
ATINER CONFERENCE PAPER SERIES No: LNG2014-1176

1

Athens Institute for Education and Research

ATINER

ATINER's Conference Paper Series

COM2015-1549

Till Hänisch

Professor

Baden Württemberg State University Heidenheim

Germany

The Case for a Functional Internet of Things

ATINER CONFERENCE PAPER SERIES No: COM2015-1549

An Introduction to

ATINER's Conference Paper Series

ATINER started to publish this conference papers series in 2012. It includes only the

papers submitted for publication after they were presented at one of the conferences

organized by our Institute every year. This paper has been peer reviewed by at least two

academic members of ATINER.

Dr. Gregory T. Papanikos
President
Athens Institute for Education and Research

This paper should be cited as follows:

Hänisch, T. (2015). "The Case for a Functional Internet of Things", Athens:

ATINER'S Conference Paper Series, No: COM2015-1549.

Athens Institute for Education and Research

8 Valaoritou Street, Kolonaki, 10671 Athens, Greece
Tel: + 30 210 3634210 Fax: + 30 210 3634209 Email: info@atiner.gr

URL: www.atiner.gr
URL Conference Papers Series: www.atiner.gr/papers.htm
Printed in Athens, Greece by the Athens Institute for Education and Research. All

rights reserved. Reproduction is allowed for non-commercial purposes if the source is

fully acknowledged.
ISSN: 2241-2891
05/08/2015

ATINER CONFERENCE PAPER SERIES No: COM2015-1549

3

The Case for a Functional Internet of Things

Till Hänisch

Professor

Baden Württemberg State University Heidenheim

Germany

Abstract

In this paper a case study is presented which shows that the code size and

complexity of a system which collects and interprets sensor data in an Internet

of Things scenario can be reduced using functional programming techniques.

On the one hand this is especially important for security reasons: Such a

system must run for a long time without an effective way to distribute software

patches. On the other hand in this kind of system the consequences of a

malfunction (intended or not) are much more critical than in standard

computing situations, because real world buildings or industrial sites are

affected.

From a high level perspective the data processing at the base station of

such a sensor network can be considered as a set of mathematical functions

operating on a stream of values. Each function creates a new stream of values,

which might be processed by another function. This means that the complete

functionality can easily be described and programmed in a functional language,

such as elixir, Erlang or Scala.

Keywords: Internet of Things, Functional programming, Software

Architecture, IT-Security

ATINER CONFERENCE PAPER SERIES No: COM2015-1549

4

Introduction

Internet of Things appliances, such like light switches, thermostats or other

kinds of sensors or actors, are especially sensitive to software errors. While

minor malfunctions may be acceptable, software bugs might lead to security

problems, which are not acceptable, since they will have consequences in the

real world.

Today's method of keeping systems, e.g. operating systems, secure is to

patch them permanently to solve security problems. That is not practical for the

Internet of Things (IoT). The neccessity to patch on a regular base combined

with the long lifespan of components like building automation systems would

result in a severe configuration management problem: It is almost impossible

to properly test systems composed of that many components, with different

hardware and software versions. Constant updates will sooner or later result in

interoperability problems. Even automatic patching will not solve this issue.

Since regular updates are not feasible, a different way of keeping the

system secure is required. There are basically two ways to achieve this. One

possible solution is a self healing system. While there are different research

efforts to develop methods for creating such systems, there are no practical

solutions yet. The Defense Advanced Research Projects Agency (DARPA) has

identified this option of addressing security problems and started the Cyber

Grand Challenge in 2013 to stimulate research about self healing networks

(DARPA, 2013). In 2015 DARPA launched an initiative called Building

Resource Adaptive Software Systems (BRASS) to build "software systems and

data to remain robust and functional in excess of 100 years" (DARPA, 2015).

The only way to achieve this is enabling self adaptive systems which adapt

themselves to changing environments. While this might lead to interesting

results in the future, this solution is not available for current systems.

Without usable techniques to automatically solve security problems, it is

desirable to keep the number of bugs close to zero. One way to lower the

number of bugs is small code size and low complexity. Fewer lines of code and

lower coupling, especially as few side effects as possible, means fewer bugs.

The question is, how to achieve that.

Architecture of Internet of Things Applications

In the simplest case, and only this case will be considered here, IoT means,

that things talk to the internet. There are two common architectures for this

kind of system: The first and simplest is a sensor node that is directly

connected to the internet, typically by WLAN (Figure 1a). This requires a

WLAN interface and in most cases an operating system that provides the

necessary functionality. Typical hardware platforms for this kind of

applications are either open, complex platforms like Raspberry Pi, Intel Galileo

or Carambola, running some kind of Unix or Windows OS. These systems are

flexible and powerful, however they require a continuous power supply since

ATINER CONFERENCE PAPER SERIES No: COM2015-1549

5

their energy consumption of up to 15 Watt (Reese, 2015) cannot be delivered

by batteries.

