
ATINER CONFERENCE PAPER SERIES No: COM2012-0261

1

Athens Institute for Education and Research

ATINER

ATINER's Conference Paper Series

COM2012-0261

Raj Jog Singh

IBM India Private Limited

India

Anup Kumar Sen

Professor

Indian Institute of Management Calcutta

India

Uttam Kumar Sarkar

Professor

Indian Institute of Management Calcutta

A Partitioned Stochastic Search

Algorithm: Application to Multi-

unit Winner Determination

Problem in Combinatorial Auction

ATINER CONFERENCE PAPER SERIES No: COM2012-0261

2

India

Athens Institute for Education and Research

8 Valaoritou Street, Kolonaki, 10671 Athens, Greece

Tel: + 30 210 3634210 Fax: + 30 210 3634209

Email: info@atiner.gr URL: www.atiner.gr

URL Conference Papers Series: www.atiner.gr/papers.htm

Printed in Athens, Greece by the Athens Institute for Education and Research.

All rights reserved. Reproduction is allowed for non-commercial purposes if the

source is fully acknowledged.

ISSN 2241-2891

19/09/2012

ATINER CONFERENCE PAPER SERIES No: COM2012-0261

3

An Introduction to

ATINER's Conference Paper Series

ATINER started to publish this conference papers series in 2012. It includes only the

papers submitted for publication after they were presented at one of the conferences

organized by our Institute every year. The papers published in the series have not

been refereed and are published as they were submitted by the author. The series

serves two purposes. First, we want to disseminate the information as fast as possible.

Second, by doing so, the authors can receive comments useful to revise their papers

before they are considered for publication in one of ATINER's books, following our

standard procedures of a blind review.

Dr. Gregory T. Papanikos

President
Athens Institute for Education and Research

ATINER CONFERENCE PAPER SERIES No: COM2012-0261

4

This paper should be cited as follows:

Singh, R.J., Sen, A.K. and Sarkar, U.K. (2012) "A Partitioned Stochastic

Search Algorithm: Application to Multi-unit Winner Determination

Problem in Combinatorial Auction" Athens: ATINER'S Conference Paper

Series, No: COM2012-0261.

ATINER CONFERENCE PAPER SERIES No: COM2012-0261

5

A Private Hospital Example for the Analysis of

Unit Costs in Hospital Enterprises

Raj Jog Singh

IBM India Private Limited

India

Anup Kumar Sen

Professor

Indian Institute of Management Calcutta

India

Uttam Kumar Sarkar

Professor

Indian Institute of Management Calcutta

India

Abstract

With the penetration of the Internet and the ease of carrying out an auction, the

electronic auction market has already become huge and is expanding rapidly.

The paper presents a novel stochastic partition-based search technique to solve

the winner determination problem associated with the multi-unit combinatorial

auction. The algorithm uses an innovative divide and conquer formulation in

the search framework so that solutions to sub-problems remain additive. The

proposed technique can be used to find both optimal as well as near optimal

solutions. Experimental results with the benchmark problem suites using

uniform and decay distributions are presented. The results exhibit saving in

computation can be as high as 99% while compromising less than 1% of the

revenue.

Keywords: Combinatorial auction, winner determination problem, electronic

commerce, branch and bound, NP-hard, local search, heuristic search

Contact Information of Corresponding author:

ATINER CONFERENCE PAPER SERIES No: COM2012-0261

6

Introduction

Auction theory and methodologies have drawn a strong attention of researchers

since the seminal work of Vickrey [Vickrey 1961] and several auction models

exist (see [Wilson 1969], [Milgrom and Weber 1982], [Clarke 1971], [Groves

1973]). With the penetration of the Internet and the ease of carrying out an

auction by both the bidders and the auctioneer, the electronic auction market is

already huge and is expanding rapidly. With faster access to necessary

information, the bidders and auctioneers can now apply sophisticated

optimization procedures which would be infeasible in the domain of manually

conducted auctions.

In Combinatorial Auctions, multiple goods (items) are available for

auction simultaneously, and bidders bid for combinations of goods called

bundles. Often the value of a good to a potential buyer may depend upon what

other goods he wins in the auction. That is, there exists complimentarity

between two goods, say gB1B and gB2B, to bidder j if UBj B{ gB1B} + UBj B{

gB2B} < UBj B{ gB1B, gB2B} where UBjB {SBjB} is the utility to bidder j of

acquiring the set of goods SBjB. Traditional auction mechanisms would require

a need for look-ahead on part of the bidder in such scenarios as well as

provisions to deal with inefficiencies arising from uncertainty. In such a

scenario, bidders would prefer to bid for combination of items referred to as

bundles of goods. Such an auction mechanism has many real life applications

such as allocation of railroad, auction of adjacent pieces of real estate, auction

of airport landing slots, and distributed job shop scheduling.

The winner determination problem (WDP) of combinatorial auction to

find the winning bids has thus become immensely important. The auctioneer

attempts to maximize his auction revenue under constraints imposed by the

availability of items and known information about the bids. The winner

determination problem is hard computationally. In a conventional single unit

WDP, each item for auction has only unit and consequently, at most one bidder

may eventually win this item. In contrast, multi-unit combinatorial auctions

involve circumstances where sellers have to sell a number of identical units of

items and buyers may also be interested to buy more than one unit of items

through a single bid. Selling all the items of a store in case the store winds up,

buying components of personal computers for assembling the PCs in a

wholesale market where prices are discovered through auctions are typical

examples of such auctions.

