
ATINER CONFERENCE PAPER SERIES No: LNG2014-1176 

 

1 

Athens Institute for Education and Research 

ATINER 

 

 

 

ATINER's Conference Paper Series 

COM2015-1549 

 
 

 

 

Till Hänisch 

Professor 

Baden Württemberg State University Heidenheim 

Germany

 

The Case for a Functional Internet of Things 
 



ATINER CONFERENCE PAPER SERIES No: COM2015-1549 

 

An Introduction to 

ATINER's Conference Paper Series 

 

 

 
ATINER started to publish this conference papers series in 2012. It includes only the 

papers submitted for publication after they were presented at one of the conferences 

organized by our Institute every year. This paper has been peer reviewed by at least two 

academic members of ATINER. 
 
Dr. Gregory T. Papanikos 
President 
Athens Institute for Education and Research 
 

 

 

 
This paper should be cited as follows: 

 

 

Hänisch, T. (2015). "The Case for a Functional Internet of Things", Athens: 

ATINER'S Conference Paper Series, No: COM2015-1549. 

 
 

 

 

 

Athens Institute for Education and Research 

8 Valaoritou Street, Kolonaki, 10671 Athens, Greece 
Tel: + 30 210 3634210 Fax: + 30 210 3634209 Email: info@atiner.gr 

URL: www.atiner.gr 
URL Conference Papers Series: www.atiner.gr/papers.htm 
Printed in Athens, Greece by the Athens Institute for Education and Research. All 

rights reserved. Reproduction is allowed for non-commercial purposes if the source is 

fully acknowledged. 
ISSN: 2241-2891 
05/08/2015 

 

 

 



ATINER CONFERENCE PAPER SERIES No: COM2015-1549 

 

3 
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Abstract 

 

In this paper a case study is presented which shows that the code size and 

complexity of a system which collects and interprets sensor data in an Internet 

of Things scenario can be reduced using functional programming techniques. 

On the one hand this is especially important for security reasons: Such a 

system must run for a long time without an effective way to distribute software 

patches. On the other hand in this kind of system the consequences of a 

malfunction (intended or not) are much more critical than in standard 

computing situations, because real world buildings or industrial sites are 

affected.  

From a high level perspective the data processing at the base station of 

such a sensor network can be considered as a set of mathematical functions 

operating on a stream of values. Each function creates a new stream of values, 

which might be processed by another function. This means that the complete 

functionality can easily be described and programmed in a functional language, 

such as elixir, Erlang or Scala. 

 

Keywords: Internet of Things, Functional programming, Software 

Architecture, IT-Security 
 

 



ATINER CONFERENCE PAPER SERIES No: COM2015-1549 

 

4 

Introduction 

 

Internet of Things appliances, such like light switches, thermostats or other 

kinds of sensors or actors, are especially sensitive to software errors. While 

minor malfunctions may be acceptable, software bugs might lead to security 

problems, which are not acceptable, since they will have consequences in the 

real world. 

Today's method of keeping systems, e.g. operating systems, secure is to 

patch them permanently to solve security problems. That is not practical for the 

Internet of Things (IoT). The neccessity to patch on a regular base combined 

with the long lifespan of components like building automation systems would 

result in a severe configuration management problem: It is almost impossible 

to properly test systems composed of that many components, with different 

hardware and software versions. Constant updates will sooner or later result in 

interoperability problems. Even automatic patching will not solve this issue.  

Since regular updates are not feasible, a different way of keeping the 

system secure is required. There are basically two ways to achieve this. One 

possible solution is a self healing system. While there are different research 

efforts to develop methods for creating such systems, there are no practical 

solutions yet. The Defense Advanced Research Projects Agency (DARPA) has 

identified this option of addressing security problems and started the Cyber 

Grand Challenge in 2013 to stimulate research about self healing networks 

(DARPA, 2013). In 2015 DARPA launched an initiative called Building 

Resource Adaptive Software Systems (BRASS) to build "software systems and 

data to remain robust and functional in excess of 100 years" (DARPA, 2015). 

The only way to achieve this is enabling self adaptive systems which adapt 

themselves to changing environments. While this might lead to interesting 

results in the future, this solution is not available for current systems. 

