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An Architecture for Reliable Industry 4.0 Appliances 

 

Till Haenisch 

 

Abstract 

 

Industry 4.0, or the Internet of Industrial Things, means interconnected 

machines and devices in a heterogeneous environment. These systems have 

much longer lifecycles than the normal IT ecosystems we are used to in 

enterprise. It is difficult to keep these systems secure for an extended period 

of time. While minor malfunctions may be acceptable, software bugs might 

lead to security problems, which cannot be ignored, since they will have 

consequences in the real world. Because of this, it is important to keep the 

number of bugs as low as possible and to limit the damage of the remaining 

ones. Today‟s method of keeping systems (like operating systems) secure is 

to patch them permanently to close all discovered bugs. The necessity to 

patch on a regular basis combined with the long lifespan of the components 

creates serious interoperability issues. To handle these problems with 

acceptable effort while keeping a high level of security, they must be 

addressed on different levels such as the operating system, the network 

architecture, composition of services, and programming. The key to a 

successful long-term perspective of such a system is a flexible architecture 

that allows maintenance and extensibility in a controlled environment, while 

preserving the integrity of the system. In this paper, a flexible architecture is 

described, which isolates critical components and allows the substitution of 

components without compromising the system in case of failure. It consists 

of clearly separated services with well-defined interfaces that can be 

enforced by the runtime system. 

 

Keywords: Functional Programming, Internet of Things, Microservices, 

Security, Unikernel. 
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Introduction 

 

There are many aspects of IT-Security in the Internet of Things, such as 

securing the transmission of data over the internet to provide confidentiality 

and integrity, or using authentication and authorization to provide integrity 

and availability (Babar et al. 2011, Chethan et al. 2016, Bouij-Pasquier et al. 

2015). This paper focuses on a different aspect: How can an application 

itself be made as secure as possible?  

In other words, how do we construct an application in a way that it 

contains as few errors as possible and how do we limit the damage of the 

remaining ones? Since errors are not only a safety problem (functional 

security), but also might lead to bugs that can be exploited, this is a question 

highly relevant to the security of a system. This is especially important as 

such applications typically have a lifespan of decades, much longer than 

typical computer systems in the enterprise. 

Of course this is a principal problem not only of the application but also 

of the underlying platforms and operating systems (maybe even the 

underlying hardware, if microcode is considered). However, there are 

solutions for these platform issues, mainly through trusted update mechanisms. 

The supplier of the platform is supposed to deliver regular updates to 

maintain the security of the underlying system. While this is typically not 

true for today‟s systems, this is more a cost problem than a fundamental 

problem. If the supplier of the platform is liable for security problems, he 

will have a strong interest in keeping the systems secure. This is feasible 

because there are possibly a large number of his systems in the market, 

allowing the cost to be shared between many customers.  

With the application itself, it is a different and more difficult problem. 

Individual applications will probably not be produced and deployed in such 

a large number, and so regular updates can be guaranteed for a long time. 

The supplier may even go out of business. There has to be at least an 

additional mechanism to keep the system secure on this level. If the 

application is designed with a well-defined interface and does not contain 

any errors ("bugs") in the code, this would be a large step in the right 

direction. Of course, this is not easy to achieve. 

Governmental organizations, like the US administration (Detsch, 2016) 

or the European Union (ENISA, 2016), start to require something like security 

by design. How could this be implemented? 

This paper describes some techniques to help with these efforts. 

Basically, these are the same techniques coming up in large-scale web 

development today (2016): microservices, containers and tools from the 

functional programming ecosystem. The contribution of this paper is to 

transfer these concepts from the worldwide large-scale systems of the 

Internet to applications in small Subnets of Things (Machina, 2013). 

 

 

Code Level 

 

Today, writing programs does not mean starting from scratch, selecting 

algorithms and coding them in your language of choice, but rather tying 
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libraries together to fit your needs. This is especially true for IoT 

applications, be it low level coding on an Arduino-like board to collect 

sensor data or synchronize actuators, or be it high level on a pi-like (or even 

more complex) system. 

Security-wise, such a program can be made error-free, if we assume 

that the libraries are error-free and the glue code making up the application 

itself is error-free. However, the assumption of error-free libraries is wrong. 

The implications of this are discussed in another section (Architecture). It 

can be assumed that the quality of the library code is better than the quality 

of the application code, because it is used more often, for a longer time, and 

is open source in most cases. Although there are no formal studies about the 

higher security level of open source code on a large enough sample to be 

considered applicable in general, it is a widely accepted “fact” in IT, backed 

by arguments of experts in this field (Schneier, 2011). The rest of this article 

will focus on the user written glue code. 

