the topic of one page can be transferred to the other pages of the same

trail –with a less weighting of the search result as well. This means, that a

specific topic exists anywhere in the actual learning path.

Attributed context free Grammar Approach

The underlying data model can be described by an attributed context free

Grammar. Referring the above example, we extend the objects as follows:

 A lecture consists of slides and exercises and is described by a title

 A slide is described by a theme

 An exercise consists of sheets

 A sheet is described by a theme and points

An attributed context free Grammar can look like this (objects are terminal

symbols):

lecture slide* exercise*

 theme := slide.theme ∪ (∪ exercise.theme)

 exercise.title := lecture.titel

slide object

exercise sheet*

 exercise.point := ∑(sheet.point)

 exercise.theme := ∪(sheet.theme)

sheet object

Regarding the implementation of the data structure, there are some

specification rules:

 Kind of derivation of the attributes: above (inheriting), below

(synthesized)

 Modification of the derived attribute: Attribute value may be modified/

may not be modified; origin attribute value will be overwritten or will

be expanded by the derived attribute value(s)

 Calculation: Sum, union, etc.

 Integrity constraints

 ATINER CONFERENCE PAPER SERIES No: COM2019-2640

10

Component Based Query Language

The above-depicted features go into a data model based on an attributed

context free grammars approach – based on Lecon and Seehusen (2002). A

query consists of components, where every component represents a single

search predicate, for example full text search or metadata search. The

components can be joined, for example via and/ or connection. A block of a

query component can build a subquery.

For every query component the user interface uses an own input field.

It might be reasonably assumed that a graphical query language can be

used, by which every component is represented as a visual element (for

example a box) and these elements are combined by association links (for

example by a line).

However, this is a rather challenging task because of the specification of

the semantics of each graphical element; the graphical representation of the

query can quickly be confusing. For example, the graphical query language

XML-GDM (Ceri et al., 1999; see Figure 3) for XML documents was not very

successful. Further research is found in Erwig (1998).

Figure 3. XML-GL: Graphical Query Language for XML Documents

Our attempts are not less complicated. A query using a graphical notation

is depicted in Figure 4. Apparently, the semantic is hard to understand: In this

case, we look for pages, which are located in the learning trail „Exercise‟,

whereby none of these pages is part of the learning trail „B‟ simultaneously.

 ATINER CONFERENCE PAPER SERIES No: COM2019-2640

11

Figure 4. Graphical Query Language for our Tool (Attempt)

Furthermore, the implementation of a graphical user interface is very

complex as well as the handling by the users. Hence, we have decided to use a

text form for querying (see below).

XML Document

The XML definition (see Figure 5) allows specific queries, whereby main

attribute as well as inherited attributes can be used, for example the title of a

chapter and/ or a single page, author, time, level, belonging to a learning trail,

etc. Also pages, which are followed by a quiz, can be selected. Of course, full

text search is possible. The input for full text results from the content of text

(written inside the XML file) and text files; integrated PDF files are converted

into text before (a conversion of Word and PowerPoint files is in progress).

There are some special features:

1. The title attribute of a page is transmitted alongside the learning trails

(with minor weighting): The title of the first element of the trail will get

the highest weighting.

2. This also applies for (internal) hyperlinks: The title of the source

element (page) will be transmitted to the destination element (with

minor weighting).

3. When calculating the ranking of the query results, the pages, which are

referred by one or more quizzes (attribute reference of the quiz

element), will be ranked higher.

 ATINER CONFERENCE PAPER SERIES No: COM2019-2640

12

Figure 5. Course.dtd (Extract)
<!ELEMENT course chapter+>

<!ELEMENT chapter (page | quiz)+>

<!ATTLIST chapter title CDATA #IMPLIED

<!ELEMENT page content+>

<!ATTLIST page

 id ID #REQUIRED

 title CDATA #IMPLIED>

 <!ELEMENT content #PCDATA>

 <!ATTLIST content

 type ('image' | 'text' | 'textfile' | 'hyperlink' |

 'video' | 'audio' | 'quiz') #REQUIRED

 file CDATA #IMPLIED

 alt CDATA #IMPLIED

 href CDATA #IMPLIED

 author CDATA #IMPLIED

 time CDATA #IMPLIED

 level ('beginner' | 'expert' | 'proceeded' | 'n/a')