The present research deals with multi-unit combinatorial auctions where

the auctioneer has a set of distinguishable items with a specific number of

identical units for each of these items. So, the bidder is concerned only with

whether he gets the requisite number of units of the items that interest him and

not about which specific units of an item he gets. The bidders place their bids

on the combinations they desire stating exactly the number of units of the items

they want and the price they are willing to pay for it. Unlike the single unit

case, here we can have bids of identical composition placed in the auction with

ATINER CONFERENCE PAPER SERIES No: COM2012-0261

7

a possibility of more than one of them getting allocated or winning as long as

they together are not asking for more units than what the auctioneer has.

In this paper we propose a stochastic partition based divide and

conquer strategy in a depth-first branch and bound search framework, called

multi-partitioning search, which significantly reduces the computational

overhead in solving optimal and near-optimal solutions to large problem

instances of multi-unit winner determination problem. Extensive experiments

with problem suites from uniform and decay distributions exhibit savings in

computation time as high as 99% while compromising less than 1% of the

revenue. The algorithm reduced the CPU time running into hours and days for

very large problem instances into a few seconds with negligibly small loss in

revenue.

The rest of the paper is organized as follows. Literature survey is

presented in Section 2. The multi-unit winner determination problem addressed

in this paper is defined in Section 3. Section 4 presents LSMU(β), a

parameterized algorithm, that incorporates multi-partitioning search concept.

The functioning of the algorithm is explained with an example. The

experimental setup for evaluating the performance of the algorithm is

elaborated in Section 5 and the findings are given in Section 6. Section 7

draws concluding remarks.

Literature Survey

The single-unit version of the problem has been well studied and

solutions were attempted in various ways ([Cramton et al. 2006],

[Adomavicius and Gupta 2005]). Some imposed severe restrictions on bids so

that the problem can be solved faster ([Rothkopf et al. 1998], [Muller 2006]).

Heuristic search algorithms like CASS [Fujishima et al. 1999] and CABOB

([Sandholm et al. 2001], [Sandholm 2002], [Sandholm and Suri 2003],

[Sandholm 2006]) have high overhead of computation for solving large

problem instances. Stochastic search method that aims at finding near-optimal

solutions has also been tried ([Hoos and Boutilier 2000], [Hoos and Stutzle

2004], [Singh and Sen 2005]). Iterative versions of single-unit combinatorial

auctions have been studied in ([Ausubel and Milgrom 2002], [Parkes 1999,

2006]).

The multi-unit winner determination problem (MWDP) is NP-hard

[Garey and Johnson 1979] - even its special case variant where each item can

have only one unit is known to be NP-hard ([Rothkopf et al. 1998], [Lehman

and Sandholm 2006]). The decision version remains NP-complete even if we

restrict instances where every bid has a value equal to 1, and every bidder bids

only on subsets of size at most 3 [Rothkopf et al. 1998]. Consequently, large

instances of MWDP, are known to be intractable due to combinatorial

explosion and it has been experienced in the findings of CAMUS [Kevin et al.

2000b].

ATINER CONFERENCE PAPER SERIES No: COM2012-0261

8

In contrast to the methods known for solving single-unit WDP,

available literature to solve multi-unit MWDP are not many in number. Kevin

et al. [2000b] suggested CAMUS, a generalization of CASS, for solving

optimally the MWDP associated with the multi-unit scenario. The algorithm

has the computational overhead of branch-and-bound search, and in its given

form, might fail to output optimal solutions [Ghebreamiak et al. 2002]. A

branch and bound formulation [Gonen and Lehman 2000] and a LP

formulation [Gonen and Lehman 2002] were proposed but combinatorial

explosion reduces its utility for solving large instances. Xia and Whinston

[2005] have suggested a mechanism for transforming the combinatorial double

auction to an equivalent single-sided auction. A decision support approach has

been proposed in [Koksalan et al. 2009].

Multi-unit Winner Determination Problem (MWDP)

In the multi unit combinatorial auction, the auctioneer has a set of

distinguishable items with a specific quantity of units for each of these items.

The bidders place their bids on the combinations they desire stating exactly the

number of units of the items they want and the price they are willing to pay for

it.

 A set of items/goods to auction M = {1, 2, 3,…, m}.

 An integer q(k) denoting the number of units of good k available on

auction.

 A set of bids B = { BB
1B

, BB
2B

, BB
3B

, … , BB
nB

} where a bid BB
j B

= (SB
j

B
, pB

j B
) where pB

jB
 is the price offer of bid BB

jB
 and SB

j B
=({ qB

j B
(1), qB

j

B
(2), qB

j B
(3), …, qB

j B
(m) } where qB

j B
(k) = number of units of good k in

bid BB
j B

. If BB
j B

requires no units of a particular good k then qB
j B

(k) = 0.

Each bid BB
jB

 is associated with a unique bidder i. A bidder may make

several bids and eventually win zero or more bundle of items.

