
ATINER CONFERENCE PAPER SERIES No: LNG2014-1176

1

Athens Institute for Education and Research

ATINER

ATINER's Conference Paper Series

COM2017-2327

Till Haenisch

Professor

DHBW Heidenheim

Germany

An Architecture for Reliable Industry 4.0

Appliances

ATINER CONFERENCE PAPER SERIES No: COM2017-2327

2

An Introduction to

ATINER's Conference Paper Series

ATINER started to publish this conference papers series in 2012. It includes only the

papers submitted for publication after they were presented at one of the conferences

organized by our Institute every year. This paper has been peer reviewed by at least two

academic members of ATINER.

Dr. Gregory T. Papanikos

President

Athens Institute for Education and Research

This paper should be cited as follows:

Haenisch, T. (2017). "An Architecture for Reliable Industry 4.0 Appliances",

Athens: ATINER'S Conference Paper Series, No: COM2017-2327.

Athens Institute for Education and Research

8 Valaoritou Street, Kolonaki, 10671 Athens, Greece

Tel: + 30 210 3634210 Fax: + 30 210 3634209 Email: info@atiner.gr URL:

www.atiner.gr

URL Conference Papers Series: www.atiner.gr/papers.htm

Printed in Athens, Greece by the Athens Institute for Education and Research. All rights

reserved. Reproduction is allowed for non-commercial purposes if the source is fully

acknowledged.

ISSN: 2241-2891

21/11/2017

ATINER CONFERENCE PAPER SERIES No: COM2017-2327

3

An Architecture for Reliable Industry 4.0 Appliances

Till Haenisch

Abstract

Industry 4.0, or the Internet of Industrial Things, means interconnected

machines and devices in a heterogeneous environment. These systems have

much longer lifecycles than the normal IT ecosystems we are used to in

enterprise. It is difficult to keep these systems secure for an extended period

of time. While minor malfunctions may be acceptable, software bugs might

lead to security problems, which cannot be ignored, since they will have

consequences in the real world. Because of this, it is important to keep the

number of bugs as low as possible and to limit the damage of the remaining

ones. Today‟s method of keeping systems (like operating systems) secure is

to patch them permanently to close all discovered bugs. The necessity to

patch on a regular basis combined with the long lifespan of the components

creates serious interoperability issues. To handle these problems with

acceptable effort while keeping a high level of security, they must be

addressed on different levels such as the operating system, the network

architecture, composition of services, and programming. The key to a

successful long-term perspective of such a system is a flexible architecture

that allows maintenance and extensibility in a controlled environment, while

preserving the integrity of the system. In this paper, a flexible architecture is

described, which isolates critical components and allows the substitution of

components without compromising the system in case of failure. It consists

of clearly separated services with well-defined interfaces that can be

enforced by the runtime system.

Keywords: Functional Programming, Internet of Things, Microservices,

Security, Unikernel.

ATINER CONFERENCE PAPER SERIES No: COM2017-2327

4

Introduction

There are many aspects of IT-Security in the Internet of Things, such as

securing the transmission of data over the internet to provide confidentiality

and integrity, or using authentication and authorization to provide integrity

and availability (Babar et al. 2011, Chethan et al. 2016, Bouij-Pasquier et al.

2015). This paper focuses on a different aspect: How can an application

itself be made as secure as possible?

In other words, how do we construct an application in a way that it

contains as few errors as possible and how do we limit the damage of the

remaining ones? Since errors are not only a safety problem (functional

security), but also might lead to bugs that can be exploited, this is a question

highly relevant to the security of a system. This is especially important as

such applications typically have a lifespan of decades, much longer than

typical computer systems in the enterprise.

Of course this is a principal problem not only of the application but also

of the underlying platforms and operating systems (maybe even the

underlying hardware, if microcode is considered). However, there are

solutions for these platform issues, mainly through trusted update mechanisms.

The supplier of the platform is supposed to deliver regular updates to

maintain the security of the underlying system. While this is typically not

true for today‟s systems, this is more a cost problem than a fundamental

problem. If the supplier of the platform is liable for security problems, he

will have a strong interest in keeping the systems secure. This is feasible

because there are possibly a large number of his systems in the market,

allowing the cost to be shared between many customers.

