
ATINER CONFERENCE PAPER SERIES No: LNG2014-1176

1

Athens Institute for Education and Research

ATINER

ATINER's Conference Paper Series

COM2018-2554

Marina Burdack

Research Fellow

Aalen University of Applied Sciences

Germany

Manfred Rössle

Professor

Aalen University of Applied Sciences

Germany

René Kübler

Software Developer

Oskar Frech GmbH + Co. KG

Germany

A Concept of an In-Memory Database for IoT

Sensor Data

ATINER CONFERENCE PAPER SERIES No: COM2018-2554

2

An Introduction to

ATINER's Conference Paper Series

Conference papers are research/policy papers written and presented by academics at one

of ATINER’s academic events. ATINER’s association started to publish this conference

paper series in 2012. All published conference papers go through an initial peer review

aiming at disseminating and improving the ideas expressed in each work. Authors

welcome comments.

Dr. Gregory T. Papanikos

President

Athens Institute for Education and Research

This paper should be cited as follows:

Burdack, M., Rössle, M. and Kübler, R. (2018). "A Concept of an In-Memory

Database for IoT Sensor Data", Athens: ATINER'S Conference Paper Series,

No: COM2018-2554.

Athens Institute for Education and Research

8 Valaoritou Street, Kolonaki, 10671 Athens, Greece

Tel: + 30 210 3634210 Fax: + 30 210 3634209 Email: info@atiner.gr URL:

www.atiner.gr

URL Conference Papers Series: www.atiner.gr/papers.htm

Printed in Athens, Greece by the Athens Institute for Education and Research. All rights

reserved. Reproduction is allowed for non-commercial purposes if the source is fully

acknowledged.

ISSN: 2241-2891

04/10/2018

ATINER CONFERENCE PAPER SERIES No: COM2018-2554

3

A Concept of an In-Memory Database for IoT Sensor Data

Marina Burdack

Manfred Rössle

René Kübler

Abstract

In the context of digital transformation and use of Industry 4.0 technology in

companies, machines and other objects are increasingly being equipped with

sensors. Normally, these machines are monitored 24/7, so that data streams are

continuously generated by sensors. These data has to be stored in a database. In

order to facilitate a fast data mining process and the use of machine learning

algorithms, a performant and robust data store for the vast amount of sensor

data is necessary. These raw time series sensor data has typical structures that

are difficult to model with traditional database management systems. Here,

column-oriented In-Memory databases like SAP HANA or Gorilla are better

suited. However, SAP HANA have not been developed to store relational data,

so that it contains components like transaction and concurrency control, which

are unnecessary for the named range of application, because machine learning

algorithms only need reading access. By reducing this concept to the essentials,

a specialized, lightweight In-Memory database management system can be

developed, which perfectly fits to the characteristics of time series sensor data.

For that concept the benefits of the In-Memory data structure of SAP HANA

and Facebook Gorilla are merged and combined with additional meta

information like limits for minimum and maximum warning for each sensor,

special user specified column fields or rules for sampling and replenishment

values. The evaluation of the implemented prototype shows on the one hand

that the time series sensor data can be stored efficiently using a new table

structure and an intelligent combination of the ZFP compression method with a

block orientated data structure, which results in a good insert performance. On

the other hand, this storage logic leads to an efficient data access of the

compressed in-memory data structure, thus every reporting or analyzing tasks

access the data efficiently and fast.

Keywords: In-Memory Database, Internet of Things, Machine Learning, Time

Series, Sensor Data.

ATINER CONFERENCE PAPER SERIES No: COM2018-2554

4

Introduction

Caused by the digital transformation and the new technologies in kind of

Industry 4.0, more and more companies begin to monitor their machines by the

use of internet of things technology. For this purpose each physical machine is

equipped with different sensors and an application programming interface (API),

which allows to communicate with the internet (Zhonglin and Yuhua, 2011).

Thanks to the API it is possible to use the internet of things network protocol mqtt

(message queue telemetry transport) – a publish subscribe protocol (Hunkeler,

Truong, & Stanford-Clark, 2008) - to send the sensor data to another machine like

a server which contains a database for storage the data in real-time. For this

sending process, the machine normally publishes the data itself by sending it to a

defined MQTT-broker like mosquitto ("Eclipse Mosquitto," 2018b) and the server

subscribes this data from the same broker and storage it continuous in the

database. (Hunkeler et al., 2008) Through this process the data is generated

continuously (Gama and Rodrigues, 2007, p. 25) and send in defined time

intervals – nearly in real-time - from the machine, so that the data is called

streaming data (Gama et al., 2006, p. 1) - especially by the monitoring of sensors.

Every data point is combined with a timestamp (Xu et al., 2012, p. 1)–they called

time series sensor data. ―A data stream is an ordered sequence of instances that can

be read only once or a small number of times using limited computing and storage

capabilities. These sources of data are characterized by being open-ended, flowing

at high-speed, and generated by non-stationary distributions in dynamic

environments‖ (Gama and Rodrigues, 2007, p. 25). Usually many sensors are

being used to monitor a single machine. The information from different

sensors can be combined to generate new knowledge. For example, a sound, a

speed and a vibration sensor can be used to monitor the flow speed and noise of

the conveyor. Normally the variables would be dependent, and the combined

information leverages the anomaly detection. So, there are many different sensor

possibilities to monitor a machine. Normally not only one machine is monitored,

still a whole process line with different machines. Thus, a dynamic and complex

sensor network exists (Zhonglin and Yuhua, 2011, p. 137). This network creates a

huge amount of streaming data (Zhonglin and Yuhua, 2011, p. 1) and allows to

generate knowledge (Kanawaday and Sane, 2017). The streaming data has to be

stored durable and in way to enable performant data selection for live analyses and

predictions (Kanawaday and Sane, 2017).