The multi-unit winner determination problem (MWDP) is to label each bid

BBjB as either winning (jx = 1) or losing (jx = 0) so as to maximize the

auctioneer’s revenue under the constraint that for any item k, the sum of units

of k over all the winning bids does not exceed q(k). Mathematically,

Max


n

j

jj xp
1

thatsuch





n

j

jjj xandmkkallforkqxkq
1

}1,0{...,,3,2,1,),())((

Unlike the single unit case, here we can have bids of identical composition

placed in the auction with a possibility of more than one of them getting

ATINER CONFERENCE PAPER SERIES No: COM2012-0261

9

allocated or winning as long as they together are not asking for more units than

what the auctioneer has.

We now present LSMU(β), our multi partitioned local search approach.

Multi-partitioned Local Search Algorithm LSMU(β) for MWDP

The LSMU(β) is a parameterized algorithm that uses multi-partitioned search

concept. Here β denotes the number of partitions of a feasible solution. The

details of the algorithm are described below.

Multi-partitioned local search

 In this proposed approach a single MWDP instance is split randomly into

multiple additive smaller MWDP instances. Each of these smaller instances is

optimally solved faster using depth-first branch and bound (DFBB) method.

An additive decomposition ensures the resulting revenue would be the sum of

the revenues obtained by solving the subproblems. The task of finding additive

sub-problems becomes nontrivial because the splitting has to be such that the

solutions obtained after solving each sub-problem can be directly combined

and yet the availability constraint is not violated that is, no more than available

number of units of each item gets sold by the auctioneer. The challenge of the

approach therefore, lies in an effective mechanism to deal with the additive

decomposition problem. Repeated trials of decomposition and the solutions of

smaller sub-problems are made, and the overall best solution is chosen.

The parameter β is a positive integer that controls the granularity of partitions.

It makes use of an initial feasible solution to the given MWDP, LSMU (β)

partitions the problem into β compartments stochastically and solves each of

these compartments by search techniques. When β = 1, LSMU(1) outputs

optimal solutions. As β increases from 1 to higher values the cost of

computation decreases while the quality of solution deteriorates. What makes

LSMU(β) exciting and worth exploring is the nature of these reductions in

computational time and solution quality that suggest suitable values of β for

which very near optimal (say, one within a deviation of only 1% or less from

the optimal revenue) solutions can be obtained with significant reduction (say,

95% or more) of computational time of obtaining the optimal solution.

Algorithm LSMU(β)

 This section presents the algorithm for solving MWDP. We present a sketch

of the algorithm below.

Algorithm LSMU(β)

Begin

Pre-process bids, reorder goods and allocate bids to bins to improve search;

Find the initial feasible solution containing η bids; this is the present solution;

Repeat

 Randomly divide the η bids in the present solution into β baskets;

ATINER CONFERENCE PAPER SERIES No: COM2012-0261

10

 For each of the β baskets

 Remove bids in the basket from the present solution;

 Form a subproblem based on the bids removed;

 Optimally solve the sub-problem;

Use the solution to find a new feasible (neighbourhood) solution by adding the

bid values of the other (β – 1) baskets;

If improvement then update the present solution;

 End For

Until T consecutive non-improving iterations;

End;

We now explain some of the steps below.

 During preprocessing, in LSMU(β) the singleton bids are processed using

dynamic programming as is suggested in [Kevin, 2000b]. A singleton bid

is a bundle consisting of a single item though there can be multiple units of

it. After preprocessing, the singleton bids are removed from the problem

and replaced by singleton vectors. A singleton vector for any item is the

best possible collection of singleton bids for a given number of units of

that item to be allocated. This helps to allocate a chunk of units of an item

together.

 The goods are ordered following a heuristic to ensure there is more

branching at the initial stages and less at the later stages of search. For

each good k, orderk is computed as 1/(numbidsk x avgunitk) , where

numbidsk is the number of bids that requests good k and avgunitk is the

average number of goods requested by these bids. The good with the

lowest order is designated as the lowest ordered good.

 Bins of bids are formed to speed up the process of selecting feasible bids.

[Fujishima, 1999]. Given any ordering of goods, there is one bin for each

good and each bid belongs to the bin corresponding to its lowest numbered

good. The bids inside a bin are ordered in non-increasing order of bid

price per unit item.

 The initial feasible solution is found by including feasible bids from the set

of bids arranged in non-increasing order of bid price per unit item until no

further bid can be allocated.

 Randomly divide the bids in the present solution into β baskets each

preferably containing [η/β] bids.

 Every basket in the present solution creates a sub-problem. In forming a

sub-problem corresponding to a basket, the bids in the basket are removed

from the present solution. The associated units of items pertaining to these

bids thus become free or unallocated and are ready to be auctioned by the

set of bids that does not belong to all the other baskets. This form a

separate winner determination sub-problem of a smaller size.

 The smaller sub-problem is optimally solved using DFBB search

algorithm. At any node of the search tree, a feasible bid corresponding to

lowest numbered unallocated item is chosen from the corresponding bin

and added to the path. An upper bound is used in LSMU(β) to prune paths

ATINER CONFERENCE PAPER SERIES No: COM2012-0261

11

based on revenue estimates. At any node during search, for every

unallocated item, the highest ordered (in non-increasing order of bid price

per unit item) feasible bid containing this item is selected and its

contribution is added to obtain an upper bound.