With the application itself, it is a different and more difficult problem.

Individual applications will probably not be produced and deployed in such

a large number, and so regular updates can be guaranteed for a long time.

The supplier may even go out of business. There has to be at least an

additional mechanism to keep the system secure on this level. If the

application is designed with a well-defined interface and does not contain

any errors ("bugs") in the code, this would be a large step in the right

direction. Of course, this is not easy to achieve.

Governmental organizations, like the US administration (Detsch, 2016)

or the European Union (ENISA, 2016), start to require something like security

by design. How could this be implemented?

This paper describes some techniques to help with these efforts.

Basically, these are the same techniques coming up in large-scale web

development today (2016): microservices, containers and tools from the

functional programming ecosystem. The contribution of this paper is to

transfer these concepts from the worldwide large-scale systems of the

Internet to applications in small Subnets of Things (Machina, 2013).

Code Level

Today, writing programs does not mean starting from scratch, selecting

algorithms and coding them in your language of choice, but rather tying

ATINER CONFERENCE PAPER SERIES No: COM2017-2327

5

libraries together to fit your needs. This is especially true for IoT

applications, be it low level coding on an Arduino-like board to collect

sensor data or synchronize actuators, or be it high level on a pi-like (or even

more complex) system.

Security-wise, such a program can be made error-free, if we assume

that the libraries are error-free and the glue code making up the application

itself is error-free. However, the assumption of error-free libraries is wrong.

The implications of this are discussed in another section (Architecture). It

can be assumed that the quality of the library code is better than the quality

of the application code, because it is used more often, for a longer time, and

is open source in most cases. Although there are no formal studies about the

higher security level of open source code on a large enough sample to be

considered applicable in general, it is a widely accepted “fact” in IT, backed

by arguments of experts in this field (Schneier, 2011). The rest of this article

will focus on the user written glue code.

Connecting libraries usually means moving data around between

function or method calls. To do this without having to write large amounts

of boilerplate code, for example to convert between different data types,

flexibility is key. Statically typed languages like Java do not excel at these

tasks, because their static type system enforces many manual conversions,

which not only require more typing, but also result in confusing code where

the important logic of the program is hidden in the details of language

specific formalism.

This is one of the reasons (Ousterhout, 1998) why dynamically typed

languages, often called scripting languages, became more and more

important. This trend can be seen especially with the rise of JavaScript in

web development. JavaScript is a weakly and dynamically typed language,

which makes simple things easy, but leads to severe problems with bugs.

For two years, (https://www.google.de/trends/explore?q=TypeScript) there

has been a trend to languages like TypeScript or Elm, which provide more

reliability for finished applications by using stronger type systems for

browser based development.

With these new languages, the old problems of statically typed

languages - such as more code, less flexibility, and so on (Ousterhout, 1998)

- show up again. The interesting question is if there is a way to have both

flexibility (meaning less work when writing programs) of scripting

languages and reliability (meaning better readability and more type

checking by the compiler) of statically typed languages.

Code generators and domain specific languages (DSL) are established

ways to create an intermediate abstraction level to reduce complexity and

code size by creating programs nearer to the user domain, and let as well a

computer program do the job of transforming a higher level specification to

a machine readable form.

ATINER CONFERENCE PAPER SERIES No: COM2017-2327

6

Figure 1. Example Architecture of an IoT System with a Central Gateway

This idea can be applied to IoT applications as well, at least to some

architectures. Figure 1 shows a typical architecture of an IOT application:

The sensor nodes, which collect data from their sensors, send them to a

central gateway node (called "Bridge" in this figure) using an appropriate

protocol, ZigBee in this case. The central gateway collects the data from the

sensors and makes them available to the clients. A different network

protocol is used here in order to make it easy for the clients to gain access to

the data, WLAN in this case.