 'n/a' #IMPLIED

 contentType ('normal' | 'summary' | 'deepening' |

 'remark' | 'syntax' | 'hint') 'normal'

#IMPLIED

 trail ('Exercise', 'Picture', 'Summary', 'Syntax')

#IMPLIED

 hidden CDATA #IMPLIED

 onClick CDATA #IMPLIED>

<!ELEMENT quiz EMPTY>

<!ATTLIST quiz

 file CDATA #REQUIRED

 reference id* IDREF #IMPLIED>

Some aspects regarding the XML DTD are of interest:

 In the generated course, the attribute contentType of the element content

will be shown as an icon in the margin of the HTLM page in order to

symbolize the kind of content. In the search form, a pull down list of all

possible content types will be provided.

 If the (optional) attribute title of the element chapter is given, this text

will serve as a prefix of the title of every subsequent page. For example

„2.1 Database: Data Models‟ and „2.2 Database: SQL‟ instead of „2.1

Data Models‟ and „2.2 SQL‟. This means, the search for

title=’Database’ will deliver all pages in chapter 2, because the title

attribute of the chapter attribute is transmitted to all subsequent

elements.

 The file attribute of the quiz element refers to a file, in which a quiz is

stored (in this way, the same quiz can be used in different courses). The

optional attribute „references‟ refers to pages, in which the topics of the

quiz are treated. When generating the course, the (also generated)

 ATINER CONFERENCE PAPER SERIES No: COM2019-2640

13

quizzes are equipped with hyperlinks to appropriate pages of the

course.

 The hidden attribute of the element page serves for contents, which are

firstly invisible. However, when the user presses on the text represented

by the onClick attribute, the hidden text (attribute hidden) will appear.

In this way, simple self-tests can be realized: The text shows a question,

and after clicking the question text, the answer will be blended in. The

search function takes into account these hidden texts.

 Specifying learning trails can be done in two ways (in both cases, the

belonging to a learning trail of a page will be taken into account when

searching):

o Attribute trail of the element content (see Figure 5)

o Automatic trail detection by finding key words (in the plain text

of a page), which are specified in the configuration file of our

tool

Implementation

The search form is flexible: It is possible to adapt the form individually,

for example by adding new search fields (see Figure 6). By adding a new

search field, the input field will be generated accordingly to the kind of the

field: When choosing attributes with predefined values (for example level,

content type), a list of all possible items will be generated. In figure 7 one can

see the step just before inserting the new search field „Content Type‟. The input

field for full text search ever is the last field. The single search expressions can

be connected by „and‟, „or‟ or „and not‟ conditions. In addition, each search

expression can be weighted – in the range of 1 to 10 (this value will internally

convert to the interval up to 1).

Figure 6 represent a search for pages with the title „kinetosis‟ (title of page

itself or of the enclosing chapter) [must-meet the criterion] or pages with

beginner level [nice-to-have criterion], whereas no summary appear [must-

meet criterion], furthermore, the page should contain the word „car‟.

Empty entries are ignored.

Figure 6. Search Form (Mockup)

 ATINER CONFERENCE PAPER SERIES No: COM2019-2640

14

Figure 7. Search Form: Adding a New Search Field (Mockup)

Because the course should be used offline, no database system is used.

Instead, the structure information as well as metadata of the pages (as specified

in the XML document) is stored in a „database‟ file. The implementation of the

query processing is realized as a Java Applet (see Figure 8).

Figure 8. Schematic Structure of the Web Page with Search Function

In order to generate the (HTML) course, the XML DOM tree is traversed.

Therefore, not only the metadata (XML attributes) but also structure

information (hierarchy of chapter/ subchapter) is available. Parallel to the

generation process, the „database‟ is built. Because (HTML) pages are the

smallest unit (for the user), the internal database consists of a collection of

relevant information for each page (extract), (see Table 1).