Without usable techniques to automatically solve security problems, it is 

desirable to keep the number of bugs close to zero. One way to lower the 

number of bugs is small code size and low complexity. Fewer lines of code and 

lower coupling, especially as few side effects as possible, means fewer bugs. 

The question is, how to achieve that. 

 

 

Architecture of Internet of Things Applications  

 

In the simplest case, and only this case will be considered here, IoT means, 

that things talk to the internet. There are two common architectures for this 

kind of system: The first and simplest is a sensor node that is directly 

connected to the internet, typically by WLAN (Figure 1a). This requires a 

WLAN interface and in most cases an operating system that provides the 

necessary functionality. Typical hardware platforms for this kind of 

applications are either open, complex platforms like Raspberry Pi, Intel Galileo 

or Carambola, running some kind of Unix or Windows OS. These systems are 

flexible and powerful, however they require a continuous power supply since 
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their energy consumption of up to 15 Watt (Reese, 2015) cannot be delivered 

by batteries. 

 

Figure 1. a) Sensor Node Transmitting Directly to the Internet, b) Sensor Node 

Transmitting to a Base, which Transmits Data to the Internet 

 
 

In the second kind of applications, small battery powered sensors like 

fitness trackers or sensor nodes send their data to a base station (Figure 1b). 

 The base station can either be a smartphone, a PC or a special appliance 

depending on the technical requirements of the system. Data is collected here 

and can be made accessible via the Internet or at least locally via standard 

internet protocols.  

The disadvantage of the second architecture is the base station required in 

addition to the sensor nodes. The advantage is, that the sensor nodes can be 

very simple, and might not even require an operating system. This means, they 

can be cheap and battery powered. This is the scenario discussed in this paper. 

 

 

Functional Programming for the IoT  

 

In most cases the structure of sensor data is rather simple: Typically a 

measurement consists of a value, a timestamp, an identification of a location 

and a sensor id (what, when, where, who). This data can then be stored in a 

database or a flat file since usually no transactions are needed. Data is written 

only once and only sequentially.  

Data is read by different applications at different times for different 

purposes. However, most data will be processed only once, at the time of 

creation. Data is usually analyzed in some way at this time, for example to 

detect anomalies, to generate statistical distribution parameters, to aggregate 

the data for later time series analysis and to display a graphical representation 

of the current data with a surrounding context.  

 



ATINER CONFERENCE PAPER SERIES No: COM2015-1549 

 

6 

Figure 2. Sensor Values Considered as Streams. Functions Generate 

Additional Streams (Different Colors) from the Original Sensor Stream. 

Sensor

Graphics

Database

File

 
 

All of these processing activities can be seen as the application of a 

mathematical function on a set of sensor values, with the special case that the 

set contains only one value. Thus, the functionality of a processing node for an 

IoT application can be considered as a set of mathematical functions operating 

on a stream of values (Newton, 2004). Each function creates a new stream of 

values, which might be processed by another function (see Figure 2). Some of 

the value streams will be archived in a datastore. That means, that the complete 

functionality can easily be described and programmed in a functional language 

like elixir, Erlang, Scala or Haskell. 

There is a considerable debate about the advantages of using functional 

programming languages or at least functional programming techniques. Many 

languages adopt functional features to allow using functional techniques in the 

preferred environment, for example (Subramaniam, 2014). This debate is not 

new (Gat, 2000). In Gat's classic experiment it was shown, that many 

properties of programs like programmer productivity, performance etc. were 

better when the programs were written in Lisp, a very old functional language, 

compared to Java, a then modern imperative language. 

Functional programming languages (and their environments like 

Erlang/OTP) are very good for writing reliable, highly concurrent applications 

with many concurrent processes and especially process failures (Armstrong, 

2010). Writing applications like that was the reason for the development of the 

Erlang ecosystem in telecommunication systems like phone exchanges. 

The same reasons for using functional languages in these environments are 

given in IoT scenarios. Concurrent event sources, e.g. sensor modules, 

unreliable communication with spurious errors because of wireless data 

transmission and a system that has to work highly reliable under any of these 

problems. Even if some sensors in a building or a factory setting are not 

working correctly, the data and data transformation must continue at least with 

the undisturbed data, the main control flow must not be affected by errors in 

other parts of the system. Nobody would tolerate a building where you can not 

turn on the lights, because a thermostat node crashes. 