 The allocation generated by solving the sub-problem is added to the bids

from the remaining baskets giving a complete feasible solution and the

revenue is computed. This gives a neighbourhood solution. Since the

baskets may have bids containing one or more common items, the order in

which search is conducted on the baskets will influence the resulting

revenue for that iteration. That’s the reason we evaluate the quality of the

solution after considering every basket.

An Example

The example illustrates the performance of LSMU(β). For simplicity, we

assume β=2. Consider an instance of three items = {1, 2, 3} to be auctioned

with three available units of each item. The set of the bids in the format

{(item, units): price} obtained after renumbering, preprocessing and their

allocation into bins is given in Table 3.1. The first row shows the given set of

bids before preprocessing. During preprocessing, the singleton vectors and

corresponding bids for every item is created. For item 1, the singleton vectors

are created as {(1,1):$20}, {(1,2):$30}, {(1,3):$45} and {(1,4):$55}, and the

singleton bids are removed.

The initial feasible solution is the set of bids = {(1,1), (2,2):$70},

{(1,1):$20}P
○P

, {(2,1),(3,2):$60}, {(3,1):$30} with revenue = $180. After

bifurcating (since β=2) the bids in the initial solution into baskets their contents

become as follows:

Table 1: Bids and Bins of the Example instance

It
em

s

Set of bids = {(1,1):$20}, {(1,1):$10}, {(1,2):$25}, {(1,1),

(2,2):$70}, {(2,2):$60}, {(2,2), (3,1):$75}, {(2,1),(3,2):$60},

{(3,1):$30}

After treating singletons with dynamic programming:

{(1,1):$20}P
○P

, {(1,2):$30}P
○P

, {(1,3):$45}P
○P

, {(1,4):$55}P
○P

,

{(1,1), (2,2):$70}, {(2,2):$60}, {(2,2), (3,1):$75},

{(2,1),(3,2):$60}, {(3,1):$30}
P○P

 indicates singleton vectors.

1 {(1,1), (2,2):$70}, {(1,1):$20}P
○P

, {(1,2):$30}P
○P

, {(1,3):$45}P
○P

2 {(2,2):$60}, {(2,2), (3,1):$75}, {(2,1),(3,2):$60}

3 {(3,1):$30}

Basket 1 : {(1,1), (2,2):$70}, {(1,1):$20}

Basket 2 : {(2,1),(3,2):$60}, {(3,1):$30}

Bids in basket 1 are removed keeping basket 2 intact. The pairs of (items,

units) freed are (1, 2) and (2, 2). However including the one unit of item 1

which remain unallocated after the initial complete allocation, the items and

units subjected to search are (1,3) and (2,2). The corresponding participative

bids are {(1,1):$20}, {(1,2):$30}, {(1,3):$45}, {(1,4):$55}, {(1,1), (2,2):$70}.

ATINER CONFERENCE PAPER SERIES No: COM2012-0261

12

DFBB search on these lead to the optimum solution revenue of $105, the bids

being {(1,3):$45}, {(2,2):$60}. This solution added to basket 2 gives the

complete neighborhood solution as {(1,3):$45}, {(2,2):$60}, {(2,1),(3,2):$60},

{(3,1):$30} with revenue 195, an improvement over the present solution and

hence this becomes the present solution. Now the bids in basket 2 are removed.

The items and units now subjected to search are (2,1) and (3,3). The

corresponding participative bids are {(1,1):$20}, {(1,2):$30}, {(1,4):$55},

{(1,1), (2,2):$70}, {(2,2),(3,1):$75}, {(2,1),(3,2):$60}, {(3,1):$30}. The only

feasible solution for search in this basket is the presently existing set of bids in

it so that there is no improvement. Hence after iteration 1, there was an

improvement and the solution becomes {(1,3):$45}, {(2,2):$60},

{(2,1),(3,2):$60}, {(3,1):$30} with revenue 195. This process is continued until

a specified number of non improving iterations.

Role of β in LSMU(β)

As β increases, the sub-problem that needs to be solved for finding a

neighborhood solution reduces in size and the algorithm runs faster. The

disadvantage is that since the multiple sub-problems need to be additive, the

DFBB gets performed on the sub-problem while adhering to the constraint that

the units in a complete allocation do not exceed that available for auction.

More the number of partitions, fewer would be the units free for search, higher

will be the probability of having non-participative bids and more would be the

compromising of solution quality. The strength of LSMU(β) lies in finding a

suitable value of β that exhibits its superior performance.

Experimental Setup

A large number of experiments were conducted to explore the efficacy of

LSMU(β) in terms of computational time and quality of solution and also to

find an appropriate choice of β. Since available literature [Kevin, 2000b] deals

with problem instances mostly drawn from uniform and decay distributions, we

have experimented with both distributions for better insight.

a) Uniform Distribution: The test suite was generated using the uniform

distribution. Given the values of number of good and number of bids, for each

problem instance, number of units available for every item, items present in

every bid and their number of units, and cost of every bid were generated using

uniform distribution:

b) Decay distribution: This distribution is similar to the one given by Kevin et

al [Kevin, 2000b] which generates bids with fewer items irrespective of the

total number of items and that they are computationally harder to solve

compared to drawing goods from a uniform distribution. The number of units

for each good in a bid is also fewer. The uniform distribution is used for

generating the number of units available for every item, the identity of items in

a bid and the cost of every bid. The decay distribution with parameter λ = 5 is

ATINER CONFERENCE PAPER SERIES No: COM2012-0261

13

used for generating the number of items in a bid and the number of units for the

items in the bid.

