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Topological Proof of the Computability of the Algorithm based 

on the Morphosyntactic Distance 

 

Pedro G. Guillén 

Ph.D. Student 

Natural Computing Group (GCN)  

Universidad Politécnica de Madrid 

Spain 

 

Abstract 

 

Following the previous works of E. Villa, A. De Santos and P. G. Guillén, 

considering a natural language it is possible to built the lexical associated space 

as a free semigroup, with the grammatic rules as its restrictions. Through 

several quotients and manipulations the univocal language is built, solving the 

problems of polisemy and synonymy that comes with the given natural 

language. Since here, the Morphosyntactic Distance can be defined over the 

elements of this group regardless of its algebraic properties, from a linguistic 

criterion. Therefore, it induces a topological space, which is called 

Morphosyntactic Space. Based on these hypothesis, some properties of this 

space are studied in this paper from a topological point of view, as 

compactness, total disconnection and separation. Later, the space is related 

through homeomorphisms, continuous functions and injective and surjective 

functions with some mathematical known spaces. After, a proof of the 

computability of the associated algorithm is given from these properties. 

Beyond the concrete problem which is solved in the paper with a topological 

argument, is shown that the method used in the proof could be generalized for 

an entire class of problems related with linear programming. 
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Let be L a natural language. As in [1], we built the lexical space D, that 

haves a semigroup structure, and could be treated as a set, regardless of its 

algebraic properties. By [2], and using the fact that the meaning function is 

inyective, we are able to define in D as a set the Morphosyntactic Distance d, 

giving it a metric space structure. Thus, a topological space has been defined 

with the topology induced by d, that we wil call Morphosyntactic Topology, 

and the space (D,T) will be called Morphosyntactic Space. Trough this paper 

these hypothesis will be asumed as starting point.  Analogue constructions of 

the same idea can be found in [7] and [8], since where we can assure that the 

chosen structure is consistent with a computational implementation.  

Note that, because the topology is induced by a distance, the 

morphosyntactic space is metrizable. Therefore, it must apply the Metrization 

Theorem of Urysohnn to conclude that is a second-countable space and normal. 

To analize the connection properties, we introduce the following proposition. 

Proposition 1. The Morphosyntactic Space is totally disconnected.  

Proof. As can be seen in [2], the Morphosyntactic Space is countable, and 

considering x in D, there can not be any element y in D that verifies d(x,y)=0. 

Also by [2], we can asume that the set of values that d(x,y) can reach is 

bounded below for a constant k  . Therefore, is clear that B(x, k/2)  (D,T) = 

{x}, from which it follows the result. 

Proposition 2. The Morphosyntactic Space is compact. 

Proof.   As seen above, the Morphosyntactic Space is countable, so it must 

be trivially a Lindelöf space. Moreover, being a metrizable space is 

paracompact. Therefore, as Lindelöf and paracompact, the morphosyntactic 

space is compact. 

Corollary 1. Morphosyntactic Space has a countable dense subset. 

Proof. Being a compact and metrizable space, the result is immediate. A 

formal developement can be seen in [3].  

From the reasoning carried out so far we have some basic properties of the 

Morphosyntactic Space. Our next step is define a similarity between this and a 

known structure that could constitute a reference in subsequent disquisitions.  

Related structures  Hereinafter, we will make a comparison between different 

structures and the morphosyntactic space, in order to achieve a more intuitive 

approach to a future computational implementation of the model. 

Theorem 1. The Morphosyntactic Space can be embedded in a Hilbert 

Cube. 

Proof. We must prove that there is a continuous and injective function that  

h:(D,T)[0,1]x[0,1]... By Corollary 1, a countable dense set X = { a1, a2, …} 

can be taken in (D,T) to define the function  h(p) = (d(p,a1), d(p,a2), …) Firstly, 

we will show the continuity of the function h. According with [3], we need to 

verify that for all natural number n, n(h(x)) is a continuous mapping. Let be n 

a natural number. Calculating  n(h(x)) = n(d(p,a1),d(p,a2),…) = d(p,an). We 

must prove that the distance to a fixed element is a continous function. For this, 

let be the function defined as H:(D,T) [0,1] that H(x) = d(p,x)    as d(p,x) ≤ 

d(x,y) + d(y,p) then d(x,p) - d(y,p) ≤ d(x,y)  . Similarly, d(y,p) - d(x,p) ≤ d(y,x)  

. Therefore, we can conclude that  |H(x)-H(y)| ≤ d(x,y) from it follows the 
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continuity. Since here, h is continous. We will show that h is injective. 

Proceeding by reduction ad absurdum, let suppose that there exists elements 

p,q in (D,T) that p  q and h(p) = h(q). Since p  q, the number d(p,q) = c is 

positive. Since X is dense in (D,T), B(p,c/2})  X  {Ø}. So there exist a 

natural number r that ar is in B(p,c/2). As we are supposing that h(p) = h(q), we 

have that  (d(p,a1),d(p,a2),..) = (d(q,a1),d(q,a2),…) Then d(p,an) = d(q,an) for all 

natural n. In particular, d(p,ar)=d(q,ar), from we have c = d(p,q) ≤ d(p,ar) + 

d(q,ar) = 2d(p,ar) < 2c/2 = c and c < c. ¡! Therefore, h is injective. And finally, 

analyzing the direct image of X, must be h(X)  [0,1]x[0,1]x[0,1]x… 

Moreover, h(X) is a compact (is the continuous image of a compact). We know 

that the compact subspaces of a metric space are closed then h(X)   is closed. 

