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Quality Prediction on Die Cast Sensor Data 
 

Manfred Roessle 

 

Rene Kuebler 

 

Abstract 

 

Die-casting forms complex metal shapes in a rapid production process. The 

downside is a not completely controlled process. As a result, the scrap rate 

can go up to 25%. The cast work pieces are usually subject to various 

additional treatments before a defect is identified. This leads to significant 

additional costs. A thorough quality control directly after the casting is time 

and cost intensive. In practice only a quick visual inspection, for obvious 

flaws on the surface, takes place. We acquired data from temperature, 

pressure, metal-contact, vacuum, air-volume, moisture and ffc sensors with 

a resolution of 4 kHz for more than 400 casts. For those casts the density 

was measured as an objective quality feature. We trained different machine 

learning algorithms on the data for three classes. Class 1: high density - high 

probability of a good part. Class 2: medium density - unconfident in 

quality/suggestion for measurement. Class 3: low density - high probability 

of a low quality. Artificial neural networks have a slightly higher accuracy 

but need a multiple of the computation time of other machine learning 

algorithms and don’t allow an inference on the impact of the features. 

decision trees and their advanced variants with boosting yield good 

outcomes and show which features are responsible for the part quality. On 

this foundation, we developed a system to archive all the sensor data of a 

live production die-casting machine and a real-time prediction of the part 

quality. With a prediction accuracy of approx. 80% we can support the 

decision of the machine operator and help to reduce the cost for scrap. 

 

Keywords: Aluminium Die Casting, Data Science, Machine Learning, 

Quality Prediction on Die-Cast Sensor data, Time Series Sensor data. 
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Introduction 

 

Casting is the shortest available process for converting unrefined metal 

(mainly aluminum alloys) into complex finished parts with high productivity in 

high volumes. It is often used in the automotive industries creating gearbox 

housings, engine blocks, etc. 

“Die casting is a versatile process for producing various engineering 

parts, by forcing molten metal under high pressure into reusable steel 

molds” [1]. Liquid metal is injected into a mold at high pressure. The mold 

is cooled under the melting point of the aluminum alloy and after a short 

cooling time the die is opened and the solid part can be extracted. 

Compared to other industrial production processes that work with reject 

rates measured in parts per million (ppm) the scrap rate in die casting is 

10% to 25%. The main reasons are the contraction in volume that occurs in 

the phase transition from liquid to solid and the very low fill times, needed 

to produce thin-walled parts. Moreover, the causal relations of production 

parameters and quality of parts are not yet unequivocal clear [2]. 

This is the entry point of the research project DataCast.
1
 The main 

objective is to clarify some causal relations between the input process 

parameters like piston velocity, metal temperature, filling time and 

hydraulic pressure and the resulting quality of parts.  

The process parameters are measured by about 20 specialized high-

resolution sensors which are incorporated in the mold and installed in the 

machine. By gathering data at the resolution of 4 kHz every sensor delivers 

4000 values per second which facilitates an extremely detailed insight in 

some aspects of the die casting process. 

Based on this huge amount of sensor data, selected machine learning 

algorithms to predict casting quality in real-time are implemented and 

evaluated. 

 

 

Literature Review 

 

Gottschling et al. [2] describe a large set of machine learning algorithms 

and their respective use for intelligent process control in foundries. They 

also give a detailed summary of intelligent software-tools used in the steel 

processing industry since 1980, primarily concentrating on sand casting. Die 

casting is not focused in this paper.  

Faessler and Loher [3] discuss the use of neural networks for quality 

control in the die casting process. They select six out of 60 parameters, 

based on technological experience and tested different types of neural 

networks for quality prediction purposes. They worked out that Multi Layer 

Perceptrons, Learning Vector Quantization and Dynamic Learning Vector 

Quantization are well suited for quality prediction of die cast pieces.  

Dörmann Osuna [4] uses decision trees on historical production data to 

analyze the causes of defective parts at BMW. Parameter settings and 

                                                           
1
This research project was sponsored by the German Bundesministerium für Wirtschaft und 

Energie, Förderkennzeichen KF2257116LF4. 
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interpretation of the results are done personally by process engineers. 

Machine learning algorithms are not used for the analysis of data. 

Wen-Chin et al. [5] combine a self-organizing map and a back-

propagation neural network to predict the weight as indicator of the quality 

of an injection molded plastic part. Experimental results proved the 

suitability of the model for predictive purposes. 

Rao, Kalyankar, Waghmare [1] present the teaching-learning-based 

optimization algorithm for optimization of different casting processes. 

Moreover, they provide a comprehensive literature overview of optimization 

algorithm-usage in squeeze, continuous and die casting. In the field of die 

casting they identify four clusters of relevant parameters: machine related 

parameters, shot sleeve related parameters, die related parameters and cast 

metal related parameters. Every group of parameters has been optimized by 

some algorithms like simulated annealing, Taguchi’s Method, neural 

networks and genetic algorithms. 