The objective of real-time monitoring of machines is that in cause of an error

or unexpected mistake, the cause can be immediately detected and solved. By the

use of machine learning algorithm (Kanawaday and Sane, 2017), it is possible to

make predictions on base of the actual sensor data and predict the future error. It is

also possible to predict the time when a component has to be changed. Then it is

called predictive maintenance.

The best way to store data durable and get a direct transaction based access to

the stored data is the use of OLTP (online transaction processing) (Harizopoulos et

al., 2008, p. 1) databases. A decade ago, databases were stored on the hard discs,

because the cost of the main memory was much more expensive, and the capacity

ATINER CONFERENCE PAPER SERIES No: COM2018-2554

5

was too limited. Thanks, the new in-memory databases with compressed column

stores and the rapid development of main memory in terms of lower cost and

higher capacity (Harizopoulos et al., 2008, p. 3), is it possible to fit these OLTP

databases in the main memory. Thus the ―most OLTP transactions can be

processed in milliseconds or less‖ (Harizopoulos et al., 2008, p. 1). These real-time

transactions are a main advantage of in-memory databases like SAP HANA

(Färber et al., 2012) to generate real-time knowledge, but they contains

components which are not necessary for storing time series sensor data.

The special characteristics of the time series sensor data and the advantages of

in memory databases leads to that, the new database must meet certain

requirements for real time analyzing and storage the data.

This paper describes a theoretical concept of a new in memory database, that

are based on the advantages of the SAP HANA (Färber et al., 2012) and the open

source Gorilla (Pelkonen et al., 2015) database architecture. To understand the

used technologies different data compression especially lossy (Goyal et al., 2008)

and lossless (Kokovin et al., 2018) compression techniques, have to be discuss and

the characteristic of time series data are defined.

Literature Review

In the literature different approaches can be found to store sensor data.

Decentral Databases

Tsiftes and Dunkels (2011) developed Antelope, a database management

system, which allows to store a database in every sensor. To store the data, they

use flash memory. ―Antelope provides a dynamic database system that enables

run-time creation and deletion of databases and indexes. Antelope uses an energy-

efficient indexing techniques that significantly improve the performance of

queries‖ (Tsiftes and Dunkels, 2011, p. 316). Unlike to our database management

system Antelope uses the classical relational database terminology from Codd

(1970). To store the sensor data itself, they create a relation which consists of

columns for the primary key (an integer value), a sensor ID, the time and the

sensor value. In addition to the relation, the architecture contains also an index

abstraction and indexer process component (Tsiftes and Dunkels, 2011). But the

architecture of Antelope does not allow the storage of user specified meta data for

the sensor like minimum and maximum limits or rules for data sampling. They do

not describe clearly if the use any compression to store the data.

Central Storage Solution

The decentral database solutions (Tsiftes and Dunkels, 2011) are restricted

by the capacity of the storage (Li et al., 2012). Therefore, a long-time storage

of a huge period of sensor data is not possible. For machine learning or reports

also historical data is needed, so that a central storage solution is better suited.

ATINER CONFERENCE PAPER SERIES No: COM2018-2554

6

Li et al. (2012) developed IOTMDB ―a storage solution for massive IoT data

based on NoSQL‖ (Li et al., 2012). The system is divided in four main parts: the

master node, which manages the slave nodes clusters, the standby node as a

backup note of the master node, the data reception node for receiving the data

from the sensors and make the preprocessing work of the data and at last the slave

node, which contains all sensor data. For the preprocessing they divided the raw

data ―into two categories: light-weight data like numerical data and characters; and

multi-media data like videos, audios and signals. For these two kinds of data, the

processes of preprocessing are different‖ (Li et al., 2012, p. 52). The preprocessing

contains the following steps: extracting specific information, cleaning the data,

included filling missing values, de-duplicating the data and finally a customer

processing step, but the user need programming knowledge, because this step can

only done by code. To storage the data, the IOTMDB use sample records which

contains different sample elements which represents key values pairs and static

and dynamic information (Li et al., 2012). But this data model doesn’t contain user

specified meta data for each sensor like minimum or maximum limits. It allows

user specified preprocessing but only with programming effort. In addition, it is

not only used for sensor data, so it contains components which are not necessary.

In the actual version they use no data compression technique.

Pramukantoro et al. (2017) describe another central storage solution. They

present ―a framework consists of the Internet Gateway Device (IGD) function, a

Web service, NoSQL database, and IoT Application. The framework efficiently

handles the structured and unstructured of sensor data‖ (Pramukantoro et al., 2017,

p. 1). For storing data, they use MongoDB as a NoSQL-database. Each kind of

sensor gets an own topic, which belongs to the sensor values. With these topics the

values are stored in the database. If they use data compression methods are not

described. Finally, it does not allow the saving of meta data to the sensors.

Time Series Sensor Database

To storage only sensor data, so called times series sensor databases are

developed. Bader et al. (2017) compared twelve Open-Source time series sensor

databases with 27 criteria. They researched if the databases support the following

important function for data analytics: insert, read and delete sensor data, scan data

over a defined time range, the use of aggregations like AVG, SUM, MIN, Max

and the downsampling as a specific function for time series sensor data. Only the

database management systems KairosDB (2018), InfluxDB (2018b) and

MonentDB (Stratos Idreos et al., 2012) meet all requirements.

KairosDB use the distributed NoSQL database management system

(Lakshman and Malik, 2010) apache Cassandra to storage data. To store time

series sensor data, the three different ―column families‖ are used: ―Data Points

Column Family‖, ―Row Key Index Column Family‖ and the ―String Index

Column Family‖ ("Cassandra Schema — KairosDB 1.0.1 documentation," 2018).

These database use a data compression method during the writing process

("Cassandra - Documentation - Compression," 2017).