Figure 1. a) Sensor Node Transmitting Directly to the Internet, b) Sensor Node

Transmitting to a Base, which Transmits Data to the Internet

In the second kind of applications, small battery powered sensors like

fitness trackers or sensor nodes send their data to a base station (Figure 1b).

 The base station can either be a smartphone, a PC or a special appliance

depending on the technical requirements of the system. Data is collected here

and can be made accessible via the Internet or at least locally via standard

internet protocols.

The disadvantage of the second architecture is the base station required in

addition to the sensor nodes. The advantage is, that the sensor nodes can be

very simple, and might not even require an operating system. This means, they

can be cheap and battery powered. This is the scenario discussed in this paper.

Functional Programming for the IoT

In most cases the structure of sensor data is rather simple: Typically a

measurement consists of a value, a timestamp, an identification of a location

and a sensor id (what, when, where, who). This data can then be stored in a

database or a flat file since usually no transactions are needed. Data is written

only once and only sequentially.

Data is read by different applications at different times for different

purposes. However, most data will be processed only once, at the time of

creation. Data is usually analyzed in some way at this time, for example to

detect anomalies, to generate statistical distribution parameters, to aggregate

the data for later time series analysis and to display a graphical representation

of the current data with a surrounding context.

ATINER CONFERENCE PAPER SERIES No: COM2015-1549

6

Figure 2. Sensor Values Considered as Streams. Functions Generate

Additional Streams (Different Colors) from the Original Sensor Stream.

Sensor

Graphics

Database

File

All of these processing activities can be seen as the application of a

mathematical function on a set of sensor values, with the special case that the

set contains only one value. Thus, the functionality of a processing node for an

IoT application can be considered as a set of mathematical functions operating

on a stream of values (Newton, 2004). Each function creates a new stream of

values, which might be processed by another function (see Figure 2). Some of

the value streams will be archived in a datastore. That means, that the complete

functionality can easily be described and programmed in a functional language

like elixir, Erlang, Scala or Haskell.

There is a considerable debate about the advantages of using functional

programming languages or at least functional programming techniques. Many

languages adopt functional features to allow using functional techniques in the

preferred environment, for example (Subramaniam, 2014). This debate is not

new (Gat, 2000). In Gat's classic experiment it was shown, that many

properties of programs like programmer productivity, performance etc. were

better when the programs were written in Lisp, a very old functional language,

compared to Java, a then modern imperative language.

Functional programming languages (and their environments like

Erlang/OTP) are very good for writing reliable, highly concurrent applications

with many concurrent processes and especially process failures (Armstrong,

2010). Writing applications like that was the reason for the development of the

Erlang ecosystem in telecommunication systems like phone exchanges.

The same reasons for using functional languages in these environments are

given in IoT scenarios. Concurrent event sources, e.g. sensor modules,

unreliable communication with spurious errors because of wireless data

transmission and a system that has to work highly reliable under any of these

problems. Even if some sensors in a building or a factory setting are not

working correctly, the data and data transformation must continue at least with

the undisturbed data, the main control flow must not be affected by errors in

other parts of the system. Nobody would tolerate a building where you can not

turn on the lights, because a thermostat node crashes.

But this is not the most important point for choosing functional languages.

A much stronger advantage of functional languages is, that the code for

transformations like the ones described above, is much more concise than with

traditional imperative languages. Although there is no formal proof for this

assumption, there is a large number of anecdotal cases, for example from

(Ford, 2013) or the case study described in a later section of this paper. An

ATINER CONFERENCE PAPER SERIES No: COM2015-1549

7

impressive case is John Carmack from ID software, who reimplemented

Wolfenstein 3D in Haskell and found, besides other promising benefits, that

the code size was reduced significantly (Carmack, 2013).

Short code without side effects (pure functional languages don't have side

effects) is easier to verify for correctness than imperative code. That means, it

contains fewer errors. While there is a significant, but only small correlation

between the programming language and the error rate, there is a clear

dependency between code size and error rate (Ray, 2014). Since programs

written in functional languages tend to be shorter than programs written in

imperative languages, they should contain fewer errors.

Fewer errors means less security problems, which is the main point.

Internet of Things applications has a direct relation to the real world. Security

problems in this context mean not only damage files on a disk, which might be

restored from a backup, but cause damage and or monetary loss in the real

world.

If someone hacks your thermostat while you are on vacation and sets the

temperature to maximum all the time, your heating system will go full speed

for weeks. That means a substantial financial risk. If someone hacks your home

security system and locks the front door, so you cannot enter your house at

night, would be very unpleasant. If someone hacks your car and turns the

headlights off while you are driving at 100 km/h is a substantial security risk

and so on.

