
ATINER CONFERENCE PAPER SERIES No: LNG2014-1176

1

Athens Institute for Education and Research

ATINER

ATINER's Conference Paper Series

COM2016-1955

Till Haenisch

Professor

DHBW Heidenheim

Germany

Manfred Roessle

Professor

University of Applied Sciences Aalen

Germany

Rene Kuebler

Research Fellow

University of Applied Sciences Aalen

Germany

Storing Sensor Data in Different Database

Architectures

ATINER CONFERENCE PAPER SERIES No: COM2016-1955

2

An Introduction to

ATINER's Conference Paper Series

ATINER started to publish this conference papers series in 2012. It includes only the

papers submitted for publication after they were presented at one of the conferences

organized by our Institute every year. This paper has been peer reviewed by at least two

academic members of ATINER.

Dr. Gregory T. Papanikos

President

Athens Institute for Education and Research

This paper should be cited as follows:

Haenisch, T., Roessle, M. and Kuebler, R. (2016). "Storing Sensor Data in

Different Database Architectures", Athens: ATINER'S Conference Paper

Series, No: COM2016-1955.

Athens Institute for Education and Research

8 Valaoritou Street, Kolonaki, 10671 Athens, Greece

Tel: + 30 210 3634210 Fax: + 30 210 3634209 Email: info@atiner.gr URL:

www.atiner.gr

URL Conference Papers Series: www.atiner.gr/papers.htm

Printed in Athens, Greece by the Athens Institute for Education and Research. All rights

reserved. Reproduction is allowed for non-commercial purposes if the source is fully

acknowledged.

ISSN: 2241-2891

31/08/2016

ATINER CONFERENCE PAPER SERIES No: COM2016-1955

3

Storing Sensor Data in Different Database Architectures

Till Haenisch

Manfred Roessle

Rene Kuebler

Abstract

The Internet of Things comes along with a huge number of “things” producing

data. All collected mass data must be stored in real time for actual data

processing and future analysis. Almost every database on the market has

problems handling time series data. In the past that was only a problem for a

small group of users, but today and in the future that will change: one

important manifestation of the Internet of Things are sensor networks, possibly

large numbers of sensors generating data in more or less fixed time intervals.

Internet of Things applications have to handle large amounts of time series data

efficiently. There are many different approaches for storing this kind of data

like relational databases, NoSQL databases, in-memory systems files and so

on. This paper benchmarks typical software platforms used in the Internet of

Things scenarios, especially regarding their ingestion rates, and reveals

interesting results.

Keywords: Internet of Things, Database systems, Performance evaluation,

Wireless sensor networks.

ATINER CONFERENCE PAPER SERIES No: COM2016-1955

4

Introduction

Almost every database on the market has problems handling time series

data, see for example [5]. In the past that was only a problem for a small group

of users, but today and in the future that will change: one important

manifestation of the Internet of Things (IoT) are sensor networks, possibly

large numbers of sensors generating data in more or less fixed time intervals.

Consider for example buildings like those of a university with about 300

rooms. If theses rooms are equipped with sensors for temperature, humidity,

light intensity, sound level and motion there will be at least approximately

2000 sensors in the building (sensors in the rooms plus a few in the corridors

etc.). If each sensor produces one measurement per second this equals to

120,000 measurements per minute. That means 7.2 million measurements per

hour or 173 million per day and some 63 billion measurements per year.

Assuming 60 bytes per measurement this equals to roughly 4 Terabyte of data

per year just for one building.

Another example is our DataCast project. We are working on a realtime

quality prediction system for die-cast aluminium. There are 32 sensors for

temperature, cavity pressure, die fill control etc. installed. The sampling rate is

5 kHz, which means every sensor provides 5000 measurements per second. We

use 80 Byte per tuple, 8 Byte each for the partnumber and timestamp and 2

Byte per sensor-value. That is 2 MB of data per second. The process time for

one shot is about 30 seconds over all. The duration of the measurement phase

within the casting time is about 10 seconds, which means 4 MB per part.

Producing 8 hours per day we have to deal with 4 GB data per day and casting

machine. For a year we have to store about 1 TB for each casting machine.

The typical architecture of those IoT-sensor networks is shown in the

Figure 1 below.