ATINER CONFERENCE PAPER SERIES No: COM2018-2554

7

InfluxDB stores time series sensor data in so called logical grouped

―measurements‖. Each measurement contains to each time value one data point

with one or more sensor values (―fields‖). To identify each time series in a

measurement a unique ―tag‖ is used. The database supports a SQL-like query

language ("InfluxData Documentation," 2018b) ―The timestamps and values are

compressed and stored separately using encodings dependent on the data type and

its shape. Storing them independently allows timestamp encoding to be used for all

timestamps, while allowing different encodings for different field types. For

example, some points may be able to use run-length encoding whereas other may

not.‖ ("InfluxData Documentation - In-memory indexing and the Time-Structured

Merge Tree (TSM)," 2018c).

MonetDB (Stratos Idreos et al., 2012) is an OLAP optimized, column based

database management system which stores the data in fixed schema in tables. It

supports the SQL-Query language and use dictionary encoding for columns which

contains string.

In addition to these three databases, the time series data base from Facebook

Gorilla (Pelkonen et al., 2015) is also from high interest, because it is ―a fast,

scalable, In-Memory Time Series Database‖ (Pelkonen et al., 2015). Facebook

uses this database to storage monitoring data from Facebooks-infrastructure for the

past 26 hours and allows the automatic warning in case of anomalies and allows

rapid searching of errors. The database itself uses for persistent storage the data the

Apache HBase database. (Pelkonen et al., 2015) To storage the time serious sensor

data, each time series are identified by a unique key. This key is a string which is

the only meta data. The time series itself consists only of a pair of columns, one

column for the timestamps and one column for the sensor values. New values are

inserted with three elements. The first element is the text of the time series as

string, the second the timestamps and the third elements are the sensor values

(Pelkonen et al., 2015, p. 1818). To select these stored data the Beringei Client can

be used. It allows to select one or more time series in a defined time solution, with

the same time range. The client decompresses the data blockwise, data outside the

requested timeframe is discarded and the time resolution gets downsampled if it is

too precise. The Gorilla database stores the different times series in block sizes of

two hours. Each time series has exactly one open block where new data can be

appended. During the insertion the database uses different compression techniques

for the timestamps and the sensor values. If a block has gain the limit, this block

will be closed. Closed blocks are only readable and cannot be changed (Pelkonen

et al., 2015).

Methodology

To develop a new in memory database especially for IoT sensor data it is

necessary to discuss the characteristic of time series sensor data and how a new

database can be developed on the base of existing in-memory databases.

ATINER CONFERENCE PAPER SERIES No: COM2018-2554

8

The Characteristic of Time Series Sensor Data

The main characteristic of time series sensor data is that they have a defined

start and end time (normally endless) and defined range of values. Thus, the values

always inner these range and can be used for example to transform and visualize

the data in real-time.

But these data have special characteristics. Each sensor generates in regular

time data points (Xu et al., 2012, p. 1) which consists a key/value pair. The key is

a timestamp which will be generated automatically. The value is the special

measurement value from each sensor. Furthermore, they can contain further

components like a value unit or other values. In case of the continuously

generation of sensor data a data stream of each sensor will be generated which is

growing up monotonously by increasing the timestamps. This leads to that new

data points never have an older timestamp than the data point before and are only

append to the existing data. So, a continuous data stream is generated. If values

have to be deleted, only the oldest values (with the lowest timestamp) are

removed. Each value of these data stream is not able to be updated. But it is also

possible that a sensor records values only then if the value changes. Then

unregular values are recorded.

In spite of these main components, it is necessary that before starting

monitoring a whole machine, the data structure from each sensor is defined. If the

sensor data are send in a sensor network by mqtt (Hunkeler et al., 2008), this

structure is used to define for example a json-string structure. So each data point

are send via a json string to the mqtt-broker and there it can be subscribed by an

client (Hunkeler et al., 2008). The client is able to read this json string.

Keep it Simple / the Needed Functions of the New Database

On base of these defined characteristic of time series sensor data, it is shown

that the new database needs only a few functions, because time series sensor data

is read-only. The values of the times series cannot be updated or deleted. This

leads to define, that the time series sensor data are stored in a column store. This

allows OLAP operations.

Therefore, that the database is used in context of Industry 4.0 and by use of

the mqtt network protocol the database access is controlled, because only the mqtt

broker writes into the database. To store the data efficiently, an optimized data

structure is needed, because machine learning algorithm only need rapid access for

real-time prediction.

In the fact, that the different sensor of a machine generates a huge amount of

time series data in few seconds, a light-weight compression method is needed,

which allows to store these data in the main memory and allows a direct access to

these compressed values. For the purpose of machine learning, special reading

commands: scan, average, count and maximum are needed. For sensor values a

function of downsampling is appropriate, which allows to summarize values to a

lower frequency. (For example, time series values from 0.1s frequency to 1s

frequency).

ATINER CONFERENCE PAPER SERIES No: COM2018-2554

9

But what about the other components of a typical databases, which are

normally used for example for an enterprise relationship management? By

monitoring machines, only key/value sensor data is stored, so that no concurrency

control and only a light user management system is required. Only the mqtt-broker

has writing access to the database and the application for machine learning for

example has read-only access.

By the characteristic of time series sensor data and the fact that this data is not

updated, no transaction and no complex indexes are necessary. The data never

needs to be reorganized, so that the predefined indexes are enough. Additionally,

that the database is stored in the main memory no buffer is needed, because the

main memory allows fast data access.

The last point is that no data models with definitions of primary and foreign

keys are needed, because only sensor values will be stored. And therefore, it is

enough to create one table for the sensor values. For more sensor specific

information like the maximum and minimum value limit, meta data can be used.