But this is not the most important point for choosing functional languages. 

A much stronger advantage of functional languages is, that the code for 

transformations like the ones described above, is much more concise than with 

traditional imperative languages. Although there is no formal proof for this 

assumption, there is a large number of anecdotal cases, for example from 

(Ford, 2013) or the case study described in a later section of this paper. An 
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impressive case is John Carmack from ID software, who reimplemented 

Wolfenstein 3D in Haskell and found, besides other promising benefits, that 

the code size was reduced significantly (Carmack, 2013). 

Short code without side effects (pure functional languages don't have side 

effects) is easier to verify for correctness than imperative code. That means, it 

contains fewer errors. While there is a significant, but only small correlation 

between the programming language and the error rate, there is a clear 

dependency between code size and error rate (Ray, 2014). Since programs 

written in functional languages tend to be shorter than programs written in 

imperative languages, they should contain fewer errors. 

Fewer errors means less security problems, which is the main point. 

Internet of Things applications has a direct relation to the real world. Security 

problems in this context mean not only damage files on a disk, which might be 

restored from a backup, but cause damage and or monetary loss in the real 

world. 

If someone hacks your thermostat while you are on vacation and sets the 

temperature to maximum all the time, your heating system will go full speed 

for weeks. That means a substantial financial risk. If someone hacks your home 

security system and locks the front door, so you cannot enter your house at 

night, would be very unpleasant. If someone hacks your car and turns the 

headlights off while you are driving at 100 km/h is a substantial security risk 

and so on. 

To limit the possible damage by security problems in IoT applications, it is 

either necessary to develop and deploy a widely accepted platform, that has 

few bugs and is constantly updated throughout the world like for example 

Apple does with iOS or we need as much diversity in these systems as we can 

get to reduce the risk of a complete failure (Schneier, 2010). That means 

individually developed software with as few bugs as possible. And that means 

short, simple programs, which are easy to test and verify. 

In the following chapter a case study is presented which shows that the 

code size and complexity for a system which collects and interprets sensor data 

in an IoT scenario can be reduced using functional programming techniques. 

 

 

Case Study  

 

The case discussed in this paper is a low cost low power sensor network to 

save energy in paper machines (Hänisch, 2014). By using wireless sensors for 

measuring temperature and humidity in the dryer section of a paper machine it 

is possible to optimize energy consumption by adjusting heating and air flow. 

Because the sensors need to be battery powered and send the data almost in 

real time for monitoring purposes, a low power network technology is needed, 

in this case ZigBee. The data is sent to a base station in packets with no 

guaranteed delivery, resulting in an at most once semantic. This results in some 

complexity of the base station code, which consists mainly of error handling 

and monitoring or logging functions. 
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In this article, only the code running on the base station (see Figure 3) will 

be considered, the code on the sensor nodes mainly handles communication 

with the sensor hardware and has a very simple structure since no data is stored 

locally. In more complex cases this part could also be implemented using 

functional programming techniques like functional reactive programming 

(Khare, 2015). 

 

Figure 3. Architecture of the Sensor Network Consisting of the Sensor Nodes 

and a Base Station ("bridge") 

 
 

As Figure 4 shows, the original version consists of 620 lines of source 

code (262 lines of C, 355 lines of ruby, 3 lines of python) plus a few shell 

scripts for startup tasks etc. 

By reevaluating the user requirements the code size could be reduced to 

251 lines of ruby (including comments and empty lines, that is 225 nonempty 

lines resp. 194 nonblank lines without comments). That is some 40% of the 

original size. The reimplementation in elixir resulted in 106 lines of code 

(including comments and empty lines, that is 86 non-blank lines resp. 68 lines 

of code without comments). That is some 42% of the second version, 17% of 

the original version.  

Remark: The Erlang version was about the same size as the elixir version 

(which is no surprise, since it has the same structure, the same functions etc.) 

but felt somewhat alien at least to the author and was dropped in favour of the 

elixir version. 
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Figure 4. Code Size in Lines of the Different Versions 

 
 

That means, that the code size was reduced by a factor of 5. 

