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Till Haenisch 
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Rene Kuebler 

 

 

Abstract 

 

The Internet of Things comes along with a huge number of “things” producing 

data. All collected mass data must be stored in real time for actual data 

processing and future analysis. Almost every database on the market has 

problems handling time series data. In the past that was only a problem for a 

small group of users, but today and in the future that will change: one 

important manifestation of the Internet of Things are sensor networks, possibly 

large numbers of sensors generating data in more or less fixed time intervals. 

Internet of Things applications have to handle large amounts of time series data 

efficiently. There are many different approaches for storing this kind of data 

like relational databases, NoSQL databases, in-memory systems files and so 

on. This paper benchmarks typical software platforms used in the Internet of 

Things scenarios, especially regarding their ingestion rates, and reveals 

interesting results. 

 

Keywords: Internet of Things, Database systems, Performance evaluation, 

Wireless sensor networks. 
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Introduction 

 

Almost every database on the market has problems handling time series 

data, see for example [5]. In the past that was only a problem for a small group 

of users, but today and in the future that will change: one important 

manifestation of the Internet of Things (IoT) are sensor networks, possibly 

large numbers of sensors generating data in more or less fixed time intervals. 

Consider for example buildings like those of a university with about 300 

rooms. If theses rooms are equipped with sensors for temperature, humidity, 

light intensity, sound level and motion there will be at least approximately 

2000 sensors in the building (sensors in the rooms plus a few in the corridors 

etc.). If each sensor produces one measurement per second this equals to 

120,000 measurements per minute. That means 7.2 million measurements per 

hour or 173 million per day and some 63 billion measurements per year. 

Assuming 60 bytes per measurement this equals to roughly 4 Terabyte of data 

per year just for one building.  

Another example is our DataCast project. We are working on a realtime 

quality prediction system for die-cast aluminium. There are 32 sensors for 

temperature, cavity pressure, die fill control etc. installed. The sampling rate is 

5 kHz, which means every sensor provides 5000 measurements per second. We 

use 80 Byte per tuple, 8 Byte each for the partnumber and timestamp and 2 

Byte per sensor-value. That is 2 MB of data per second. The process time for 

one shot is about 30 seconds over all. The duration of the measurement phase 

within the casting time is about 10 seconds, which means 4 MB per part. 

Producing 8 hours per day we have to deal with 4 GB data per day and casting 

machine. For a year we have to store about 1 TB for each casting machine. 

The typical architecture of those IoT-sensor networks is shown in the 

Figure 1 below.  

 

Figure 1. Architecture of an IoT Sensor Network 

 
 

The sensors or the sensor networks are connected to a message broker. The 

message broker consists of two different layers. One layer collects the data 

published by the sensors. Because not every sensor is working with the same 

sampling rate it is necessary to provide a kind of “staging layer” to cache the 

sensor data while being prepared to be written onto the database. The staging 
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layer is also used to build batches of records for specialized “insert many”-

database commands. These commands will strongly influence the writing 

performance of the database systems. 

For the ongoing research we neglect the obvious influence of the message 

broker and focus instead on the question how to store that large amount of data 

efficiently on inexpensive hardware while allowing flexible queries for 

reporting on different time scales.  

Traditionally the queries are predefined, especially the time domains (e.g. 

mean temperature per hour) so the data can easily be compressed by 

aggregations like storing only statistical parameters of the measured values like 

means, standard deviations and extreme values for different time scales like 

minutes, hours, days and months. But the idea with big data is to store all data 

without predetermining the possible analysis strategies. Because of this it is 

necessary to store all measurements for future unknown requirements.  

At the moment there is much ado about NoSQL and InMemory databases 

and proponents of these systems, especially vendors, postulate that 

conventional relational databases are useless in these scenarios. This paper tries 

to underpin these discussions with some calculations and experimental results. 

A typical IoT scenario like the ones mentioned above is simulated and data is 

stored in various systems, e.g. MySQL, MongoDB, operating system files, 

VoltDB, Apache Kafka and SAP HANA.  

The write performance for the scenario is compared and analyzed.  

 

 

Method 

 

To compare the relative write performance ("ingestion rate") of the 

different systems, a simple load model was implemented and tested with 

current versions of the database platforms. The simulated load consists of 

records with three elements, a timestamp, a sensor id and the actual value, if 

necessary a unique id was added. This resulted in a size per record of 

approximately 32 bytes. A large number of these records were inserted by {1, 

2, 4, 8} processes. This corresponds to an architecture where the sensor values 

are collected and distributed via a middleware, e.g. a message broker like 

ZeroMQ, and are written to the database by a single consumer.  

In the scenarios outlined above, we had data rates between a few thousand 

records per minute and some 100.000 records per second. Therefore we 

measured the time to write 1.000.000 records to the database to get a rough 

estimate of the performance limits.  

We used a representative sample of the current market with one system of 

each relevant architecture: a standard SQL database (MySQL), a widely used 

NoSQL database (MongoDB), an in-memory row-store (VoltDB) and an in- 

memory column-store (SAP HANA). In addition to these more  

or less conventional systems we used a persistent messaging system which 

can be used for event processing (Apache Kafka) and plain operating system 

files as a baseline.  
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All systems were used out of the box without special tuning. Of course it 

should be possible to get better results by fine tuning of the systems, but our 

experience database systems are often used without special tuning efforts in 

practice. Besides that, we only want to get a rough estimate of the performance 

that can be expected. 