The Different Data Compression Techniques

Data compression is a very important aspect by the use and the select of

databases especially in the context of the Internet of Things. In only a few minutes,

only one sensor can generate a large data volume (Hänisch et al., 2016, p. 4). But

if a whole machine is monitored and not only one component, mostly more than

one sensor will be used. For example in the die casting project ―DataCast‖ are

―three pressure-, five temperature and one form-fill-control-sensor‖ are used to

monitor only the die-casting-mold‖ (Rössle and Kübler, 2017, p. 7). This leads to

an enormous data volume of multiple gigabytes in few minutes (Hänisch et al.,

2016, p. 4). To store this data in a fewer size in a database, there are different kinds

of data compression methods. The effect is a higher capacity, without expansion of

the physical storage. ―The aim of data compression is to reduce redundancy in

stored or communicated data, thus increasing effective data density‖ (Lelewer and

Hirschberg, 1987, p. 261).

But what is data compression? Data compression is a method, which consists

of two paired algorithms. The first algorithm is the coder, which transform the data

by the use of different mapping rules into a coded message. The second algorithm

is the decoder, which use the same mapping rules as the coder and decode the

coded message into the original data format (Lelewer and Hirschberg, 1987,

p. 264).

In the literature different data compression methods can be found. These

techniques can be split in two fundamental concepts; the lossless compression and

the lossy compression concepts. The goal of the lossless compression concept is

the remove of redundant data, whereas the original data are full reconstructable. In

contrast to the first concept, lossy compression removes irrelevant data, where the

original data cannot be completely reconstructed, because information was

deleted. The implement the following concept of the in-memory database

especially for IoT sensor data, the ZFP lossy compression for floating point data

(Lindstrom, 2014) are used.

ATINER CONFERENCE PAPER SERIES No: COM2018-2554

10

The ZFP compression is a lossy compression for 32 und 64-bit floating point

data (float/double). It is possible to compress one, two or three-dimensional arrays.

For higher data dimensionality, a higher compression ratio is possible.

The Requirements for the Lightweight Database Management System for IoT

Sensor Data

By the upper discussion of the characteristic of time series sensor data the

following requirements are defined for a lightweight database management system

for IoT sensor data. The goal of this new in-memory database is the faster

analyzing of the stored time series sensor data than other database management

systems. For that reason, the principals of the primary data storage in the main

storage and the compression of data structures with direct access should be used.

The main functionality of this database management system is the section insert,

select and storage of sensor data.

Insert New Time Series Sensor Data

The database management system has to secure, that by the insert of new data

the technology of data streams can be used. This means, that the different data

points of a sensor are being send in this order as they are generated from the

sensor. Nevertheless times series sensor data, which is not generated in constant

sequence has be stored without adaption on the client. Furthermore, it should be

able to save metadata to each time series as for example name, type, measurement

accuracy, unit and place. Additionally, it should be possible to define border

values for each sensor, which allows an extern program to show a direct warning if

any input value is out of range. The border values are necessary to find quick

mistakes in each sensor based on wrong time series data values.

Select Time Series Sensor Data

The new in memory database supports the classical aggregation function:

sum, avg, min and max for each column to select stored time serious sensor

data. All queries are limited to one time series and time area. As an option,

each column can be limited. As a special operation it supports downsampling.

Downsampling is being used to group the data to a lower time resolution.

These operations allow the analysis of the data direct, without sending the

whole data for further analyzing to a third program.

Storage

The new in memory database must ensure that if the volatile memory is

erased, for example through loss of current, the data can be restored.

ATINER CONFERENCE PAPER SERIES No: COM2018-2554

11

The Concept of the New in Memory Database

Based on the defined requirements and the goal to store the time series sensor

data efficient and performant for explorative data analyzing purposes, the

following concept of an in-memory database is suggested.

This concept is based on the special characteristics of the two in-memory

databases SAP Hana (Plattner, 2013) and Gorilla (Pelkonen et al., 2015). SAP

Hana stores the primary data in the main memory, which allows a rapid access to

the data. It is also stored in write optimized form on the persistent storage. If the

volatile memory is lost, the database can be restored. Thanks to special

characteristics of the time series sensor data – add new values with append only –

an in-memory data structure like the data structure from the database Gorilla can

be used. This data structure allows – in contrast to the data structure from SAP

HANA - to add new time series sensor data to the database without any difficult

merge-process.

Logical Database Level

On the logical level of the concept the data is organized in a table structure.

This structure has to be defined before the first time series values are added to the

new table. This data structure contains the following information:

 Table name

 User specified fields table of (Key-Value)

 Time resolution of the table (definition of the step size)

 Start time

 columns

o column name

o User specified column field (Key-Value)

o Limit warning minimum

o Limit warning maximum

o rule for sampling values

o rule for replenishment values

o column group

 ZFP type (float or double value)

 Fixed rate

To create a new table, the table name and minimum one column with the

column name, the rule for sampling the input values, the rule for replenishment the

missing values and the definition of the column group consisting of the ZFP type

and a fixed rate, have to be defined. The start time is set by the system itself after

adding the first time series data point to this defined table. Therefore, every table

represents an equidistant timeline that means between every data point the same

time difference exists and therefore the table contains an implicit time index. This

time index can be defined by the start time and the time resolution of the table. By

editing the rule for sampling values, it can define how the input values should

ATINER CONFERENCE PAPER SERIES No: COM2018-2554

12

transformed to the defined table time resolution. Thus, it is possible to store

different kind of sensor in one table with different frequency. About the restriction,

that by inserting new data in the table structure, all columns have to be filled, it is

possible to define a rule for replenishment missing values. A conceivable rule is

that the last value is taken to replenishment the missing value. In contrast to the

missing values, it is possible by higher time resolution by one sensor, that to one

timestamp are more than one sensor value are available. To solve this input

problem, a rule for sampling values can be defined. For instance, these values are

dropped or summarized. Another rule can be that the first value or the arithmetic

mean of these values is stored. In addition to these data values user specified meta

data can be stored on the base of the table definition and on the base of each

column definition. To ensure that a third part program is able to show warning by

the insert process of the time series sensor data, the border values of each sensor

have to be defined. This will be done by define limit warning minimum and limit

warning maximum for each column definition.