Summarizing all cited works, we can find a lot of approaches to 

optimize die cast parameters. Some of them are based on parameter 

selection by human expertise or experience. We did not find any usage of 

high-resolution sensors to gain insight into the casting process nor did we 

find any quality prediction approaches on these high-resolution data. 

 

 

Methodology 

 

At the time of writing, only systems consisting of the high-pressure die-

casting machine and an integrated machine control and measurement 

computer exist. The integrated machine control and measurement computer 

has limited capacity and is not suitable for extensive data collection and 

complex analysis. There is a need for the development of a comprehensive 

solution that is capable of storing and analyzing of the exhaustive process 

parameters. 

A suitable concept, which is used in the DataCast research project, is 

described in Figure 1. 

In the following the focus lies on the analysis of the sensor data and the 

prediction quality of the used machine learning models. Two machine 

learning algorithms were used in the comparison, a decision tree regression 

algorithm and a gradient boosting regression algorithm. 
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Figure 1. DataCast System Concept 

Source: DataCast – Hochschule Aalen 2015. 

 

Decision Trees 

 

“Decision trees classify instances by sorting them down the tree from 

the root some leaf node, which provides the classification of the instance. 

Each node in the tree specifies a test of some attribute of the instance, and 

each branch descending from that node corresponds to one of the possible 

values for this attribute. An instance is classified by starting at the root node 

of the tree, testing the attribute specified by this node, then moving down 

the tree branch corresponding to the value of the attribute in the given 

example. This process is then repeated for the sub-tree rooted at the new 

node” [6]. 

“Machine Learning is a branch of artificial intelligence. Using 

computing, we design systems that can learn from data in a manner of being 

trained. The systems might learn and improve with experience, and with 

time, refine a model that can be uses to predict outcomes of questions based 

on the previous learning” [7]. 

“Supervised learning refers to working with a set of labeled training 

data. For every example in the training data you have an input object and an 

output object” [7]. 

“Unsupervised learning, … you let the algorithm find a hidden pattern 

in the load of data. With unsupervised learning, there is no right or wrong 

answer; it’s just a case of running the machine learning algorithm and 

seeing what patterns and outcomes occur.”[7] 

 

Die Casting Data 

 

The 213 samples are aluminum die-casting parts with an average 

density of 2.733406 g/cm³ (see Figure 2). 
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Figure 2. Histogram of the Die Casting Parts Density Values 

Source: DataCast – Hochschule Aalen 2017. 

 

The used sensors are three pressure-, five temperature and one form-

fill-control-sensor located in the die-casting mold (Figure 3). Additionally, 

the plunger pressure is computed from the machine hydraulic values (Head 

Pressure - (Annular Pressure * 0.55566)). The vacuum pressure is measured 

at an external vacuum pressure device. 

 

Figure 3. Sensor Data of A Die Cast Shot 

Source: DataCast – Hochschule Aalen 2017. 

 

Data Preparation 

 

For the data preparation, the injection time is automatically detected. 

Then a Time-Series of 150 milliseconds around the injection point is cut out 

and re-sampled to a four-millisecond resolution (Figure 4). 

 

Figure 4. 150 Milliseconds around the Injection Point 

Source: DataCast – Hochschule Aalen 2017. 
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For every sensor-time-series 216 features are calculated. We use the 

TSFRESH2 library for this task [8]. For all these features, the significance is 

computed to decide if the feature is relevant for the die-casting density. 

Only relevant features are fed into the machine learning algorithms. 

 

Hyper Parameter Estimation 

 

Before the training, the samples are split in a training and a test set. The 

test set is only used for the final evaluation of the model. This is to ensure 

that the generated prediction model has no information about the test data 

and therefore the evaluation is unbiased. 

The regression models are trained with a simple decision tree and with 

gradient tree boosting of one thousand decision trees. 

Gradient tree boosting computes a number of weak decision tree models 

into a strong prediction model. 

The hyper parameters were determined in a Grid Search on the training 

set with a three-fold cross validation. The cross validation helps to reduce 

model over fitting to a specific sample set. 

 

Fitting and Testing of the Model 

 

After that, the model was fit on the whole training data with the 

determined hyper parameters. 

The sensor data-samples of the test data-set are then used to predict the 

density of the die casting parts. From the predictions and the real density, 

the average deviation from an optimal prediction is computed. 

 

 

Findings/Results 

 

In the following two sections, we will describe the differences in the 

prediction quality of the models created by the decision tree regression 

algorithm and the gradient boosting regression algorithm. 

 

Single Decision Tree 

 

The average deviation is 0.0032 g/cm³ with a single decision tree. As 

you can see in Figure 5, there are a few big deviations from the ground 

truth. The parts 21 and 25 have an especially high upwards deviation and 

the parts 26 and 35 have a high downwards deviation. The part 26 has a 

density in the upper third but it is predicted to have a density in the lower 

third.  