 ATINER CONFERENCE PAPER SERIES No: COM2019-2640

15

Table 1. Database Attributes

Attribute Multiple Automated Weighting

title yes (title of page and chapter) 1 (page title)

0..1 (chapter title)

level yes 1

content type yes 1 (per each)

author yes 0..1 (per each)

time no 1

type yes 1 (per each)

trail yes 1 (per each)

The above described search form offers some opportunities of adaption

already (adding/ removing search fields, weighting of the particular search

expressions). Additionally, it is planned, that the user can adapt the search

functionality by adjusting some further parameters, for example:

 Specifying the value of the weights for inherited attributes (title

attribute of page and chapter elements) – and if this even should take

place.

 Specifying the value of the weights for inherited attributes (title

attribute of trails) – and if this even should take place.

 Specification of trails (on the basis of given key words, which are in the

text of the generated pages exist)

 Reusing the search result in order to create a new course – consisting of

the found pages.

Conclusion and Further Work

We have presented a tool for generating so called offline „mini courses‟.

The motivation for this project is:

 Reacting to the increasing heterogeneity of previous knowledge of the

student: Some learning matters can be repeated and presented in

another way for self-learning (as addition to the lectures and tutorials).

 The choice of the learning content of a lecture at a university (or a

school) is restricted due to the curriculum. The consequence is that

especially some new and innovative topics cannot be dealt with.

Additional learning material – as mini courses (for self-learning) – can

complete the lecture. The realization of these courses can be done by

the teacher and/ or the students itself (we have tried this approach

successfully) – in the sense of „learning by teaching‟ (Stollhans, 2016;

Biswas et al., 2005).

Search functionality for e-learning course is natural. In this specific

context, this is even truer, because often the learning is situational and time

 ATINER CONFERENCE PAPER SERIES No: COM2019-2640

16

sensitive, so that a quick access to the desired learning material is of advantage.

Our search functionality bases on content information (full text) and a rich

set of metadata; furthermore, structure information is considered. For this,

internally we use a data model inspired by attributed context free grammars

(known in the area of compiler construction).

Our next steps are (among others): We will complete the implementation

of the search functionality. Also, subqueries (query components, see above)

will be possible, like subqueries in SQL. These components represent a data

set, which can be combined with the other queries – that also means,

components appear in the list of „search fields‟ (without parameter).

Performing a full text search (momentarily) all matches are treated equal.

However, studies have shown, that there is an order when reading a text (with

pictures): First (all) pictures, then picture descriptions (there exists an own

attribute in our XML document), then headlines, then plain text. Therefore, it

makes sense, to weight the matches accordingly.

So far, the transmitting (inheriting) of attribute values is restricted to text.

However, also numeric attributes should be treated – as in the above example

(Figure 2). An automatic detection and interpretation of numeric values in the

texts is difficult and – probably – not clear. One possibility to implement this is

to mark the numeric values in the text by special characters. Then the user

could also use aggregate functions (sum, average …), which are specified in

the XML document (eventually with additional attributes; in the present state

of our graphical user interface, this is possible – actually, our XML parser

validate, if the XML document is well formed only (not if this document is

valid).

We will optimize the query processing (indexing process, caching …). In

this context, we will test and evaluate alternative possibilities to store the data

locally, for example Web Storage, whereas the data could be represented as

serialized JSON document
1
.

In order to integrate any type of media (especially PDF documents,

Microsoft Word and PowerPoint files), we plan to implement converting

programs, which convert these files into text files (which then be seen as plain

text – for full text search); also we intend to extract relevant information from

media files (sound, video): modification date, format, size, resolution, sampling

rate, … - apart from the normally available information: Subtitle and

description.

It could be useful to store and load a complete query; for example as a new

search component, which can be adapted for future queries.

Furthermore, we will examine, if a hybrid version (online/ offline) of the

search functionality is possible, since nowadays the students are mostly online

(via mobile devices). In this case, we could use a standard database, in which

the individual course of the students is stored; a server could process the

queries faster.

We will examine, if our approach can be adapted to external courses

1
 https://www.w3schools.com/html/html5_webstorage.asp.

https://www.w3schools.com/html/html5_webstorage.asp

 ATINER CONFERENCE PAPER SERIES No: COM2019-2640

17

(online course) as well; in this case, the material will be transformed into our

data model (by extracting metadata and structure information).