Size of Problem Instances: To evaluate the empirical performance of LSMU

(β), the number of partitions β was varied from 1 to 6, and their effect on

percentage cpu time saved and percentage revenue obtained vis-à-vis LSMU(1)

were observed; the solution obtained by LSMU(1) using DFBB is bound to be

optimal. The problem size is denoted using the nomenclature u(items,bids) and

d(items,bids) for the uniform and decay distributions respectively and given in

Table 2. The maximum price (cost) for any bid is set at 2000. The parameter T

for the number of successive iterations without any improvement was kept at

100.

We also study the effect of partitioning on a few very large problem sizes. The

large problem instances were isolated from Table 5.1 based on the time

LSMU(1) takes to solve them. We select 10 instances that take largest CPU

time. The time is definitively more than 5 hours and preferably much larger.

These instances have been identified in table 6.1 reported in Section 6.2.

Table 2. Experimental test data specifications

Problem
Number

 of goods

Number

of Bids
Maxunit

Number

of test runs

u(20,500) 20 500 8 50

u(20,600) 20 600 8 50

u(20,700) 20 700 8 50

u(20,800) 20 800 8 50

u(20,900) 20 900 8 25

u(40,500) 40 500 8 50

u(40,600) 40 600 8 50

u(40,700) 40 700 8 25

u(60,400) 60 400 8 25

d(10,100) 10 100 5 20

d(10,125) 10 125 5 20

d(10,150) 10 150 5 10

d(15,100) 15 100 5 20

d(15,125) 15 125 5 20

d(20,100) 20 100 3 20

d(20,125) 20 125 3 20

d(25,100) 25 100 3 20

d(25,125) 25 125 3 20

Maxunit = Maximum number of Units available for any good with the auctioneer.

Empirical Results

In this section we report our experimental findings under different subsections.

ATINER CONFERENCE PAPER SERIES No: COM2012-0261

14

Effect on Revenue proximity to optimal

The proximity of revenue obtained to the optimal decreases in general as

partitioning increases. However, in absolute terms the drop in revenue is not

much. The revenue is always more than 98% irrespective of the partition sizes

up to 6. For 4 partitions, the revenue obtained is always closer to 99.5 %.

Effect on Revenue

99.00%

99.20%

99.40%

99.60%

99.80%

100.00%

100.20%

0 1 2 3 4 5 6 7

Partitions

R
e
v
e
n

u
e
 (

%
)

u(20,500) u(20,600) u(20,700)

u(20,800) u(20,900)

Effect on Revenue

98.80%

99.00%

99.20%

99.40%

99.60%

99.80%

100.00%

100.20%

0 1 2 3 4 5 6 7

Partitions
R

e
v
e
n

u
e
 (

%
)

u(40,500) u(40,600)

u(40,700) u(60,400)

 Figure 1. Effect on Revenue Figure 2. Effect on Revenue

Effect on Revenue

98.0%

98.5%

99.0%

99.5%

100.0%

100.5%

0 1 2 3 4 5 6 7

Partitions

R
e
v
e
n

u
e
 (

%
)

d(10,100) d(10,125) d(10,150)
d(15,100) d(15,125)

Effect on Revenue

96.0%

96.5%

97.0%

97.5%

98.0%

98.5%

99.0%

99.5%

100.0%

100.5%

0 1 2 3 4 5 6 7

Partitions

R
e
v
e
n

u
e
 (

%
)

d(20,100) d(20,125)
d(25,100) d(25,125)

 Figure 3. Effect on Revenue Figure 4. Effect on Revenue

ATINER CONFERENCE PAPER SERIES No: COM2012-0261

15

Effect on Time

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 1 2 3 4 5 6 7
Partitions

R
e
d

u
c
ti

o
n

 i
n

 t
im

e
 (

%
)

u(20,500) u(20,600)

u(20,700) u(20,800)

u(20,900) u(40,500)

u(40,600) u(40,700)

u(60,400)

Figure 6. Effect on CPU time

Effect on saving in CPU time

 The average percentage savings in time with partitions for the uniform

distribution is shown in Figure 5. The average percentage savings in time

shows a non-decreasing trend originating at partition 1 with 0% savings in time

going up to maximum of 99.74%. The average percentage savings in time is

always above 87% at

and after partition 3 for all problem sizes and more than 90% for most of them.

The interesting feature about these plots is that the percent savings for

relatively larger problems namely u(40,500), u(40,600), u(40,700) and

u(60,400) outflank the relatively smaller problems of 20 item size. Partition

size of 3 and 4 appear very promising.