Connecting libraries usually means moving data around between 

function or method calls. To do this without having to write large amounts 

of boilerplate code, for example to convert between different data types, 

flexibility is key. Statically typed languages like Java do not excel at these 

tasks, because their static type system enforces many manual conversions, 

which not only require more typing, but also result in confusing code where 

the important logic of the program is hidden in the details of language 

specific formalism. 

This is one of the reasons (Ousterhout, 1998) why dynamically typed 

languages, often called scripting languages, became more and more 

important. This trend can be seen especially with the rise of JavaScript in 

web development. JavaScript is a weakly and dynamically typed language, 

which makes simple things easy, but leads to severe problems with bugs. 

For two years, (https://www.google.de/trends/explore?q=TypeScript) there 

has been a trend to languages like TypeScript or Elm, which provide more 

reliability for finished applications by using stronger type systems for 

browser based development. 

With these new languages, the old problems of statically typed 

languages - such as more code, less flexibility, and so on (Ousterhout, 1998) 

- show up again. The interesting question is if there is a way to have both 

flexibility (meaning less work when writing programs) of scripting 

languages and reliability (meaning better readability and more type 

checking by the compiler) of statically typed languages.  

Code generators and domain specific languages (DSL) are established 

ways to create an intermediate abstraction level to reduce complexity and 

code size by creating programs nearer to the user domain, and let as well a 

computer program do the job of transforming a higher level specification to 

a machine readable form. 
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Figure 1. Example Architecture of an IoT System with a Central Gateway 

 
 

This idea can be applied to IoT applications as well, at least to some 

architectures. Figure 1 shows a typical architecture of an IOT application: 

The sensor nodes, which collect data from their sensors, send them to a 

central gateway node (called "Bridge" in this figure) using an appropriate 

protocol, ZigBee in this case. The central gateway collects the data from the 

sensors and makes them available to the clients. A different network 

protocol is used here in order to make it easy for the clients to gain access to 

the data, WLAN in this case. 

Haenisch (2016) shows that applications with an architecture like the 

one in Figure 1 can be described in two parts: sensor nodes, which do the 

low level (maybe real time) handling of sensors and actuators, and gateway 

nodes, which process the messages to and from the sensor nodes. The 

function of the gateway nodes can be described as message processing, 

which works according to rules and creates new message streams. This 

process can easily be described in a DSL. 

With the sensor nodes, this becomes a bit more complicated since it is 

not clear on which application domain the DSL should focus. The possible 

applications and combinations of sensors, as well as the methods of 

interaction between them, are just so large that it seems difficult to specify a 

DSL that will capture all or even a large group of applications. Because of 

this, a different approach is needed. 

There are a number of approaches that attempt to solve this problem, 

such as Functional Reactive Programming (FRP) for IoT nodes, for example 

Frp-arduino (https://github.com/frp-arduino) or Juniper (http://www.juniper-

lang.org/).  

Juniper (Helbling and Guyer, 2016) is a programming language for the 

arduino using FRP. Frp-arduino (Frp-arduino, 2016) is a Haskell library and 

https://github.com/frp-arduino
http://www.juniper-lang.org/
http://www.juniper-lang.org/
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precompiler that claims to provide "Arduino programming without the 

hassle of C". Both of these have the problem that although they provide a 

library with common idioms used in more or less simple applications, they 

force the user to use languages like Haskell, which is alien to the typical 

developer of an embedded system. Frp-arduino uses the concept of an event 

stream like the techniques described above. 

Applications like this are especially well suited to using functional 

languages like Erlang (Sivieri et al., 2012). There are case studies 

(Haenisch, 2016) that support this assumption. 

All of these techniques aim to reduce the number of bugs in the 

application code, but this approach will probably never lead to a completely 

bug-free program. The system as a whole should be as resilient as possible 

even if part of the application fails or is hacked. This must be addressed at 

the architectural level. 

 

 

Architecture 

 

Basically there are two ways to increase the security of an application 

like the control system of a machine: either by using a monolithic 

architecture, which is as simple as possible and has a small attack surface, or 

by composing the system of independent microservices where the security 

of the system is distributed across the components. 

 

Monoliths and Microservices 

 

A monolithic architecture consists of a single unit that contains the 

complete application logic. Typical enterprise applications are often built this 

way: they consist of a client-side user interface and a server-side application 

layer, which accesses a database. For every change in the application logic, the 

system has to be rebuilt and deployed, a process that requires much care.  

Though it appears simple at first, this architectural style has some 

disadvantages. Every change to a small part of the application requires building 

and deploying the whole system. From a security perspective, there is a similar 

problem. Every security problem for a small part of the application results in a 

problem for the whole application. The application is running as a single 

process in a single memory space, so all of the application runs in the same 

security context. This means that every single bug in a small part of the system 

gives a possible attacker complete control of the whole system. Certainly this is 

not what we want to have, especially in an Internet of Things scenario.  