Haenisch (2016) shows that applications with an architecture like the

one in Figure 1 can be described in two parts: sensor nodes, which do the

low level (maybe real time) handling of sensors and actuators, and gateway

nodes, which process the messages to and from the sensor nodes. The

function of the gateway nodes can be described as message processing,

which works according to rules and creates new message streams. This

process can easily be described in a DSL.

With the sensor nodes, this becomes a bit more complicated since it is

not clear on which application domain the DSL should focus. The possible

applications and combinations of sensors, as well as the methods of

interaction between them, are just so large that it seems difficult to specify a

DSL that will capture all or even a large group of applications. Because of

this, a different approach is needed.

There are a number of approaches that attempt to solve this problem,

such as Functional Reactive Programming (FRP) for IoT nodes, for example

Frp-arduino (https://github.com/frp-arduino) or Juniper (http://www.juniper-

lang.org/).

Juniper (Helbling and Guyer, 2016) is a programming language for the

arduino using FRP. Frp-arduino (Frp-arduino, 2016) is a Haskell library and

https://github.com/frp-arduino
http://www.juniper-lang.org/
http://www.juniper-lang.org/

ATINER CONFERENCE PAPER SERIES No: COM2017-2327

7

precompiler that claims to provide "Arduino programming without the

hassle of C". Both of these have the problem that although they provide a

library with common idioms used in more or less simple applications, they

force the user to use languages like Haskell, which is alien to the typical

developer of an embedded system. Frp-arduino uses the concept of an event

stream like the techniques described above.

Applications like this are especially well suited to using functional

languages like Erlang (Sivieri et al., 2012). There are case studies

(Haenisch, 2016) that support this assumption.

All of these techniques aim to reduce the number of bugs in the

application code, but this approach will probably never lead to a completely

bug-free program. The system as a whole should be as resilient as possible

even if part of the application fails or is hacked. This must be addressed at

the architectural level.

Architecture

Basically there are two ways to increase the security of an application

like the control system of a machine: either by using a monolithic

architecture, which is as simple as possible and has a small attack surface, or

by composing the system of independent microservices where the security

of the system is distributed across the components.

Monoliths and Microservices

A monolithic architecture consists of a single unit that contains the

complete application logic. Typical enterprise applications are often built this

way: they consist of a client-side user interface and a server-side application

layer, which accesses a database. For every change in the application logic, the

system has to be rebuilt and deployed, a process that requires much care.

Though it appears simple at first, this architectural style has some

disadvantages. Every change to a small part of the application requires building

and deploying the whole system. From a security perspective, there is a similar

problem. Every security problem for a small part of the application results in a

problem for the whole application. The application is running as a single

process in a single memory space, so all of the application runs in the same

security context. This means that every single bug in a small part of the system

gives a possible attacker complete control of the whole system. Certainly this is

not what we want to have, especially in an Internet of Things scenario.

In micro-service architecture, the system is built from a group of

lightweight components, which use loose coupling and well-defined interfaces

for communication. At the time of this writing (2016), this is a well-accepted

development style in web development, mainly because of good fit to

successful organizational patterns, easier testing, and easy continuous

deployment (Fowler, 2014).

Another important property of micro-service architectures is that they

support or even enforce designs for failure. Because service calls over a

network can fail, all of the components of the system must be well aware of this

ATINER CONFERENCE PAPER SERIES No: COM2017-2327

8

fact and take appropriate counter-measures (Fowler, 2014). This has

consequences for the security of the system.

Since the services are isolated processes (maybe even running on separate

operating systems, see next section), separated by well-defined interfaces, a

security problem in one service will not be able to compromise other services if

and only if access to services is managed to be secure.

Of course, if done wrong, a micro-service architecture might actually

decrease system security by increasing the attack surface through additional

interfaces, communication channels, and data sources. Done right, it might lead

to gains in resilience and increases in security.

Unikernels

Making a platform secure is a difficult task. One lesson learned over the

years is that complexity is the enemy of security (Geer, 2008). A complete

operating system with all its features contains a number of undiscovered bugs

and associated exploits. Because of that, it is common wisdom to uninstall

and/or shut down all unneeded services to reduce complexity.