For the decay distribution, depicted in Figure 6 and Figure 7, the trends are

similar to the uniform distribution. For most of the problem sets, the average

Figure 6: Effect on CPU time

Effect on Time

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 1 2 3 4 5 6 7
Partitions

R
e
d

u
c
ti

o
n

 i
n

 t
im

e
 (

%
)

d(10,100)

d(10,125)

d(10,150)

d(15,100)

d(15,125)

Effect on Time

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7
Partitions

R
e
d

u
c
ti

o
n

 i
n

 t
im

e
 (

%
)

d(20,100)

d(20,125)

d(25,100)

d(25,125)

Figure 7: Effect on CPU time

ATINER CONFERENCE PAPER SERIES No: COM2012-0261

16

percentage savings in time is more than 90% from partition 3 onwards.

Looking at the results of revenue efficacy and percentage savings in time, it

appears that a partition of 3 to 4 is justified for solving these problem sizes.

Fig 8: Improvements over initial solution

Improvements over Initial Solution

0.50

1.50

2.50

3.50

4.50

5.50

6.50

7.50

8.50

9.50

10.50

0 1 2 3 4 5 6 7

Partitions

N
o

.
o

f
Im

p
ro

v
e

m
e

n
ts

u(20,500) u(20,600) u(20,700)
u(20,800) u(20,900) u(40,500)
u(40,600) u(40,700) u(60,400)

Improvements over Initial Solution

The LSMU (β) algorithm when β >1 continues to attempt improvisation of the

revenue till a specified number of non improving iterations have occurred. For

the present tests we fixed these iterations at 100. As observed revenue efficacy

of the results look very impressive. With increase in partitioning, the total

number of improvements also increases. This is expected as with increase in

partitions, each partition is of a smaller size and so

the scope for perturbation of bids and consequently on revenue is less. For the

uniform distribution (Figure 8) the effect is varied across different problem

sizes.

Also the rate of increase appears to be higher for smaller problems than the

larger ones.

Fig 9: Improvements over initial solution

Improvements over Initial Solution

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

0 1 2 3 4 5 6 7

Partitions

N
o

.
o

f
Im

p
ro

v
e

m
e

n
ts

d(10,100) d(10,125) d(10,150)
d(15,100) d(15,125) d(20,100)
d(20,125) d(25,100) d(25,125)

.

ATINER CONFERENCE PAPER SERIES No: COM2012-0261

17

For the decay distribution (Figure 9) the trend is the same that of increase in

improvements with partitions though there is a marked variation with problem

sizes. However unlike the uniform distribution for a number of problem sizes

specially the relatively smaller ones like d(10,100), d(10,125) and d(10,150),

for a number of partitions, the average improvements is less than 1. The

corresponding revenue quality results are very close to 100%. The

improvements with problems of the decay distribution are relatively lesser than

with uniform distribution. Unlike the uniform distribution, the higher

improvements are observed with the relatively larger problem sizes of

d(20,100), d(25,100) and d(25,125). Also for these problems, on an average

improvement at partition 1 is 1 unlike the smaller ones where it is around 0.5.

The trends show that the main rise in average improvements happens from

partition 1 to partition 2 after which the slope is relatively flatter.

Large data instances

Table 3 identifies the large data instances analyzed for our results. The CPU

time LSMU(1) takes to solve these instances varies from 19,400 – 2,00,400

secs. Results for the large instances show that even for instances which take a

huge amount of CPU time to solve, LSMU(β) solves them extremely fast by

increasing the partitions without any significant deterioration in percentage

revenue obtained. The savings in time increases drastically with partitioning.

The effect can be gauged from the very first and the most difficult of the

problem i.e 15 from the u(40,700) problem set. The optimal for this took

200414.8 secs to solve. However with subsequent partitions, the timings

reduced to 804 secs at partition 2, 167.5 secs at partition 3 to finally just 11.5

secs at partition 6. This contrasted with the percentage revenue obtained, shows

that for the partitions 2, 3 and 6, the revenue obtained is optimal and at

partitions 5 and 6, it is as high as 99.3 %. The results for the remaining large

problems are similar and tabulated in Table 6.2. In six out of these 10

instances, the revenue was optimal upto partition 4 and in three instances it was

optimal in all the partitions. These results suggest that it might be advantageous

to use multi partitions to solve very large problems which otherwise might take

some hours of CPU time without bothering much about loss of revenue. In the

process it also throws up certain observations and questions on the possible

choice of β for solving large instances.