Figure 1. Architecture of an IoT Sensor Network

The sensors or the sensor networks are connected to a message broker. The

message broker consists of two different layers. One layer collects the data

published by the sensors. Because not every sensor is working with the same

sampling rate it is necessary to provide a kind of “staging layer” to cache the

sensor data while being prepared to be written onto the database. The staging

ATINER CONFERENCE PAPER SERIES No: COM2016-1955

5

layer is also used to build batches of records for specialized “insert many”-

database commands. These commands will strongly influence the writing

performance of the database systems.

For the ongoing research we neglect the obvious influence of the message

broker and focus instead on the question how to store that large amount of data

efficiently on inexpensive hardware while allowing flexible queries for

reporting on different time scales.

Traditionally the queries are predefined, especially the time domains (e.g.

mean temperature per hour) so the data can easily be compressed by

aggregations like storing only statistical parameters of the measured values like

means, standard deviations and extreme values for different time scales like

minutes, hours, days and months. But the idea with big data is to store all data

without predetermining the possible analysis strategies. Because of this it is

necessary to store all measurements for future unknown requirements.

At the moment there is much ado about NoSQL and InMemory databases

and proponents of these systems, especially vendors, postulate that

conventional relational databases are useless in these scenarios. This paper tries

to underpin these discussions with some calculations and experimental results.

A typical IoT scenario like the ones mentioned above is simulated and data is

stored in various systems, e.g. MySQL, MongoDB, operating system files,

VoltDB, Apache Kafka and SAP HANA.

The write performance for the scenario is compared and analyzed.

Method

To compare the relative write performance ("ingestion rate") of the

different systems, a simple load model was implemented and tested with

current versions of the database platforms. The simulated load consists of

records with three elements, a timestamp, a sensor id and the actual value, if

necessary a unique id was added. This resulted in a size per record of

approximately 32 bytes. A large number of these records were inserted by {1,

2, 4, 8} processes. This corresponds to an architecture where the sensor values

are collected and distributed via a middleware, e.g. a message broker like

ZeroMQ, and are written to the database by a single consumer.

In the scenarios outlined above, we had data rates between a few thousand

records per minute and some 100.000 records per second. Therefore we

measured the time to write 1.000.000 records to the database to get a rough

estimate of the performance limits.

We used a representative sample of the current market with one system of

each relevant architecture: a standard SQL database (MySQL), a widely used

NoSQL database (MongoDB), an in-memory row-store (VoltDB) and an in-

memory column-store (SAP HANA). In addition to these more

or less conventional systems we used a persistent messaging system which

can be used for event processing (Apache Kafka) and plain operating system

files as a baseline.

ATINER CONFERENCE PAPER SERIES No: COM2016-1955

6

All systems were used out of the box without special tuning. Of course it

should be possible to get better results by fine tuning of the systems, but our

experience database systems are often used without special tuning efforts in

practice. Besides that, we only want to get a rough estimate of the performance

that can be expected.

We tested the batch sizes of {1, 10, 50, 100, 500, 1000, 10000} with all

systems that were capable of using batch inserts, to see a possible potential for

optimization.

To have a common base, we used Java (1.8) as the programming language

of all tests. For all systems we utilized the official Java drivers, that where

available, in addition JDBC. The full source code used in this benchmark is

available on GitHub https://github.com/TillHaenisch/TimeseriesBench.

The software versions used were HANA SPS-10, VoltDB 5.6 community

edition, Apache Kafka 2.11, MongoDB 3.2 and MySQL 5.6.

All database servers have been installed on the Amazon Web Services

EC2 r3.2 xlarge with 60 GB Ram and 8 CPU cores and SSD ebs volumes. The

standard operating system was Ubuntu Server 14.04 LTS (HVM), except SAP

HANA. SAP HANA was automatically configured by SAP Cloud Appliance

Library on SUSE Enterprise Linux. Transparent HugePages have been disabled

for all database servers.

The benchmark program itself was run on an AWS EC2 c4.2 xlarge

instance. The benchmark server and the test servers were configured for the

same aws availability zone and placement group.

The measurements were repeated a few times to ensure that the result is

not a single outlier, but we did not perform statistical analysis of the results,

because it is not our intent to give precise benchmark results. The idea of this

experiment is to provide some facts about the order of magnitude of realistic

performance of the different architectures.

Results

Table 1 shows the measured throughput in 1000 records/second, so for

example SAP HANA was able to write some 500.000 records per second. With

all systems we tried larger numbers of records up to 10 millions to see, if there

is a performance penalty for small data sizes or if there are caching effects.