References

Abiteboul, S. 1999. On Views and XML. Proc. of ACM Symposium on Principles of

Database Systems, pp 1-9. 1999.

Berlanga, R, Aramburu, M.J., and Garcia, S. 1999. Efficient Retrieval of Structured

Documents form Object-Relational Databases. In T.J.M. Bench-Capon, G. Soda,

and A.M. Toja (eds): Database and Expert Systems Application, 10th

International Conference (DEXA´99), volume 1677 of Lecture Notes in

Computer Science, pp 526-435, Springer. 1999.

Biswas, G., Leelawong, K., Schwartz, D., and Vye, N. 2005. Learning by Teaching: A

New Agent Paradigma For Educational Software. Journal Applied Artificial

Intelligence, pp 363-392. 2005.

Ceri, S, Comai, S., Damiani, E., Fraternali, P., Paraboschi, St., and Tanca, L. 1999.

XML-GL: a Graphical Language for Querying and Restructuring XML

Documents. Elevier Science. 1999.

Chamberlain, M, and Reynolds, C. 2007. Blended Learning Initiatives in Higher

Education: Opportunities and Challenges. In C. Montgomerie & J. Seale

(Eds.), Proceedings of EdMedia: World Conference on Educational Media and

Technology 2007 (pp. 2397-2402). Association for the Advancement of

Computing in Education (AACE). 2007.

Erwig, M. 1998. Abstract Syntax and Semantic of Visual Languages. Journal of Visual

Languages and Computing, 9(5), pp 461-483. 1998.

Gong, Y, Rai, D., Beck, J., Hefferman, N.T. 2009. Does Self-Discipline Impact

Students' Knowledge and Learning? International Conference on Educational

Data Mining (EDM) (2nd, Cordoba, Spain, Jul 1-3, 2009). 2009.

Lecon, C., and Hermann, M. 2018. Demand Driven Generation of e-Learning Courses.

9th International Conference on Computer Science Education: Innovation and

Technology (CSEIT 2019). Singapore, October 22-23. 2018.

Lecon, C., and Seehusen, S. 2002: Combining Structure Search and Content Search

for Online Courses. 13th International Workshop on Databases and Expert

Systems Application 2002 (DEXA, pp. 366-273). 2002.

Lockyer, L, and Dawson, S. 2011. Learning designs and learning analytics.

Proceedings of the 1st International Conference on Learning Analytics and

Knowledge. Banff (Canada), February 27 – March 01, 2011, pp 153-156. 2011.

Neven, J. 1999. Extension of Attribute Grammars for Structured Document Queries. In

R.C.H. Connor and A.O. Mendelzon (eds): Proceedings 7th International

Workshop on Database Programming Languages (DBPL´99), volume 1949 of

Lecture Notes in Computer Science, pp 99-116, Springer. 1999.

Santos, J.L, Govaerts, S., Velbert, K., and Duval, E. 2012. Goal-oriented visualization

of activity tracking: a case study with engineering students. Proceedings of the

2nd International Conference on Learning Analytics and Knowledge. Vancouver

(Canada), April 29 – May 02 2012, pp 143-152. 2012.

Slonneger, K., and Kurtz, B.L. 1995. Formal Syntax and Semantics of Programming

Languages. Addison-Wesley. 1995.

Stollhans, S. 2016. Learning by teaching: developing transferable skills. Employability

for languages: a handbook. Research-publishing.net. Dublin (Ireland), pp 161-

 ATINER CONFERENCE PAPER SERIES No: COM2019-2640

18

164. 2016.

Zhang, L, Li, Z. Chen, Q., and Li, N. 2010. Structure and Content Similarity for

Clustering XML Documents. In: Web-Age Information Management. WAIM

2010 Workshops: WAIM 2010 International Workshops. Jiuzhaigou Valley

(China), July 15-17. Shen, H.T., Pei, J, Oezu, M.T., Zou, L, Wang, Ling, T.W., Yu,

G., Zhuang, Y., and Shao, J. (eds), Springer Science & Business Media. 2010.