Unikernels take this principle to the extreme to increase security (Kurth,

2015a). Unikernels are specialized OS kernels built using a library OS

(Madhavapeddy and Scot, 2014). The resulting image contains only the code,

which is required by the application, compared to a standard operating system,

where the kernel contains all the code any application might need. The current

linux kernel (4.2) contains some 15 million lines of code, each of which might

contain a bug. A typical Unikernel image in MirageOS, a popular unikernel

implementation, contains some 50 thousand (Madhavapeddy and Scot, 2014).

In addition, because every kernel is different, many conventional exploit

schemes do not work. Everything based on fixed addresses, like stack overflow

exploits, must be tailored to the exact kernel running on the system. It is quite

easy to make every kernel a little bit different.

Another important feature of unikernels is their small size. This reduces

boot up time to the order of tens of milliseconds (Madhavapeddy et al., 2015),

an important feature in real time and/or low power applications (Unikernel,

2016).

This explains why unikernels get more and more attention as a method of

building secure applications. This is not really a research topic, and there is no

accessible systematic research on this topic, at least as known to the author.

However, at high-tech conferences like CodeMesh (www.codemesh.io), it is a

hot topic (Garnaes, 2016; Smith, 2015) for the combination of unikernels with

micro-services.

Using containers or using unikernels are both techniques that are very

promising for increasing performance and security of application stacks. This is

true for the normal IT-world with its application servers and micro-services in

web applications, and it also looks very promising as an architectural model for

embedded components. "Will enterprises deploy a mix of VMs, unikernels and

containers? Or will unikernels eventually go mainstream and replace

containers?" (Kurth, 2015b).

Using unikernels enables superior isolation between the parts of a system

in a machine, while building up on the rich hypervisor ecosystem. Containers

ATINER CONFERENCE PAPER SERIES No: COM2017-2327

9

like Docker on the other hand provide a much easier system for deploying

components.

From a security perspective, the easier solution is the better. Thus,

unikernels running on a widely used lightweight hypervisor like Xen

(https://www.xenproject.org/) seem to be the way to go, especially if platforms

like LING (http://erlangonxen.org/) are used, which run an application

platform, in this case Erlang/OTP directly on Xen (Sivieri et al., 2012).

Proposed Architecture

Based on the interviews described in Haenisch and Rogge (2017), we

found to our surprise that large companies do not use application layer

firewalls to isolate single machines in their production environments. The

reason for this is that large companies with distributed production sites all

over the world and centralized IT security departments are not able to

maintain the configuration of these firewalls. The communication and

administrational overhead required is too involved.

Figure 2. Illustration of the Dependency of the Required Effort from the

Number of Systems for Layer 7 Firewalls (AL Firewall) and an Intrusion

Detection System (IDS)

Figure 2 illustrates how a large number of systems increases

exponentially the complexity needed for maintaining their configuration.

Because of this, large companies have no other choice but using different

mechanisms like segmentation and intrusion detection systems. This is

completely different for small to medium enterprises with only a small

number of machines. The effort for configuring one or a few application

layer firewalls is much lower than every other technique. For these

companies this is the recommended solution. This architecture, shown in

Figure 3a, is also commonly used with legacy systems like mainframes,

which cannot be updated, similar to the problem with production machines

with outdated operating systems and application programs.

ATINER CONFERENCE PAPER SERIES No: COM2017-2327

10

Figure 3. Isolating a Machine from the Company Network a) Left, Separate

Gateway b) Right, Gateway as Part of the Machine

The short term solution for all of these problems is a separate

application layer firewall or gateway between the single production machine

and the company network. While it is possible for every company to use a

standard platform and configure the firewall with its own resources, it is

questionable if this is the best option. Setting up and maintaining a secure

configuration of a network gateway requires special knowledge that is

typically not available in smaller companies. Even for large companies this

is not their primary business, so a solution where this is outsourced would

be preferable. The question remains; who should initiate and pay for this

work.

Probably not every single owner of a machine can initiate this, because this

would require building and especially maintaining a large number of similar but

different devices. While this heterogeneity might actually increase security,

economically this does not make sense. It would be much easier and cheaper if

the supplier of the machine delivers the gateway and guarantees maintenance.