To limit the possible damage by security problems in IoT applications, it is

either necessary to develop and deploy a widely accepted platform, that has

few bugs and is constantly updated throughout the world like for example

Apple does with iOS or we need as much diversity in these systems as we can

get to reduce the risk of a complete failure (Schneier, 2010). That means

individually developed software with as few bugs as possible. And that means

short, simple programs, which are easy to test and verify.

In the following chapter a case study is presented which shows that the

code size and complexity for a system which collects and interprets sensor data

in an IoT scenario can be reduced using functional programming techniques.

Case Study

The case discussed in this paper is a low cost low power sensor network to

save energy in paper machines (Hänisch, 2014). By using wireless sensors for

measuring temperature and humidity in the dryer section of a paper machine it

is possible to optimize energy consumption by adjusting heating and air flow.

Because the sensors need to be battery powered and send the data almost in

real time for monitoring purposes, a low power network technology is needed,

in this case ZigBee. The data is sent to a base station in packets with no

guaranteed delivery, resulting in an at most once semantic. This results in some

complexity of the base station code, which consists mainly of error handling

and monitoring or logging functions.

ATINER CONFERENCE PAPER SERIES No: COM2015-1549

8

In this article, only the code running on the base station (see Figure 3) will

be considered, the code on the sensor nodes mainly handles communication

with the sensor hardware and has a very simple structure since no data is stored

locally. In more complex cases this part could also be implemented using

functional programming techniques like functional reactive programming

(Khare, 2015).

Figure 3. Architecture of the Sensor Network Consisting of the Sensor Nodes

and a Base Station ("bridge")

As Figure 4 shows, the original version consists of 620 lines of source

code (262 lines of C, 355 lines of ruby, 3 lines of python) plus a few shell

scripts for startup tasks etc.

By reevaluating the user requirements the code size could be reduced to

251 lines of ruby (including comments and empty lines, that is 225 nonempty

lines resp. 194 nonblank lines without comments). That is some 40% of the

original size. The reimplementation in elixir resulted in 106 lines of code

(including comments and empty lines, that is 86 non-blank lines resp. 68 lines

of code without comments). That is some 42% of the second version, 17% of

the original version.

Remark: The Erlang version was about the same size as the elixir version

(which is no surprise, since it has the same structure, the same functions etc.)

but felt somewhat alien at least to the author and was dropped in favour of the

elixir version.

ATINER CONFERENCE PAPER SERIES No: COM2015-1549

9

Figure 4. Code Size in Lines of the Different Versions

That means, that the code size was reduced by a factor of 5.

Figure 5. Listing of the most Complex Function of the Elixir Version

def process_file(input_file,current_values) do

 task = Task.async(fn -> IO.read(input_file, :line) end)

 try do

 row = Task.await(task,5000)

 if (row != :eof) do

 new_values = process_line(

 String.split(String.rstrip(row), " "),current_values)

 process_file(input_file,new_values)

 end

 catch

 :exit, _ -> IO.puts "timeout"

 process_file(input_file,current_values)

 end

end

The final elixir version consists of 15 functions with an average length of

2.7 lines (only 6 functions have a length of 1 line). Only one function has a

cyclomatic complexity greater than 1, this is the function shown in Figure 5.

This function handles timeouts when receiving data, so a complexity greater

than one is mandatory.

The ruby version consists of 3 classes with 17 methods having an average

length of 10.3 lines. The average cyclomatic complexity is 2.6, the maximum

cyclomatic complexity is 10. These numbers (and Figure 6) show that the elixir

version is not only much smaller (42 % of the size of the ruby version) but also

the complexity is lower by a similar factor. According to (Watson, 1996)

cyclomatic complexity correlates with the number of errors in software

modules. So the elixir version should have less errors than the much longer and

more complex ruby version.

ATINER CONFERENCE PAPER SERIES No: COM2015-1549

10

Figure 6. Complexity Measures of the Ruby and Elixir Versions with the Same

Functionality

The original version (ruby and C) was replaced by the second, simplified

ruby version because it showed a number of critical errors which were hard to

find because they occured only rarely. This led to a simplified ruby version

which worked over a period of nearly two years with only two non critical

bugs. The elixir version is running for only a few months now and showed no

bug till today.

Discussion

The problem with a study with n=1 are well known, see for example

(Harrison, 2000). But experiments in software engineering are hard to do:

Controlled experiments with n>1 would give better results, if and only if both

samples are from the same basic population. This basic population must be

representative for the real word. This is the problem with the controlled

experiment approach. Usually experiments are done with voluntary students,

but it would be difficult to find students which have the same amount of

experience level, in ruby and elixir in this case. Typically someone knowing

those two languages has way more experience with ruby than with elixir, since

elixir is newer. Programmers knowing elixir or Lisp, Scala, Erlang will tend to

have a more theoretical background than the typical developer of embedded

systems, but much less practical experience. So even an experiment with a

large number of participants would be of limited use for real projects.