SAP HANA showed no difference for these larger sizes, the throughput of

VoltDB increased by roughly a factor of two up to some 350.000 records per

second with increasing numbers of records. The other systems showed no large

differences. For MySQL, SAP HANA, Kafka and MongoDB it is possible to

control the size of batches, which means the number of records which are

inserted with one command. The MongoDB tests showed that a batch size

bigger than 100 did not result in much better and sometimes even worse insert

rates. Kafka scaled best with big batch sizes of 10000 and more. The

throughput with MySQL was also increased heavily when larger batches were

ATINER CONFERENCE PAPER SERIES No: COM2016-1955

7

used: VoltDB was the only system that could handle single inserts with high

insert rates. Figure 2 below shows the Ingestion rate versus the batchsize.

Figure 2. MySQL: Ingestion Rate versus Batchsize

Kafka is faster than the database systems and writing to an operating

system file is much faster than any other platform.

Table 1. Performance of the Different Systems for Ingesting 100.000 Records

in 10.000 Batches (when possible) Best Value of Threads

Throughput in

1000 records/sec

SAP HANA SPS10 506

Volt DB 6.2 CE 345 (single inserts)

Mongo DB 3.2 156

MySQL 5.6 743

Kafka 2.11 1522

file 6107

Discussion

Our experiment shows, that a write performance of some 100.000 records

per second is achievable on commodity hardware with all of the technologies.

There are no differences on the order of magnitude between the database

systems. Some databases perform better with the type and grouping of records

ATINER CONFERENCE PAPER SERIES No: COM2016-1955

8

we used here, some may behave better in somewhat different scenarios. Our

results conform to published results like Kafka being able to process two

million writes per second on three machines [1], MongoDB writing some 6.000

1kbyte records (10 times the size of our records) per second [2], MySQL

handling 150.000 records/second on one node [3] or VoltDB handling some

260.000 records per second [4].

The important point is, that linear write performance is not a critical factor

to consider when choosing a technology for this kind of application, except,

when there are massive data rates. In that case probably neither of the database

systems evaluated are suitable. Using an event processing system like Apache

Kafka is faster than every database and writing to an operating system file is

about 25 times faster than Kafka.

Conclusions

The ingestion rate of the tested Database Management Systems was high

enough for moderate data rates. Batch inserts were necessary to achieve higher

ingestion rates. A two tiered System with a Message Broker to collect the

Sensordata and to write Batches into the DBMS is able to handle massive Data

rates.

If massive ingestion rates are needed an OS file is a very performant

alternative if the evaluation is not required in realtime.

In this paper we evaluated the write-performance of different Internet of

Things scenarios. Benchmarking the read-performance is much more difficult.

The reason for this is, that the workload for writing sensor data is easy to

predict: In most cases it is either a continuous stream of messages or messages

are aggregated and written in bulk. Both has been measured in our research.

The read-performance depends heavily on the access pattern of the actual

application. But there are many possible applications like for example big data

algorithms which tend to read the whole data set over a large amount of data

maybe in many iterations, or jobs, where data is sampled and a more random-

access like pattern is relevant.

In some applications the number of concurrent readers and writers could

differ substantially. In some applications there might be only one writer and

one reader while in different applications there might be hundreds of thousands

of writers and many readers. Especially handling concurrency becomes very

difficult here. This is the reason why we didn't discuss read performance, this is

considered an important topic for our future research.

References

[1] J. Kreps, “Benchmarking Apache Kafka: 2 Million Writes Per Second (On Three

Cheap Machines), http://bit.ly/2bBp2PI.

[2] L. H. Jeong. Nosql benchmarking. http://bit.ly/2bBxfXm.

ATINER CONFERENCE PAPER SERIES No: COM2016-1955

9

[3] A. Kumar, “Ingesting over 1,000,000 rows a second into MySQL in AWS Cloud,”

http://bit.ly/2bFMY58.

[4] Diedrich, H., “877,000 TPS with Erlang and VoltDB,” http://bit.ly/2ce3Sfi.

[5] Stonebraker, M.; Brown, P.; Donghui Zhang; Becla, J., “SciDB: A Database

Management System for Applications with Complex Analytics,” J. Name Stand.

Abbrev., Computing in Science & Engineering, vol.15, no.3, pp.54,62, May-June

2013.