 

Figure 5. Listing of the most Complex Function of the Elixir Version 

 
def process_file(input_file,current_values) do 

  task = Task.async(fn -> IO.read(input_file, :line) end) 

  try do 

    row = Task.await(task,5000) 

    if (row != :eof) do 

      new_values = process_line( 

        String.split(String.rstrip(row), " "),current_values) 

      process_file(input_file,new_values) 

    end 

  catch 

    :exit, _ -> IO.puts "timeout" 

      process_file(input_file,current_values) 

  end 

end 

 

The final elixir version consists of 15 functions with an average length of 

2.7 lines (only 6 functions have a length of 1 line). Only one function has a 

cyclomatic complexity greater than 1, this is the function shown in Figure 5. 

This function handles timeouts when receiving data, so a complexity greater 

than one is mandatory.  

The ruby version consists of 3 classes with 17 methods having an average 

length of 10.3 lines. The average cyclomatic complexity is 2.6, the maximum 

cyclomatic complexity is 10. These numbers (and Figure 6) show that the elixir 

version is not only much smaller (42 % of the size of the ruby version) but also 

the complexity is lower by a similar factor. According to (Watson, 1996) 

cyclomatic complexity correlates with the number of errors in software 

modules. So the elixir version should have less errors than the much longer and 

more complex ruby version.  
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Figure 6. Complexity Measures of the Ruby and Elixir Versions with the Same 

Functionality 

 
 

The original version (ruby and C) was replaced by the second, simplified 

ruby version because it showed a number of critical errors which were hard to 

find because they occured only rarely. This led to a simplified ruby version 

which worked over a period of nearly two years with only two non critical 

bugs. The elixir version is running for only a few months now and showed no 

bug till today. 

 

 

Discussion  

 

The problem with a study with n=1 are well known, see for example 

(Harrison, 2000). But experiments in software engineering are hard to do: 

Controlled experiments with n>1 would give better results, if and only if both 

samples are from the same basic population. This basic population must be 

representative for the real word. This is the problem with the controlled 

experiment approach. Usually experiments are done with voluntary students, 

but it would be difficult to find students which have the same amount of 

experience level, in ruby and elixir in this case. Typically someone knowing 

those two languages has way more experience with ruby than with elixir, since 

elixir is newer. Programmers knowing elixir or Lisp, Scala, Erlang will tend to 

have a more theoretical background than the typical developer of embedded 

systems, but much less practical experience. So even an experiment with a 

large number of participants would be of limited use for real projects. 

The size of the example described above is much smaller than typical 

industrial projects. So the only firm conclusion that may be drawn from this 

case is that further, larger experiments are needed. On the other hand the 

processing of data in Internet of Things scenarios might (and probably should) 
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(Namiot, 2014) be implemented as microservices, with a size comparable to 

the case described here. 

Both of these points are valid, but controlled experiments with realistic 

project sizes are very hard to do: The group of people who would volunteer to 

work for a few years on a software project that is developed by a large number 

of other teams concurrently just to get some statistically valid data about 

program complexity is limited and certainly not representative for real world 

software engineers. So this problem is unsolvable and we will have to stay with 

small n=1 case studies. 

Using the cyclomatic complexity as a measure for the expected number of 

errors in code is debatable, see for example (Abran 2004). On the other hand it 

is widely accepted and used in tools to measure complexity for exactly this 

purpose. In conclusion the correlation might not be absolutely proven, but in 

real world experience it works and it is plausible: The more paths in the code, 

the harder to understand and test, the harder to understand and test, the more 

errors. 

 

 

Conclusions  

 

Using functional programming techniques and/or languages can reduce the 

code size and the complexity of Internet of Things applications. Reduced code 

size and complexity means less bugs, that means less security problems. 

Functional programming techniques fit well to the architecture of Internet 

of Things applications. It is therefore plausible that the described reduction in 

code size and complexity could be realized in other projects as well. 

Elixir seems to be a good choice as an implementation language for 

Internet of Things applications. 
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