In micro-service architecture, the system is built from a group of 

lightweight components, which use loose coupling and well-defined interfaces 

for communication. At the time of this writing (2016), this is a well-accepted 

development style in web development, mainly because of good fit to 

successful organizational patterns, easier testing, and easy continuous 

deployment (Fowler, 2014). 

Another important property of micro-service architectures is that they 

support or even enforce designs for failure. Because service calls over a 

network can fail, all of the components of the system must be well aware of this 
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fact and take appropriate counter-measures (Fowler, 2014). This has 

consequences for the security of the system. 

Since the services are isolated processes (maybe even running on separate 

operating systems, see next section), separated by well-defined interfaces, a 

security problem in one service will not be able to compromise other services if 

and only if access to services is managed to be secure. 

Of course, if done wrong, a micro-service architecture might actually 

decrease system security by increasing the attack surface through additional 

interfaces, communication channels, and data sources. Done right, it might lead 

to gains in resilience and increases in security. 

 

Unikernels 

 

Making a platform secure is a difficult task. One lesson learned over the 

years is that complexity is the enemy of security (Geer, 2008). A complete 

operating system with all its features contains a number of undiscovered bugs 

and associated exploits. Because of that, it is common wisdom to uninstall 

and/or shut down all unneeded services to reduce complexity. 

Unikernels take this principle to the extreme to increase security (Kurth, 

2015a). Unikernels are specialized OS kernels built using a library OS 

(Madhavapeddy and Scot, 2014). The resulting image contains only the code, 

which is required by the application, compared to a standard operating system, 

where the kernel contains all the code any application might need. The current 

linux kernel (4.2) contains some 15 million lines of code, each of which might 

contain a bug. A typical Unikernel image in MirageOS, a popular unikernel 

implementation, contains some 50 thousand (Madhavapeddy and Scot, 2014). 

In addition, because every kernel is different, many conventional exploit 

schemes do not work. Everything based on fixed addresses, like stack overflow 

exploits, must be tailored to the exact kernel running on the system. It is quite 

easy to make every kernel a little bit different. 

Another important feature of unikernels is their small size. This reduces 

boot up time to the order of tens of milliseconds (Madhavapeddy et al., 2015), 

an important feature in real time and/or low power applications (Unikernel, 

2016). 

This explains why unikernels get more and more attention as a method of 

building secure applications. This is not really a research topic, and there is no 

accessible systematic research on this topic, at least as known to the author. 

However, at high-tech conferences like CodeMesh (www.codemesh.io), it is a 

hot topic (Garnaes, 2016; Smith, 2015) for the combination of unikernels with 

micro-services. 

Using containers or using unikernels are both techniques that are very 

promising for increasing performance and security of application stacks. This is 

true for the normal IT-world with its application servers and micro-services in 

web applications, and it also looks very promising as an architectural model for 

embedded components. "Will enterprises deploy a mix of VMs, unikernels and 

containers? Or will unikernels eventually go mainstream and replace 

containers?" (Kurth, 2015b). 

Using unikernels enables superior isolation between the parts of a system 

in a machine, while building up on the rich hypervisor ecosystem. Containers 
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like Docker on the other hand provide a much easier system for deploying 

components. 

From a security perspective, the easier solution is the better. Thus, 

unikernels running on a widely used lightweight hypervisor like Xen 

(https://www.xenproject.org/) seem to be the way to go, especially if platforms 

like LING (http://erlangonxen.org/) are used, which run an application 

platform, in this case Erlang/OTP directly on Xen (Sivieri et al., 2012). 

 

 

Proposed Architecture 

 

Based on the interviews described in Haenisch and Rogge (2017), we 

found to our surprise that large companies do not use application layer 

firewalls to isolate single machines in their production environments. The 

reason for this is that large companies with distributed production sites all 

over the world and centralized IT security departments are not able to 

maintain the configuration of these firewalls. The communication and 

administrational overhead required is too involved. 

 

Figure 2. Illustration of the Dependency of the Required Effort from the 

Number of Systems for Layer 7 Firewalls (AL Firewall) and an Intrusion 

Detection System (IDS) 

 
 

Figure 2 illustrates how a large number of systems increases 

exponentially the complexity needed for maintaining their configuration. 

Because of this, large companies have no other choice but using different 

mechanisms like segmentation and intrusion detection systems. This is 

completely different for small to medium enterprises with only a small 

number of machines. The effort for configuring one or a few application 

layer firewalls is much lower than every other technique. For these 

companies this is the recommended solution. This architecture, shown in 

Figure 3a, is also commonly used with legacy systems like mainframes, 

which cannot be updated, similar to the problem with production machines 

with outdated operating systems and application programs. 
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Figure 3. Isolating a Machine from the Company Network a) Left, Separate 

Gateway b) Right, Gateway as Part of the Machine 

 
 

The short term solution for all of these problems is a separate 

application layer firewall or gateway between the single production machine 

and the company network.  While it is possible for every company to use a 

standard platform and configure the firewall with its own resources, it is 

questionable if this is the best option. Setting up and maintaining a secure 

configuration of a network gateway requires special knowledge that is 

typically not available in smaller companies. Even for large companies this 

is not their primary business, so a solution where this is outsourced would 

be preferable. The question remains; who should initiate and pay for this 

work. 