Insert from Time Series Sensor Data

Inserting time series sensor data, always one data point will be added to one

table. For this purpose, all columns of this table structure have to be filled.

Therefore, it is necessary that by creation the table structure rules for

replenishment and sampling sensor data values for each sensor are defined. A big

advantage of time series sensor data is that they are streaming data and new data

points always have a higher timestamp than the last data point. This ensure the

rule, that only time series sensor data are allowed to be added, which contains a

higher timestamp as the last input values of the table.

Select Time Series Sensor Data from Table Structure

To select time series sensor data from the stored table, at least the table name

is necessary. But normally queries will be done where the timeline and the

columns are limited. To select data in this in-memory database, the SQL like

language from the time series database InfluxDB (2018a) works well.

The Physical Database Level

On the base of the in-memory data structure the concept is similar to the

gorilla database, because both concepts structure their data in frames. But in

contrast to the concept of the gorilla database the kind of data compression and the

show of the time values have to be adjusted. In the Figure 1 the data storage of

each database are shown. SAP Hana use for storage data the differential buffer

(―Delta Store‖) and the main store. The differential buffer is used to insert-, delete-

und update values (Plattner, 2013, p. 167). The changed values are transferred with

a merge process to the main store (Plattner, 2013, p. 181). It is possible to query

values from both components. In contrast to SAP Hana, Gorilla organizes the

sensor data in blocks. Each time series contains own data blocks. Each block

ATINER CONFERENCE PAPER SERIES No: COM2018-2554

13

stores values of two hours. To each time series an open data block exists. This new

data is added only to this open block as append only. If a block is closed, it will be

copied to another storage part and is added to a block index. At the closed blocks

only reading access is allowed. It is also possible to query data from open blocks

(Pelkonen et al., 2015). The last component in the Figure 1 on the right shows the

new developed database storage concept, which will be following explained.

Figure 1. Abstract Overview about the In-Memory Data Storage Concepts of SAP

Hana, Gorilla and Own Concept

SAP HANA

table

Differential

buffer

Main

Store

Merge

Gorilla

Time series

Open data

block

(Append

only)

ZFP Array

complete
Closed

blocks

Blockindex

Copy

Concept

table

ZFP Array

incomplete

ZFP Array

complete

ZFP Array

complete

Index of block

start times

Add to

Index

Insert New Time Series Sensor Data

The gorilla database uses a compression method, which is optimized for

monitoring data. It compresses data frames in a two hour time interval and a

lowest temporal resolution from one second (Pelkonen et al., 2015). By inserting

new data in an existing open data block the new values are being compressed

during import and are added to the existing data block by append only. The

existing open data block is flexible sized, so that it sizes up, by each added value

until the limit of two hours is reached and the block is closed. At this moment the

block only contains compressed values. An additional compression of the full

block is not necessary. After closing the block it will be copied to another storage

area (Pelkonen et al., 2015). For the concept of the new in memory database the

base logic from the gorilla database is taken, but the size of one block is not

flexible, it will be fixed in the beginning. Storage for a full ZFP-Array is reserved

for the used ZFP compression method. On the base of the logic of the Gorilla

database each data block has a time limit of two hours. This leads to the fact that

with the declared resolution time of a sensor a limited count of values can be

inserted in an open data block. If the limit is arrived the data block will be closed,

and a new empty data block will be created. The old data block gets an index

based on the timestamp of the first input values and is added to the index (see

Figure 1).

ATINER CONFERENCE PAPER SERIES No: COM2018-2554

14

Select Time Series Sensor Data

By query the time series sensor data with a select statement (number 1 in

Figure 2), Gorilla return (number 2 in Figure 2) the whole compressed block to the

client. In contrast by the use of ZFP arrays in the new in memory database

architecture (right figure in Figure 2) is it possible to get a direct access to the

stored values, caused by the transparent compression method. As a result, the

sensor data are displayed in the needed downsampling rate und time resolution.

The same theory is used by the dictionary encoding (Plattner, 2013, p. 37) in the

SAP Hana database (left figure in Figure 2). This allows the direct performance of

aggregations functions on the compressed in-memory data structures, as illustrated

in the following Error! Reference source not found.. As a result of a query, also

the needed sensor data are displayed. Figure 2 also shows that the three databases

contain three different query interfaces. SAP HANA allows the downsampling of

sensor data in queries at the access to the differential buffer and the main store. On

the contrary, the Gorilla database allows only queries on the block index, which

linked with different kind of blocks. Each block is stored with a special sampling

rate of data. Downsampling of stored data are here not possible. Through the

combination of the block logic from the gorilla database and the downsampling

possibility from SAP Hana the big advantage of the new in-memory database is

generated. It is the possibility to use downsampling in queries to access data over

the block index structure with the stored start time of each compressed ZFP-array.

So, it is possible to execute a query with downsampling function direct on the

compressed in-memory-data structure.

Figure 2. Data Access to the In-Memory Data Structure

Storage of the Time Series Sensor Data

The important second point is the storage of time series values. The Gorilla

database stores time values explicitly (Pelkonen et al., 2015). The new in-memory

database is able to optimize the storage of the time values through an implicit

ATINER CONFERENCE PAPER SERIES No: COM2018-2554

15

equidistant time index. This equidistant time series have not to be stored, because

it is possible to calculate them with the following function:

t = ax + s

where s = start time, x = row number and a = distance between the different time

values. In this way a constant access of O(1) to the elements is possible. Another

possibility is to store the explicit time index. Because the time values of a time

series are strength monotonously increasing. Through the rule that only values

with a higher timestamp can be added to the table, the time index is automatically

sort.