From a conceptual point of view this means that the gateway is part of the

machine (see Figure 3b).

Again the question remains if the machine manufacturer should develop

this gateway on its own or outsource to a specialized company. The same

argument as above applies here: the know-how required to build a secure

platform and the manpower required to maintain it is not the primary business

of a machine manufacturer. Thus, a specialized partner should take over this

work.

In this scenario, one question remains: Who takes the residual risk in case

of a malfunction or failure of the gateway? This would result in a production

loss at the end user. The supplier of the machine does not want to take this risk,

and getting rid of this liability is the motivator for delivering the gateway as

part of the machine. The maintainer of the gateway platform typically is a

small, highly specialized company, so it is questionable whether it can handle

the cost of the production loss, which might increase with a larger customer

base.

To handle this case, a third partner is required for insurance. The business

of insurance is to take residual risk, so this is a natural fit. Additionally, this

leads to a win-win-situation: The insurer is interested in paying as rarely as

possible. That means the insurer is interested in having a gateway that is as

secure as possible. This means there is interest to pay for increased security of

the gateway. That implies the organizational structure, a partnership between

the machine manufacturer and a joint venture between a security company and

an insurer, which offers a single product, an insurance against security related

ATINER CONFERENCE PAPER SERIES No: COM2017-2327

11

production loss which contains initial installation and maintenance of a

gateway to reduce the probability of this risk occurring.

Figure 4. Proposed Modular Architecture

While the gateway may be seen as a black box, it makes sense to use an

architecture using the techniques described above (Figure 4). Building the

functionality from several micro-services as components allows flexible

configuration and maintenance by the machine manufacturer and the security

partner. Different machines can share functionality, which allows developing

these shared components to higher standards of software engineering and

security. The diversity of the services keeps security high, using isolation

techniques such as containers or unikernels. Machine specific functionality can

be implemented with the techniques described in chapter “Code Level”, like

using functional programming languages and domain-specific languages to

reduce the number of errors in these parts of the system as much as possible.

Running small containers, like Erlang modules, directly on the hypervisor

especially reduces the attack surface as much as possible.

Discussion

There are a number of commercial attempts to run platforms like

Erlang/beam on small hardware for embedded systems coming up. The idea

here is to use functional programming and especially the Erlang ecosystem

(OTP) to get the benefit of reliable crash and change resistant application

architectures in IoT, especially industrial IoT applications (Sivieri et al., 2012).

In building embedded systems there is a long tradition of using graphical

models of the application code. Especially the graphical (and configuration

based) connection of existing components is a well-established technique, the

best-known example of which is LabView. This is a similar approach as using

DSLs or code generators, but is usually tied to a specific development

environment from a specific vendor.

All of those try to address the problem of minimizing errors (and the

difficulty of building the code) in the application glue code that connects the

ATINER CONFERENCE PAPER SERIES No: COM2017-2327

12

prefabricated components. However, all of them use a proprietary language

(text or graphical) that limits the user (the developer in this case) to certain

architecture and forces them to learn a new language. This leads to a vendor

lock-in and tends to limit flexibility. A vendor-neutral open source solution has

many benefits, especially considering the long lifespan of these systems.

There are a number of reference architectures for IoT applications (Babar

et al., 2011; Bouij-Pasquier et al., 2015). It remains to be seen if general models

of IoT applications can be developed. This would enable a common application

model and a common language for the implementation of IoT applications on

an abstract, less error prone level than today‟s environments. Using micro-

services increases complexity by using a distributed system with additional

interfaces, but this can increase security in the whole system (Mulesoft, n.d.).

Conclusions

Holding security on a high level for many years is a central problem in the

development of the Internet of Things and especially in its industrial

application. Many roads lead to Rome, but this paper suggests a specific

solution to this problem. Reduce the number of bugs in the application code by

using an appropriate representation, and use a modular architecture with an

attack surface as small as possible to limit the impact of a security problem and

to allow to adapt to future needs without changing the whole system. These are

current trends in web development and they apply in this area too.