We tested the batch sizes of {1, 10, 50, 100, 500, 1000, 10000} with all 

systems that were capable of using batch inserts, to see a possible potential for 

optimization.  

To have a common base, we used Java (1.8) as the programming language 

of all tests. For all systems we utilized the official Java drivers, that where 

available, in addition JDBC. The full source code used in this benchmark is 

available on GitHub https://github.com/TillHaenisch/TimeseriesBench.  

The software versions used were HANA SPS-10, VoltDB 5.6 community 

edition, Apache Kafka 2.11, MongoDB 3.2 and MySQL 5.6.  

All database servers have been installed on the Amazon Web Services 

EC2 r3.2 xlarge with 60 GB Ram and 8 CPU cores and SSD ebs volumes. The 

standard operating system was Ubuntu Server 14.04 LTS (HVM), except SAP 

HANA. SAP HANA was automatically configured by SAP Cloud Appliance 

Library on SUSE Enterprise Linux. Transparent HugePages have been disabled 

for all database servers. 

The benchmark program itself was run on an AWS EC2 c4.2 xlarge 

instance. The benchmark server and the test servers were configured for the 

same aws availability zone and placement group. 

The measurements were repeated a few times to ensure that the result is 

not a single outlier, but we did not perform statistical analysis of the results, 

because it is not our intent to give precise benchmark results. The idea of this 

experiment is to provide some facts about the order of magnitude of realistic 

performance of the different architectures.  

 

 

Results  

 

Table 1 shows the measured throughput in 1000 records/second, so for 

example SAP HANA was able to write some 500.000 records per second. With 

all systems we tried larger numbers of records up to 10 millions to see, if there 

is a performance penalty for small data sizes or if there are caching effects. 

SAP HANA showed no difference for these larger sizes, the throughput of 

VoltDB increased by roughly a factor of two up to some 350.000 records per 

second with increasing numbers of records. The other systems showed no large 

differences. For MySQL, SAP HANA, Kafka and MongoDB it is possible to 

control the size of batches, which means the number of records which are 

inserted with one command. The MongoDB tests showed that a batch size 

bigger than 100 did not result in much better and sometimes even worse insert 

rates. Kafka scaled best with big batch sizes of 10000 and more. The 

throughput with MySQL was also increased heavily when larger batches were 
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used: VoltDB was the only system that could handle single inserts with high 

insert rates. Figure 2 below shows the Ingestion rate versus the batchsize. 

 

Figure 2. MySQL: Ingestion Rate versus Batchsize 

 
 

Kafka is faster than the database systems and writing to an operating 

system file is much faster than any other platform.  

 

Table 1. Performance of the Different Systems for Ingesting 100.000 Records 

in 10.000 Batches (when possible) Best Value of Threads 

  

 
Throughput in 

1000 records/sec 

 

SAP HANA SPS10 506 

Volt DB 6.2 CE 345 (single inserts) 

Mongo DB 3.2 156 

MySQL 5.6 743 

Kafka 2.11 1522 

file 6107 

 

 

Discussion  

 

Our experiment shows, that a write performance of some 100.000 records 

per second is achievable on commodity hardware with all of the technologies. 

There are no differences on the order of magnitude between the database 

systems. Some databases perform better with the type and grouping of records 
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we used here, some may behave better in somewhat different scenarios. Our 

results conform to published results like Kafka being able to process two 

million writes per second on three machines [1], MongoDB writing some 6.000 

1kbyte records (10 times the size of our records) per second [2], MySQL 

handling 150.000 records/second on one node [3] or VoltDB handling some 

260.000 records per second [4]. 

The important point is, that linear write performance is not a critical factor 

to consider when choosing a technology for this kind of application, except, 

when there are massive data rates. In that case probably neither of the database 

systems evaluated are suitable. Using an event processing system like Apache 

Kafka is faster than every database and writing to an operating system file is 

about 25 times faster than Kafka.  

 

 

Conclusions  

 

The ingestion rate of the tested Database Management Systems was high 

enough for moderate data rates. Batch inserts were necessary to achieve higher 

ingestion rates. A two tiered System with a Message Broker to collect the 

Sensordata and to write Batches into the DBMS is able to handle massive Data 

rates. 

If massive ingestion rates are needed an OS file is a very performant 

alternative if the evaluation is not required in realtime.  

In this paper we evaluated the write-performance of different Internet of 

Things scenarios. Benchmarking the read-performance is much more difficult. 

The reason for this is, that the workload for writing sensor data is easy to 

predict: In most cases it is either a continuous stream of messages or messages 

are aggregated and written in bulk. Both has been measured in our research.  

The read-performance depends heavily on the access pattern of the actual 

application. But there are many possible applications like for example big data 

algorithms which tend to read the whole data set over a large amount of data 

maybe in many iterations, or jobs, where data is sampled and a more random-

access like pattern is relevant.  

In some applications the number of concurrent readers and writers could 

differ substantially. In some applications there might be only one writer and 

one reader while in different applications there might be hundreds of thousands 

of writers and many readers. Especially handling concurrency becomes very 

difficult here. This is the reason why we didn't discuss read performance, this is 

considered an important topic for our future research. 
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