The logical separation of the table in table groups – as in the following Figure

3 shows - makes it possible that data with similar data value range can be stored in

high compressed two-dimension ZFP-Arrays.

Figure 3. Design for Optimized Storage of the Time Series Sensor Data in the

Physical Database Level

Concept

Insert Data

Select Data

T
a
b
l
e
I
n
d
e
x

Each ZPF-Array is split into blocks. If one block is complete, a new block

will be created and the completed block is saved in the background as a document.

If a table contains more than one column group, all column groups have the same

size. The new block start time is added to the index and the insert operations write

into the new ZFP-array. To avoid data loss by restarting the database server or

during a power off, the data in the uncompleted arrays is stored in a write

optimized insert log. An insert log contains same count of values, like the

uncompleted block and it is only necessary until the block is not completed and

ATINER CONFERENCE PAPER SERIES No: COM2018-2554

16

saved. After a loss of the data from the main memory, the insert log and the saved

blocks can be used to recovery the in-memory structure in the main memory.

Handling Missing Values

ZFP arrays are not able to store NaN (―not a number‖, undefined or

unrepresentable value) and infinite values. But by the work with time series sensor

data and the connection via mqtt it is possible that the connection is lost for a few

seconds, and no new time series sensor data values are send. Perhaps only the

timestamps can be located but not the value. This situation has also been

displayed. For this problem some possible solutions exist. A first solution is the

possibility to define a very high default value as a mistake marker that the mistake

can be shown for example in a real-time monitoring dashboard. The disadvantage

at this solution is that this value is disrupting the compression block where it

belongs to. A second solution is to define a rule to fill automatically missing

values in the table structure. Through this, it is possible to close little spaces in the

time series and the values are compressed very well.

Another solution is a one-bit flag, which indicates the value as original sensor

value or as a replaced missing value.

Findings

To evaluate the concept of the new in-memory database, two kinds of in-

memory databases are developed in C++. The first prototype includes the ZFP

compressed in-memory data structure by use of the ZFP library (Lindstrom, 2014),

("LLNL/zfp") . The second prototype uses the uncompressed in-memory data

structures std::vector ("std::vector – cppreference.com," 2018g) from the C++

standard-template-library. With the second prototype the disadvantages of the

compression method will be shown. To evaluate the new in-memory database a

benchmark with different kind of databases and the uncompressed in-memory

database are conducted. For the benchmark the duration time in seconds of the

operations: SCAN (queries on time ranges), AVG (calculation of the arithmetic

mean), MAX (highest sensor value), downsampling (aggregate values to a smaller

time resolution) and the compression rate are detected.

As test data the time series sensor data of the research project ―DataCast‖

(Rössle and Kübler, 2017) is used. This data set contains 25.303.888 values and

needs as uncompressed double value 193 MB of storage. The following databases

are used: the KairosDB ("KairosDB," 2018) a shared on time series data optimized

database on the base of Apache Cassandra, the InfluxDB (2018b) a time series

sensor data optimized database and the MonetDB (Stratos Idreos et al., 2012) as a

column stored relational database.

ATINER CONFERENCE PAPER SERIES No: COM2018-2554

17

Evaluation of Different Configuration Option of the ZFP-Library

The compression tests are split in different areas. First the different

"DataCast" (Rössle and Kübler, 2017) sensor are single compressed with ZFP-1d

arrays. In the following test, sensor data of more sensors are together compressed

in ZFP-2d arrays. The last test contains the determination of the duration time of

the different operations. For this we use the ZFP-2d array compression for the own

in-memory database and the other selected databases.

Data Compression with ZFP 1d-Arrays

The ―DataCast‖ sensor values are compressed once with a compression ratio

of 16 bit per value and once with a compression ratio of 21 bit per value. By use

the first compression ratio it takes 878ms to compress the whole ―DataCast‖ data

set. In this case the storage size will size down to 48mb with the accuracy of two

till three decimal places. In contrast to the first compression ratio the second takes

1355ms and needs 96mb storage, but with an accuracy of seven till eight decimal

places.

Data Compression with ZFP 2d-Arrays

First all ―DataCast‖ values are compressed in a 2d-array by the use of

different kind of bit per values. As of 12 bit per values a compression ratio of 3.4

is achieved. Here 64 million values are inserted in one second. Afterwards the

sensor data is compressed with different bit per values in similar sensors namely

pressure and temperature sensor. Even by the lowest bit per value rate of four bit,

there is no mistake in the accuracy. Thereby the storage size of the raw sensor data

is reduced up to a sixth by a compression time of 262 million values per second.

SCAN, AVG, MAX and Downsampling

To show the effort of the ZPF-compression a second prototype of the new in-

memory database is implemented, which uses the uncompressed C++ vector

instead of ZFP-arrays. In addition to this database, the first prototype and the

above selected databases are compared in the following benchmark. The duration

times of the scan, avg, count, max and downsampling operations on basis of the

―DataCast‖ values are evaluated and the compression ratio for each database is

calculated.

Figure 4 illustrates the result of the benchmark in an overview.

Figure 4. Benchmark with DataCast Sensor Data (Rössle and Kübler, 2017)
 Scan AVG COUNT MAX Downs. Compr.-rate

KairosDB 3.3 s 78.4 s 57.0 s 0.6 s 16.2 s 1.33

InfluxDB 1.7 s 1.9 s 1.5 s 0.04 s 0.19 s 1.8

MonetDB 8.2 s 0.09 s 0.06 s 0.007 s 0.11 s 1.0

ZFP 0.012 s 0.65 s 0 s 0.004 s 0.29 s 3.7

C++ Vector 0.0008 s 0.035 s 0 s 0.0004 s 0.004 s 1.0

ATINER CONFERENCE PAPER SERIES No: COM2018-2554

18

For evaluation of operations on the different databases the compression

configuration for the ZFP-array has to be defined. For the ZPF-array the

―DataCast‖ sensor values are compressed with a fixed rate from 16 bit per value

and need 965 MB of main memory. This configuration in addition with the use of

the implicit time index provides a compression ratio of 3.7 and shows in contrast

to the other databases the best value. But through this compression the ―DataCast‖

values lose the accuracy after the third decimal.