Lemma 1. Let be C the Cantor set, and A  C a nonempty closed set. 

Then, there exists a continous function k: CA k(a) = a for all a in A. 

Proof. As we know, C  D, where D = { , an {0,3} for all n}. Let 

be k: DA   defined by k(x) = ax , where |x - ax| = min{|x - a| : a  A}. Id est, 

k(x) is the nearest point to x. Thinking about the distance as a function, we 

have seen above that this function is continous. Since A is a closed in a 

compact, then this function reaches minimum in an A. This tells us that there 

exists such an ax. We must now prove that ax is unique. Lets suppose that there 

are then ax and bx in A such that |x - ax| = |x - bx| = min{|x - a|:a is in A}. We 

may suppose that ax < bx. If x ≤ ax < bx, then |x - ax| < |x - bx| what is absurd. 

Similarly, bx ≤ x can not ocurr. Then ax < x < bx and |x - ax| = |x - bx| , what is 

also absurd. With this contradiction we prove that ax is unique and therefore k 

is well defined. If x is in A, then x is the nearest point to x. Therefore, k(x) = x. 

We will show that k is a continuous function. Let be x in D and  > 0. We will 

discuss fisrt the case where x  A. Lets suppose, without lose of generality, 

that x < ax. Let be  = ax - x, we will note z = x - . Then z < x < ax and |ax - x| 

= |x - z|. Clearly, is not possible that z, x, ax in D. As x, ax in D, we deduce that 

z  D. Being D a closed set, it must exist r > 0   that (z - r, z + r)  D = {Ø} 

and r < . We are going to prove now that k(y) = ax for all y in (x – r/2, x + r/2) 

 D. To do this, we have only to see that |y – ax| ≤ |y - a| for all a in A. Let be 

then a in A. By definition of , ax we have that  = |x – ax| ≤ |x - a|. Thus, (a ≤ x 

- ) ∨  (x +  ≤ a) id est, (a ≤ z) ∨  (ax ≤ a). Case 1: a ≤ z. As (z - r, z + r)   D = 

{Ø} and a in D, then a ≤ z - r or z + r ≤ a. The second inequality is clearly 

false, because a ≤ z. Therefore, a ≤ z - r, and  a ≤ z – r < z < x – r/2 < y. So we 

have that |y - a| = y – a > x – r/2 - (z - r) = (x - z) + r/2 =  + r/2 = ax – x + r/2 = 

ax - (x – r/2) > ax – y = |ax - y|. Therefore, |y – ax| ≤ |y - a|. Case 2: ax ≤ a. In this 

case |y - ax| = ax – y ≤ a – y = |y - a|. Consequently, k(y) = ax for all y in (x – r/2, 

x + r/2)  D. Taking  = r/2, we have that, for all y in (x – r/2, x + r/2)  D, 

|k(y) - k(x)| = |ax – ax| = 0 < . Thus, k is continuous in D-A. Lets discuss now 

the case where x in A. Then we take  = /2. If y is in B(x,)  D, then by 

definition and as x is in A, we have that |y - k(y)| = |y – ay| ≤ |x - y| + |y - k(y)| < 

. Therefore, k is continuous in A. 
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Theorem 2. Let C be the Cantor set. Then there exists a continuous and 

surjective function  :C(D,T) 

Proof. By Theorem 1, there exists a continous injective function  h:(D,T) 

[0,1]x[0,1]x… Moreover, we know by [3] that there exists a continous and 

surjective function f:C[0,1]x[0,1]x… Let be B = f
-1

(h(D,T)). B is clearly a 

nonempty closed set of C. By Lemma 1, there exists a continuous function 

k:CB such that k(b) = b for all b in B. Note that h is an homeomorphism over 

its image. We define now the function  = h
-1

(f(k)):C(D,T).  is a continuous 

function, as being a composition of continuous functions. Given p in C, k(p) is 

in B = f
-1

(h(X)). So f(k(p)) is in h(X). Since here, it has sense apply h
-1

(f(k(p))). 

This tells us that  is well defined. To show that  is suprajective, lets take an 

arbitrary element x in X. Let be q = h(x) in h(X). As f is suprajective, there 

exists c in C such that f(c) = q = h(x). Then c is in f
-1

(h(X)) = B, and 

consequently k(c) = c. Therefore,  (c) = h
-1

(f(k(c))) = h
-1

(f(c)) = h
-1

(q) = x. 

Thus,  is suprajective. 

Theorem 3. There exists an homeomorphism f:(D,T)(G,T)  , where 

(G,T) is a graph with the discrete topology. 

Proof. By Proposition 1, we can define rightly the function f identifing the 

elements x,y   of (D,T) with the nodes of G and the number d(x,y) as the 

weight of the edge that connects them. Clearly, f is an homeomorphism. 

Under the latter result, we can assume a reasonable time to implement 

search, filtering, and other type of algorithms into the Morphosyntactic Space. 

We can also simplify the development of computational tools associated with 

semantic spaces, following the example of [4] and [5]. 

This construction allows us to deduce the computability of the algorithm 

associated to find the distance between two given words in Morphosyntactic 

Space, because the algorithm is represented as a linear transformation on a 

finite dimensional space in which the elements have a locally unique binary 

representation. Therefore, the linear application itself can be represented in a 

finite binary sequence, being this trivially computable. 

Moreover, the method described above allows us to generalize the 

demonstration of computability to all data sets that can be expressed as a 

continuous image of the Cantor set surjective, because both the array elements 

as described processes can be identified including applications linear, and these 

with finite dimension binary sequences. 
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