Probably not every single owner of a machine can initiate this, because this 

would require building and especially maintaining a large number of similar but 

different devices. While this heterogeneity might actually increase security, 

economically this does not make sense. It would be much easier and cheaper if 

the supplier of the machine delivers the gateway and guarantees maintenance.  

From a conceptual point of view this means that the gateway is part of the 

machine (see Figure 3b).  

Again the question remains if the machine manufacturer should develop 

this gateway on its own or outsource to a specialized company. The same 

argument as above applies here: the know-how required to build a secure 

platform and the manpower required to maintain it is not the primary business 

of a machine manufacturer. Thus, a specialized partner should take over this 

work.  

In this scenario, one question remains: Who takes the residual risk in case 

of a malfunction or failure of the gateway? This would result in a production 

loss at the end user. The supplier of the machine does not want to take this risk, 

and getting rid of this liability is the motivator for delivering the gateway as 

part of the machine. The maintainer of the gateway platform typically is a 

small, highly specialized company, so it is questionable whether it can handle 

the cost of the production loss, which might increase with a larger customer 

base.  

To handle this case, a third partner is required for insurance. The business 

of insurance is to take residual risk, so this is a natural fit. Additionally, this 

leads to a win-win-situation: The insurer is interested in paying as rarely as 

possible. That means the insurer is interested in having a gateway that is as 

secure as possible. This means there is interest to pay for increased security of 

the gateway. That implies the organizational structure, a partnership between 

the machine manufacturer and a joint venture between a security company and 

an insurer, which offers a single product, an insurance against security related 
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production loss which contains initial installation and maintenance of a 

gateway to reduce the probability of this risk occurring. 

 

Figure 4. Proposed Modular Architecture 

 
 

While the gateway may be seen as a black box, it makes sense to use an 

architecture using the techniques described above (Figure 4). Building the 

functionality from several micro-services as components allows flexible 

configuration and maintenance by the machine manufacturer and the security 

partner. Different machines can share functionality, which allows developing 

these shared components to higher standards of software engineering and 

security. The diversity of the services keeps security high, using isolation 

techniques such as containers or unikernels. Machine specific functionality can 

be implemented with the techniques described in chapter “Code Level”, like 

using functional programming languages and domain-specific languages to 

reduce the number of errors in these parts of the system as much as possible. 

Running small containers, like Erlang modules, directly on the hypervisor 

especially reduces the attack surface as much as possible. 

 

Discussion 

 

There are a number of commercial attempts to run platforms like 

Erlang/beam on small hardware for embedded systems coming up. The idea 

here is to use functional programming and especially the Erlang ecosystem 

(OTP) to get the benefit of reliable crash and change resistant application 

architectures in IoT, especially industrial IoT applications (Sivieri et al., 2012). 

In building embedded systems there is a long tradition of using graphical 

models of the application code. Especially the graphical (and configuration 

based) connection of existing components is a well-established technique, the 

best-known example of which is LabView. This is a similar approach as using 

DSLs or code generators, but is usually tied to a specific development 

environment from a specific vendor. 

All of those try to address the problem of minimizing errors (and the 

difficulty of building the code) in the application glue code that connects the 
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prefabricated components. However, all of them use a proprietary language 

(text or graphical) that limits the user (the developer in this case) to certain 

architecture and forces them to learn a new language. This leads to a vendor 

lock-in and tends to limit flexibility. A vendor-neutral open source solution has 

many benefits, especially considering the long lifespan of these systems. 

There are a number of reference architectures for IoT applications (Babar 

et al., 2011; Bouij-Pasquier et al., 2015). It remains to be seen if general models 

of IoT applications can be developed. This would enable a common application 

model and a common language for the implementation of IoT applications on 

an abstract, less error prone level than today‟s environments. Using micro-

services increases complexity by using a distributed system with additional 

interfaces, but this can increase security in the whole system (Mulesoft, n.d.). 

 

 

Conclusions 

 

Holding security on a high level for many years is a central problem in the 

development of the Internet of Things and especially in its industrial 

application. Many roads lead to Rome, but this paper suggests a specific 

solution to this problem. Reduce the number of bugs in the application code by 

using an appropriate representation, and use a modular architecture with an 

attack surface as small as possible to limit the impact of a security problem and 

to allow to adapt to future needs without changing the whole system. These are 

current trends in web development and they apply in this area too. 
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