The evaluation of the scan operations by a duration time of one second shows,

that the ZFP-arrays are in contrast to another database with 0.012s faster, but the

uncompressed C++ vector takes only the 10,000 time from the MonetDB.

The first mathematical reading operations average (AVG) is executed over all

temperature sensor values with timeline of two hours. The evaluation shows that

the KairosDB is the slowest database with over 70 seconds and the ZPF-array

takes for the operation less than one second but is slower as the MonetDB. The

fastest database is the C++ vector.

In order to get the maximum of the temperature sensors of the ―DataCast‖

values the count operation is used on a time range of ten seconds. All databases

need less than one second. Although the C++ vector without any compression

method is 100 times faster than the Influx DB and the fastest database in this case

in the test.

The test of the count operation shows that both prototypes count the values

extremely fast, because they use the implicit time index, so that only the highest

row index has to be read. This is a big advantage in contrast to the other databases.

For evaluation of the downsampling method the values of one hour are used

to calculate the average of the values in time slots of 15 minutes. The result of this

test shows, that KairosDB needs with 16 seconds the longest. But the ZFP-array

not perform and takes 0.29 seconds. The fastest database in the test is also the C++

vector with 0.004 seconds.

In summary both self-implemented prototypes of in-memory databases show

that the concept of the ZPF compression performs. The ZFP version has a very

good compression ratio and still can perform with the scan, count and max

operation on the ―DataCast‖ values. For the average and downsampling operation

the MonetDB is the quickest database. But the benchmark also shows that the in-

memory database with the uncompressed C++ vector is the fastest database in all

categories.

Conclusions

In conclusion the first prototype of the new in memory database merges the

benefits of the in-memory data structure of SAP HANA and Facebook Gorilla

databases. Through the block orientation of Gorilla, the disadvantages of the

complex merge process, performed by SAP Hana, can be eliminated.

Additionally, it shows on the one hand, that time series senor data can be

stored efficiently using a new table definition and an intelligent combination of the

ATINER CONFERENCE PAPER SERIES No: COM2018-2554

19

ZFP compression method with the block orientated data structure. In this kind the

idea of the transparent compression method from SAP HANA is used, where

transparent compression methods are based on the dictionary encoding. Thus, a

high compression rate of the time series sensor data can be achieved. On the

other hand, this storage logic leads to an efficient data access of the

compressed in-memory data structure, thus every reporting or analyzing for

example by the use of machine learning algorithm can work rapid and

efficiently. Furthermore, the database allows every reading operation, like for

example mathematical operations, on the stored data.

Finally, thanks the storage on main memory and the use of in-memory

technology, the new in-memory database can be perfectly use for storing IoT

time series sensor data. To gain knowledge of the stored data only real-time

reading accesses to the data are necessary. The database also works with

streaming data, so that a real-time monitoring of machines is possible and in

case of errors an immediate reaction is guaranteed.

Further Work

On the results of the first prototype a new prototype will be implemented. By

monitoring a machine over 24 hours a day and seven days a week a huge amount

of data has to be stored, but for real-time prediction and real-time monitoring in

the most cases only the last two or four hours of data are interesting. What about

the old data, which must be stored for documentation and reporting purposes?

Now, these data has also stored in the main memory. But the main memory is

fewer limited as the hard disk, because it is more expensive. So, a new component

and technology has to be added to the first prototype. SAP HANA in this case uses

a nearline storage to move old data onto a hard disk, where the reporting tools are

able to access to these data. Because our database was developed especially for

rapid data access of time series sensor data, we have to be aware, that the use of

this technology will split the data in two different storages, so the data access may

lose performance. Therefore, we have to research and evaluate different storage

solutions for old data and add the best to our in-memory database solution.

References

Bader, A., Kopp, O., Falkenthal, M. (2017). Survey and comparison of open source time

series databases. Datenbanksysteme Für Business, Technologie Und Web (BTW

2017)-Workshopband.

Cassandra - Documentation - Compression. (2017). Retrieved from http://cassandra.apa

che.org/doc/latest/operating/compression.html.

Cassandra Schema — KairosDB 1.0.1 documentation. (2018). Retrieved from http://kai

rosdb.github.io/docs/build/html/CassandraSchema.html.

Codd, E. F. (1970). A relational model of data for large shared data banks.

Communications of the ACM, 13(6), 377-387. https://doi.org/10.1145/362384.362

685.

ATINER CONFERENCE PAPER SERIES No: COM2018-2554

20

Eclipse Mosquitto. (2018b). Retrieved from https://mosquitto.org/.

Färber, F., Cha, S. K., Primsch, J., Bornhövd, C., Sigg, S., Lehner, W. (2012). SAP

HANA database. ACM SIGMOD Record, 40(4), 45. https://doi.org/10.1145/20941

14.2094126.

Gama, J. and Rodrigues, P. P. (2007). Data Stream Processing. In J. Gama & M. M. Gaber

(Eds.), SpringerLink: Springer e-Books. Learning from Data Streams: Processing

Techniques in Sensor Networks (pp. 25-39). Berlin, Heidelberg: Springer-Verlag

Berlin Heidelberg. https://doi.org/10.1007/3-540-73679-4_3.

Gama, J., Rodrigues, P., Aguilar-Ruiz, J. (2006). An Overview on Learning from Data

Streams. New Generation Computing, 25(1), 1-4. https://doi.org/10.1007/s00354-

006-0001-5.