ATINER CONFERENCE PAPER SERIES No: COM2012-0261

18

Table 3. Large Instances from Table 6.1

Problem Set Problem Instance CPU time by LSMU(1) in secs

u(40,700) 15 200414.8

u(20,900) 6 54734.74

u(40,600) 48 43614.13

u(40,700) 2 36022.24

u(40,600) 12 33049.6

u(40,600) 34 32415.05

u(40,700) 9 29136.29

u(40,600) 20 22028.71

u(40,600) 3 21076.74

u(40,700) 17 19482.66

Table 4 Empirical Results for Large Instances

Problem Set,

Instance,

Optimal time in secs

 Partitions

 1 2 3 4 5 6

u(40,700), 15,

% of

optimal 100.0 100.0 100.0 100.0 99.3 99.3

200414.8 secs % saving

in time
0.00 99.60 99.92 99.99 99.99 99.99

u(20,900),6,

% of

optimal
100.0 100.0 100.0 100.0 98.26 98.58

54734.74 secs % saving
in time 0.00 95.51 99.81 99.94 99.93 99.99

u(40,600),48,

% of

optimal 100.0 100.0 100.0 100.0 100.0 100.0

43614.13 secs % saving

in time 0.00 98.82 99.75 99.96 99.95 99.98

u(40,700),2,

% of

optimal 100.0 100.0 100.0 100.0 100.0 100.0

36022.24 secs % saving

in time 0.00 95.08 99.61 99.81 99.93 99.94

u(40,600),12,

% of

optimal 100.0 100.0 97.09 97.09 97.09 97.09

33049.6 secs % saving

in time 0.00 98.26 99.90 99.96 99.98 99.98

u(40,600),34,

% of

optimal
100.0 100.0 99.27 99.35 99.27 100.0

32415.05 secs % saving

in time
0.00 97.53 99.93 99.94 99.98 99.98

u(40,700),9,

% of
optimal 100.0 100.0 100.0 100.0 95.75 100.0

ATINER CONFERENCE PAPER SERIES No: COM2012-0261

19

29136.29 secs % saving

in time 0.00 97.86 99.73 99.88 99.95 99.91

u(40,600),20,

% of

optimal 100.0 100.0 94.89 94.89 100.0 99.81

22028.71 secs % saving

in time
0.00 98.72 99.90 99.96 99.96 99.97

u(40,600),3,

% of

optimal
100.0 100.0 99.95 99.95 99.95 99.95

21076.74 secs % saving
in time 0.00 97.47 99.80 99.91 99.95 99.95

u(40,700),17,

% of
optimal 100.0 100.0 100.0 100.0 100.0 100.0

19482.66 secs % saving

in time 0.00 98.25 99.81 99.93 99.94 99.97

Choice of β in LSMU(β)

 The two useful observations from our experiments are:

(a) As the partitions are increased, the computation time reduces drastically but

quality of solution does not degrade at that rate – the degradation rate is far

slower, a seemingly counter-intuitive result. This allows room for LSMU(β) in

finding acceptable solution within affordable time.

(b) In general, it appears difficult to suggest a possible choice of β. The longer

LSMU(1) takes to solve an instance, higher is the expected value of β for

solving the instance within reasonable CPU time. One possible way to choose

the β is to start from a large value of β determined by the number of bids in the

initial solution, and gradually decrease its value to get a solution with near

optimal solution quality.

(c) Interestingly, the experimental results indicate 3 or 4 partition would be

ideal even for instances taking longer time with LSMU(1) - significant

computational savings can be had at little compromise on the quality of

solution. For uniform distribution, the average proximity of results to optimal

is more than 99.5% and the percentage savings in time varies from 87% to 99%

for partition 3 and 92% to 99% for partition 4. For the decay distribution, the

average proximity of results to optimal is more than 96.5% and the average

percentage saving in CPU time varied from 83% to 99.7% for partition 3 and

87% to as high as 99.8% for partition 4. This finding suggests that based on the

number of bids in the initial solution, one can possibly start with the value of β

set to either 3 or 4. If running time goes beyond a certain acceptable limit, one

can start from a higher value and subsequently reduce β as described in (b).

Conclusion

Multi-unit winner determination problem in combinatorial auction is a

notoriously hard optimization problem with direct practical application to

electronic commerce.. In this paper we have proposed a parameterized

ATINER CONFERENCE PAPER SERIES No: COM2012-0261

20

stochastic local search algorithm LSMU(β) to solve the problem. The number

of partitions, β, can be used to compromise between solution quality and time

of computation. The most useful and interesting finding is that the choice of β

is not open-ended and the experiments indicate a value equal to either 3 or 4.

At this choice of β, in comparison to finding optimal solutions, the saving in

computation of LSMU(β) is significant whereas the degradation of the quality

of solution is insignificant. These findings make LSMU(β) a promising

algorithm for solving large MWDP instances which would be difficult to solve

otherwise.

This research throws up a few interesting questions which can be a scope of

further research.

 What is the effect of initial solution on the final solution in such local

search algorithms?

 The algorithm LSMU(β) determine the neighborhood for search in a

random fashion by removal of a predetermined number of bids. Is there

a much more intelligent way of selection, which would improve upon

the results?

 Can the learning acquired over multiple partitioning be used to get a

better quality solution or a very near to optimal solution? The bids

which are common in the solution for different partitions appear to have

a higher chance of being in the optimal solution. These bids may be

kept fixed and the remaining bids may be searched optimally using

DFBB. With this strategy there seems to be a possibility of striking

optimal frequently and that too very fast.

References

Adomavicius G. and A. Gupta. 2005.. Toward Comprehensive Real-Time Bidder

Support in Iterative Combinatorial Auctions. Information Systems Research,

16(2): 169 - 185.
Ausubel. L. M. and P. R. Milgrom. 2002. Ascending auctions with package bidding.

Frontiers of Theoretical Economics.1(1):1-42.

Clarke, Edward. H. 1971. Multiple Pricing of Public Goods. Public Choice, 11: 17–
33.

Cramton Peter, Shoham Yoav and Steinberg Richard. 2006. Combinatorial Auctions.