The size of the example described above is much smaller than typical

industrial projects. So the only firm conclusion that may be drawn from this

case is that further, larger experiments are needed. On the other hand the

processing of data in Internet of Things scenarios might (and probably should)

ATINER CONFERENCE PAPER SERIES No: COM2015-1549

11

(Namiot, 2014) be implemented as microservices, with a size comparable to

the case described here.

Both of these points are valid, but controlled experiments with realistic

project sizes are very hard to do: The group of people who would volunteer to

work for a few years on a software project that is developed by a large number

of other teams concurrently just to get some statistically valid data about

program complexity is limited and certainly not representative for real world

software engineers. So this problem is unsolvable and we will have to stay with

small n=1 case studies.

Using the cyclomatic complexity as a measure for the expected number of

errors in code is debatable, see for example (Abran 2004). On the other hand it

is widely accepted and used in tools to measure complexity for exactly this

purpose. In conclusion the correlation might not be absolutely proven, but in

real world experience it works and it is plausible: The more paths in the code,

the harder to understand and test, the harder to understand and test, the more

errors.

Conclusions

Using functional programming techniques and/or languages can reduce the

code size and the complexity of Internet of Things applications. Reduced code

size and complexity means less bugs, that means less security problems.

Functional programming techniques fit well to the architecture of Internet

of Things applications. It is therefore plausible that the described reduction in

code size and complexity could be realized in other projects as well.

Elixir seems to be a good choice as an implementation language for

Internet of Things applications.

References

Abran, A., Lopez, M. and Habra, N. 2004. An Analysis of the McCabe Cyclomatic

Complexit Number, Proceedings of the 14th International Workshop on Software

Measurement (IWSM) IWSM-Metrikon, 2004, Magdeburg, Germany: Springer-

Verlag, pp. 391-405.

Armstrong, J., 2010. Erlang, Communications of the ACM, Volume 53 Issue 9,

September 2010

Carmack, J. 2013. Keynote at QUAKECON 2013,

https://www.youtube.com/watch?v=1PhArSujR_A

DARPA, 2013, DARPA CYBER GRAND CHALLENGE

 COMPETITOR PORTAL, https://cgc.darpa.mil

DARPA, 2015, DARPA SEEKS TO CREATE SOFTWARE SYSTEMS THAT

COULD LAST 100 YEARS,

http://www.darpa.mil/NewsEvents/Releases/2015/04/08.aspx

Ford, N. 2013. Functional thinking: Why functional programming is on the rise .

http://www.ibm.com/developerworks/library/j-ft20/

ATINER CONFERENCE PAPER SERIES No: COM2015-1549

12

Gat 2000. Erann Gat, Point of view: Lisp as an alternative to Java, Intelligence,

Volume 11 Issue 4, Dec. 2000 Pages 21-24

Hänisch e al. 2014 “Using a Sensor Network for Energy Optimization of Paper

Machine Dryer Sections" Athens Journal of Technology Engineering, Vol. 1, No.

3, September 2014

Harrison, W. 2000 N=1, an Alternative for Software Engineering Research? Proc.

Workshop Beg, Borrow, or Steal: Using Multidisciplinary Approaches in

Empirical Sof ware Eng. Research, In ’l Conf. Sof ware Eng., Aug. 2000.

Khare, S. et al, 2015. Functional Reactive Stream Processing for Data-centric

Publish/Subscribe Systems, https://community.rti.com/paper/functional-reactive-

stream-processing-data-centric-publishsubscribe-systems
Namiot, D, Sneps-Sneppe, M. 2014. On IoT Programming, International Journal of

Open Information Technologies ISSN: 2307-8162 vol. 2, no. 10, 2014
Newton, R., Welsh, M. 2004, Region streams: functional macroprogramming for

sensor networks, Proceeedings of the 1st international workshop on Data

management for sensor networks: in conjunction with VLDB 2004 Pages 78-87

Ray, B. et al. 2014. "A Large Scale Study of Programming Languages

 and Code Quality in Github" Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering, 2014

Reese. 2015. A Comparison of Open Source Hardware: Intel Galileo vs. Raspberry

Pi. Technical Report. Mouser Electronics.

http://www.mouser.de/applications/open-source-hardware-galileo-pi/.

Schneier, B. 2010. The Dangers of a Software Monoculture. https://www.schneier.

com/essays/archives/2010/11/the_dangers_of_a_sof.html

Subramaniam, V. 2014, Functional Programming in Java: Harnessing the Power of

Java 8 Lambda Expressions, O'Reilly.

Watson, A. H. and McCabe, T. J. 1996. Structured testing: A testing methodology

using the cyclomatic complexity metric. NIST Special Publication, 1996.