References

Babar, S. et al. (2011) Proposed Embedded Security Framework for Internet of Things

(IoT). Conference paper: 2nd IEEE International Conference on Wireless

Communication, Vehicular Technology, Information Theory and Aerospace &

Electronic Systems Technology (Wireless VITAE), 2011, Chennai, India.

Volume: Proceedings of Wireless VITAE 2011.

Bouij-Pasquier I. et al. (2015) A Security Framework for Internet of Things. In Lecture

Notes in Computer Science 9476, Springer 2015, ISBN 978-3-319-26822-4.

Chethan C. et al. (2016) Applications and Challenges of Internet-of-Things- A Survey,

International Journal for Scientific Research and development Volume 3, Issue

11, 2016.

Detsch, J. (2016) Should companies be held liable for software flaws? http://bit.ly/

2gQEBYd.

ENISA (2016) ENISA urges „security by design‟ for EU digitization. http://bit.ly/

2zM4FA6.

Fowler, M. (2014) Microservices, a definition of this new architectural term. http://bit.

ly/2jGMDXV.

Frp-arduino (2016). https://github.com/frp-arduino/frp-arduino.

Garnæs, A. (2016) Gossiping Unikernels, CodeMesh 2016, http://bit.ly/2iKGUxj.

Geer, D. E. Jr. (2008) Complexity Is the Enemy. IEEE Security & Privacy, November/

December, p. 88.

Hänisch, T. (2016) A Case Study on Using Functional Programming for Internet of

Things Applications, Athens Journal of Technology & Engineering, Vol 3, Issue

1.

http://bit.ly/2iKGUxj

ATINER CONFERENCE PAPER SERIES No: COM2017-2327

13

Hänisch, T. and Rogge, S. (2017) IT-Sicherheit in der Industrie 4.0 [IT-Security in the

Industry 4.0]. In Andelfinger, Hänisch (Hrsg.), Industrie 4.0 – wie cyber-

physische Systeme die Arbeitswelt verändern, Springer.

Helbling, C. and Guyer, S. Z. (2016) Juniper: A Functional Reactive Programming

Language for the Arduino. Proceedings of the 4th International Workshop on

Functional Art, Music, Modelling, and Design Pages 8-16, Nara, Japan.

September 24 - 24, 2016.

Kurth, L. (2015a) Why Unikernels Can Improve Internet Security. linux.com,

1.4.2015, http://bit.ly/2hZRtNv.

Kurth, L. (2015b) How Early Adopters Are Using Unikernels - With and Without

Containers. linux.com, 30.3.2015, http://bit.ly/2m9aYYi.

Machina Research (2016) Big Data in M2M: Tipping Points and Subnets of Things.

http://bit.ly/2jg6BJO.

Madhavapeddy, A. and Scot, D. J. (2014) Unikernels: The Rise of the Virtual Library

Operating System, Communications of the ACM. Vol 57, No. 1.

Madhavapeddy, A. et al. (2015) Jitsu: Just-In-Time Summoning of Unikernels.

Proceedings of the 12th USENIX Symposium on Networked Systems Design and

Implementation.

Mulesoft (n.d.) Microservices and Security: Increasing security by increasing surface

area. http://bit.ly/2zvZXFE.

Ousterhout, J. K. (1988) Scripting: Higher-Level Programming for the 21st Century.

Computer, 31(3): 23-30.

Schneier, B. (2011) Open-Source Software Feels Insecure, Schneier on Security. http://

bit.ly/2ypqh0F.

Sivieri, A., Mottola, L., Cugola, G. (2012) Drop the Phone and Talk to the Physical

World: Programming the Internet of Things with Erlang SESENA '12.

Proceedings of the Third International Workshop on Software Engineering for

Sensor Network Applications, Pages 8-14.

Smith, G. (2015) Rainbows and Unikernels. CityCode Chicago. http://bit.ly/2i01PwD.

Unikernel16 (2016) unikernel.org.

http://bit.ly/2m9aYYi
http://bit.ly/2zvZXFE
http://bit.ly/2ypqh0F
http://bit.ly/2ypqh0F