Editors. Massachusetts. MIT Press.
Fujishima, Y., K. Leyton-Brown, and Y. Shoham. 1999. Taming the Computational

Complexity of Combinatorial Auctions: Optimal and Approximate Approaches,

In Proceedings of the International Joint Conference on Artificial intelligence

(IJCAI-99). Stockholm: 548-553.
Garey, Michael R. and David S. Johnson. 1979. Computers and Intractability. New

York. W.H. Freeman and Company.

Gonen, Rica and Daniel Lehmann. 2000. Optimal Solutions for Multi-Unit
Combinatorial Auctions: Branch and Bound Heuristics. In Proceedings of the 2nd

ACM conference on Electronic commerce (EC-00). Minneapolis. Minnesota. US.

Oct: 13–20.

ATINER CONFERENCE PAPER SERIES No: COM2012-0261

21

Gonen, Rica and Daniel Lehmann. 2002. Linear Programming helps solving large
multi-unit combinatorial auctions. CoRR cs.GT/0202016.

Ghebreamiak, Kidane Asrat and Arne Andersson. 2002. Caching in multi-unit

combinatorial auctions. In Proceedings of the First International Joint Conference
on Autonomous Agents and Multiagent Systems. Bologna. Italy: 164–165.

Groves, Theodore. 1973. Incentives in Teams. Econometrica. 41: 617–631.

Hoos, Holger H. and Craig Boutilier. 2000. Solving Combinatorial Auctions using

Stochastic Local Search. In Proceedings of the National Conference on Artificial
Intelligence (AAAI-00): 22-29.

Hoos, Holger H. and Thomas Stutzle. 2004. Stochastic Local Search: Foundations and

Applications. San Francisco. Morgan Kaufmann Publishers Inc. US.
Kevin Leyton-Brown, Mark Pearson and Yoav Shoham. 2000a. Towards a Universal

Test Suite for Combinatorial Auction Algorithms. In Proceedings of the ACM

Conference on Electronic Commerce (EC-00): 66-76.

TKevin Leyton Brown, Yoav Shoham and Moshe Tennenholtz. 2000b. An Algorithm
for Multi Unit Combinatorial Auctions.T In Proceedings of the National

Conference on Artificial Intelligence (AAAI-00). Austin. TX. US: 56-61.

Koksalan M, R Leskela, H. Wallenius and J. Wallenius. 2009, Improving Efficiency in
Multiple-Unit Combinatorial Auctions: Bundling Bids from Multiple Bidders,

Decision Support Systems 48: 103 - 111.

Lehmann, D., Mueller, R., and Sandholm, T. 2006. The Winner Determination
Problem. Chapter 12 of the book Combinatorial Auctions. Cramton, Shoham, and

Steinberg, eds. MIT Press.

Muller Rudolf. 2006. Tractable Cases of the Winner Determination Problem. Chapter

13 of the book Combinatorial Auctions. Cramton, Shoham, and Steinberg, eds.
MIT Press.

Parkes, D. C. 2006. Iterative Combinatorial Auctions, Chapter 2 of the book

Combinatorial Auctions. Peter Cramton, Yoav Shoham and Richard Steinberg.
eds.MIT Press.

Parkes. D. C. 1999. iBundle: An efficient ascending price bundle auction. First ACM

Conference on Electronic Commerce. Nov: 148-157.
Milgrom, Paul R. and Weber, R. J. 1982. A Theory of Auctions and Competitive

Bidding. Econometrica. 50(5): 1089–1182.

Raj Jog Singh and Anup K. Sen. 2005. Winner Determination Problem:

Experimenting with Local Search. In Proceedings of the Workshop on
Information Technologies and Systems (WITS 2005). Las Vegas. US. Dec: 213-

218.

Rothkopf, Michael H., Alexander Pekec and Ronald M Harstad.. 1998.
Computationally Manageable Combinatorial Auctions. Management Science.

44(8):1131–1147.

Sandholm, Tuomas W., Subhash Suri, Andrew Gilpin and David Levine. 2001.

CABOB: A Fast Optimal Algorithm for Combinatorial Auctions. In Proceedings
of the International Joint conference on Artificial intelligence (IJCAI-01). Seattle.

WA. US: 1102-1108.

Sandholm, T. 2006. Optimal Winner Determination Algorithms. Chapter 14 of the
book Combinatorial Auctions. Cramton, Shoham, and Steinberg, eds. MIT Press.

Sandholm, Tuomas W. 2002. Algorithm for Optimal Winner Determination in

Combinatorial Auctions. Artificial Intelligence. 135: 1–54.
Sandholm, Tuomas W. and S. Suri. 2003. BOB: Improved Winner Determination in

Combinatorial Auctions and generalizations. Artificial Intelligence.145: 33-58.

ATINER CONFERENCE PAPER SERIES No: COM2012-0261

22

Vickrey, William. 1961. Counterspeculation, Auctions, and Competitive Sealed
Tenders. Journal of Finance. 16: 8-37.

Wilson R. 1969. Competitive bidding with disparate information. Management

Science. 15: 446- 448.
Xia, M., Stallaert, J. and Whinston, A.B. 2005. Solving the combinatorial double

auction problem. European Journal of Operational Resesarch. 164: 239-251.