 

                                                           
2
 "Time Series Feature extraction based on scalable hypothesis tests" 
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Figure 5. Decision Tree Regression - Truth and Predictions 

Source: DataCast – Hochschule Aalen 2017. 

 

These big deviations are a problem, if we want to predict the quality of 

die-casting parts. The reason is, that a single decision tree (see Figure 6) 

uses only few features to separate the decisions. In our example, a feature 

derived from the pressure sensor one dominates the model (see Figure 7). 

 

Figure 6. Decision Tree 

Pressure1__time_reversal_asymmetry_statistic__lag_1 ≤ 277855.8125
mse = 0.0

samples = 152
value = 2.7343

Temperature5__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_14__w_5 ≤ 92.8101
mse = 0.0

samples = 77
value = 2.7291

True

DeltaPressure__spkt_welch_density__coeff_8 ≤ 272.202
mse = 0.0

samples = 75
value = 2.7396

False

Temperature2__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_8__w_2 ≤ -8.4006
mse = 0.0

samples = 45
value = 2.7317

Pressure1__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_4__w_20 ≤ 15.6778
mse = 0.0

samples = 32
value = 2.7254

Temperature1__mean_change ≤ 4.4661
mse = 0.0

samples = 24
value = 2.7303

DeltaPressure__time_reversal_asymmetry_statistic__lag_2 ≤ 42465.7266
mse = 0.0

samples = 21
value = 2.7333

mse = 0.0
samples = 10

value = 2.7286

mse = 0.0
samples = 14

value = 2.7315

mse = 0.0
samples = 10

value = 2.7347

mse = 0.0
samples = 11

value = 2.7321

Temperature1__number_cwt_peaks__n_5 ≤ 5.5
mse = 0.0

samples = 24
value = 2.7243

mse = 0.0
samples = 8

value = 2.7287

mse = 0.0
samples = 11

value = 2.7261

mse = 0.0
samples = 13

value = 2.7227

DeltaPressure__mean_abs_change_quantiles__qh_0.6__ql_0.4 ≤ 0.5482
mse = 0.0

samples = 60
value = 2.7385

mse = 0.0
samples = 15

value = 2.7441

Temperature1__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_0__w_20 ≤ -75.8198
mse = 0.0

samples = 34
value = 2.74

Pressure1__time_reversal_asymmetry_statistic__lag_3 ≤ 1947788.5
mse = 0.0

samples = 26
value = 2.7365

mse = 0.0
samples = 21

value = 2.7414

mse = 0.0
samples = 13

value = 2.7377

mse = 0.0
samples = 17

value = 2.7355

mse = 0.0
samples = 9

value = 2.7383

Source: DataCast – Hochschule Aalen 2017. 
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Figure 7. Decision Tree - Feature Importance 

 
Source: DataCast – Hochschule Aalen 2017. 

 

Gradient Tree Boosting 

 

Hereafter, we show that a model built with gradient tree boosting has an 

advantage to a single decision tree. The gradient boosting model has an 

average deviation of 0.0023 g/cm³ and there are no outlier mispredictions 

(see Figure 8).  

 

Figure 8. Gradient Tree Boosting - Truth and Prediction 

Source: DataCast – Hochschule Aalen 2017. 

 

With gradient boosting, the model is built with a number of decision 

trees. The first tree starts as a standard decision tree. But the following trees 

are computed to improve the weaknesses of the composite model. 

Therefore, the model relies on more different features (see Figure 9). 
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Figure 9. Gradient Tree Boosting - Feature Importance 

 
Source: DataCast – Hochschule Aalen 2017. 

 

 

Discussion 

 

The variance of the density values predicted by the single decision tree 

is too big for a reasonable decision support. 

The prediction with the gradient boosting model has a 28% lower 

deviation from the true values, than the single decision tree model. 

Especially the predictions of high density values are more accurate with 

the gradient boosting model. This is an important improvement and is 

necessary for a practical application of a die-casting density prediction 

model. This improvement helps to lower false predictions to an acceptable 

level. 

Not only the prediction quality is important, but also the causal 

relations between input parameters and the part quality are of interest. The 

feature importance of the decision tree regression model and the gradient 

boosting regression model, which also relies on decision trees, allow 

insights on the feature importance. A single decision tree shows only a small 

number of important features, but the gradient boosting model shows a more 

detailed and complex view on the dependence of the features. 

 

 

Conclusions 

 

The gradient boosting algorithm is a good fit for the DataCast system. 

The accuracy of the tested model is good enough for a prediction of the part 

density in a production environment. 

The gradient boosting regression model gives insights in the feature 

importance, which in turn helps the casting engineers to explore causal 

relations between input parameters and the part quality. 

The downside of the system is, that a training phase of approximately 

one hundred parts is needed for every change in the production process, may 

it be a new part-type, a different alloy or a different die-casting machine. At 

least for the training phase, a complete quality assessment of all parts is 

mandatory. This reverses the process in a typical production environment, 
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where the parts are normally machined and/or processed to the state of a 

finished product and the quality assessment takes place at the end. 
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