Goyal, V. K., Fletcher, A. K., Rangan, S. (2008). Compressive Sampling and Lossy

Compression. IEEE Signal Processing Magazine, 25(2), 48-56. https://doi.org/10.

1109/MSP.2007.915001.

Hänisch, T., Rössle, M., Kübler, R. (2016). Storing Sensor Data in Different Database

Architectures. Athens: ATINER'S Conference Paper Series, No: COM2016-1955.

Harizopoulos, S., Abadi, D. J., Madden, S., Stonebraker, M. (2008). OLTP through the

looking glass, and what we found there. In L. V. S. Lakshmanan, R. T. Ng, & D.

Shasha (Eds.), Proceedings of the 2008 ACM SIGMOD international conference on

Management of data - SIGMOD '08 (p. 981). New York, New York, USA: ACM

Press. https://doi.org/10.1145/1376616.1376713.

Hunkeler, U., Truong, H. L., Stanford-Clark, A. (2008). MQTT-S — A publish/subscribe

protocol for Wireless Sensor Networks. In COMSWARE 2008: The Third International

Conference on Communication System Software and Middleware and Workshops:

Bangalore, India, 5-10 January (pp. 791-798). [Piscataway, N.J.]: IEEE. https://doi.

org/10.1109/COMSWA.2008.4554519.

InfluxData Documentation. (2018a). Retrieved from https://docs.influxdata.com/influxdb/

v1.5/.

InfluxData Documentation. (2018b). Retrieved from https://docs.influxdata.com/influxdb/

v1.5/.

InfluxData Documentation - In-memory indexing and the Time-Structured Merge Tree

(TSM). (2018c). Retrieved from https://bit.ly/2zMHg0b.

KairosDB (2018). Retrieved from http://kairosdb.github.io/.

Kanawaday, A. and Sane, A. (2017, November - 2017, November). Machine learning for

predictive maintenance of industrial machines using IoT sensor data. In 2017 8th

IEEE International Conference on Software Engineering and Service Science

(ICSESS) (pp. 87-90). IEEE. https://doi.org/10.1109/ICSESS.2017.8342870.

Kokovin, V. A., Uvaysov, S. U., Uvaysova, S. S. (2018, March - 2018, March). Real-time

sorting and lossless compression of data on FPGA. In 2018 Moscow Workshop on

Electronic and Networking Technologies (MWENT) (pp. 1-5). IEEE. https://doi.org/

10.1109/MWENT.2018.8337187.

Lakshman, A. and Malik, P. (2010). Cassandra. ACM SIGOPS Operating Systems Review,

44(2), 35. https://doi.org/10.1145/1773912.1773922.

Lelewer, D. A. and Hirschberg, D. S. (1987). Data compression. ACM Computing

Surveys, 19(3), 261–296. https://doi.org/10.1145/45072.45074.

Li, T., Liu, Y., Tian, Y., Shen, S., Mao, W. (2012, November - 2012, November). A

Storage Solution for Massive IoT Data Based on NoSQL. In 2012 IEEE

International Conference on Green Computing and Communications (pp. 50-57).

IEEE. https://doi.org/10.1109/GreenCom.2012.18.

ATINER CONFERENCE PAPER SERIES No: COM2018-2554

21

Lindstrom, P. (2014). Fixed-Rate Compressed Floating-Point Arrays. IEEE Transactions

on Visualization and Computer Graphics, 20(12), 2674-2683. https://doi.org/10.

1109/TVCG.2014.2346458.

LLNL/zfp. Retrieved from https://github.com/LLNL/zfp.

Pelkonen, T., Franklin, S., Teller, J., Cavallaro, P., Huang, Q., Meza, J., Veeraraghavan,

K. (2015). Gorilla. Proceedings of the VLDB Endowment, 8(12), 1816-1827.

https://doi.org/10.14778/2824032.2824078.

Plattner, H. (2013). Lehrbuch In-Memory Data Management: Grundlagen der In-

Memory-Technologie. Wiesbaden: Springer Fachmedien Wiesbaden GmbH.

Pramukantoro, E. S., Yahya, W., Arganata, G., Bhawiyuga, A., Basuki, A. (2017, October

- 2017, October). Topic based IoT data storage framework for heterogeneous sensor

data. In 2017 11th International Conference on Telecommunication Systems Services

and Applications (TSSA) (pp. 1-4). IEEE. https://doi.org/10.1109/TSSA.2017.8272

895.

Rössle, M. and Kübler, R. (2017). Quality Prediction on Die Cast Sensor Data. Athens:

ATINER'S Conference Paper Series, No: COM2017-2272.

Std::vector – cppreference.com. (2018g). Retrieved from https://bit.ly/2QqKUSW.

Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, K. Sjoerd Mullender, Martin

L. Kersten. (2012). MonetDB: Two Decades of Research in Column-oriented

Database Architectures. IEEE Data Engineering Bulletin, 35(1), 40-45.

Tsiftes, N. and Dunkels, A. (2011). A database in every sensor. In J. Liu, P. Levis, & K.

Römer (Eds.), Proceedings of the 9th ACM Conference on Embedded Networked

Sensor Systems (p. 316). New York, NY: ACM. https://doi.org/10.1145/2070942.20

70974.

Xu, Z., Zhang, R., Kotagiri, R., Parampalli, U. (2012). An adaptive algorithm for online

time series segmentation with error bound guarantee. In E. Rundensteiner (Ed.):

ACM Digital Library, Proceedings of the 15th International Conference on

Extending Database Technology (p. 192). New York, NY: ACM. https://doi.org/10.

1145/2247596.2247620.

Zhonglin, H. and Yuhua, H. (2011, August - 2011, August). Preliminary Study on Data

Management Technologies of Internet of Things. In 2011 International Conference

on Intelligence Science and Information Engineering (pp. 137-140). IEEE. https://

doi.org/10.1109/ISIE.2011.63.

