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Abstract 

 

With the penetration of the Internet and the ease of carrying out an auction, the 

electronic auction market has already become huge and is expanding rapidly. 

The paper presents a novel stochastic partition-based search technique to solve 

the winner determination problem associated with the multi-unit combinatorial 

auction. The algorithm uses an innovative divide and conquer formulation in 

the search framework so that solutions to sub-problems remain additive. The 

proposed technique can be used to find both optimal as well as near optimal 

solutions. Experimental results with the benchmark problem suites using 

uniform and decay distributions are presented. The results exhibit saving in 

computation can be as high as 99% while compromising less than 1% of the 

revenue. 
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Introduction   

 

Auction theory and methodologies have drawn a strong attention of researchers 

since the seminal work of Vickrey [Vickrey 1961] and several auction models 

exist (see [Wilson 1969], [Milgrom and Weber 1982], [Clarke 1971], [Groves 

1973]). With the penetration of the Internet and the ease of carrying out an 

auction by both the bidders and the auctioneer, the electronic auction market is 

already huge and is expanding rapidly. With faster access to necessary 

information, the bidders and auctioneers can now apply sophisticated 

optimization procedures which would be infeasible in the domain of manually 

conducted auctions.  

In Combinatorial Auctions, multiple goods (items) are available for 

auction simultaneously, and bidders bid for combinations of goods called 

bundles. Often the value of a good to a potential buyer may depend upon what 

other goods he wins in the auction. That is, there exists complimentarity 

between two goods, say gB1B and gB2B, to bidder j if UBj B{ gB1B} + UBj B{ 

gB2B} < UBj B{ gB1B, gB2B} where UBjB {SBjB} is the utility to bidder j of 

acquiring the set of goods SBjB. Traditional auction mechanisms would require 

a need for look-ahead on part of the bidder in such scenarios as well as 

provisions to deal with inefficiencies arising from uncertainty. In such a 

scenario, bidders would prefer to bid for combination of items referred to as 

bundles of goods. Such an auction mechanism has many real life applications 

such as allocation of railroad, auction of adjacent pieces of real estate, auction 

of airport landing slots, and distributed job shop scheduling. 

The winner determination problem (WDP) of combinatorial auction to 

find the winning bids has thus become immensely important. The auctioneer 

attempts to maximize his auction revenue under constraints imposed by the 

availability of items and known information about the bids.  The winner 

determination problem is hard computationally. In a conventional single unit 

WDP, each item for auction has only unit and consequently, at most one bidder 

may eventually win this item. In contrast, multi-unit combinatorial auctions 

involve circumstances where sellers have to sell a number of identical units of 

items and buyers may also be interested to buy more than one unit of items 

through a single bid. Selling all the items of a store in case the store winds up, 

buying components of personal computers for assembling the PCs in a 

wholesale market where prices are discovered through auctions are typical 

examples of such auctions.   

The present research deals with multi-unit combinatorial auctions where 

the auctioneer has a set of distinguishable items with a specific number of 

identical units for each of these items. So, the bidder is concerned only with 

whether he gets the requisite number of units of the items that interest him and 

not about which specific units of an item he gets. The bidders place their bids 

on the combinations they desire stating exactly the number of units of the items 

they want and the price they are willing to pay for it. Unlike the single unit 

case, here we can have bids of identical composition placed in the auction with 
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a possibility of more than one of them getting allocated or winning as long as 

they together are not asking for more units than what the auctioneer has.   

In this paper we propose a stochastic  partition based divide and 

conquer strategy in a depth-first branch and bound search framework, called 

multi-partitioning search, which significantly reduces the computational 

overhead in solving optimal and near-optimal solutions to large problem 

instances of multi-unit winner determination problem. Extensive experiments 

with problem suites from uniform and decay distributions exhibit savings in 

computation time as high as 99% while compromising less than 1% of the 

revenue. The algorithm reduced the CPU time running into hours and days for 

very large problem instances into a few seconds with negligibly small loss in 

revenue. 

The rest of the paper is organized as follows. Literature survey is 

presented in Section 2. The multi-unit winner determination problem addressed 

in this paper is defined in Section 3.  Section 4 presents LSMU(β), a 

parameterized algorithm, that incorporates multi-partitioning search concept. 

The functioning of the algorithm is explained with an example. The 

experimental setup for evaluating the performance of the algorithm is 

elaborated in Section 5 and the findings are given in Section 6.  Section 7 

draws concluding remarks.  

 

 

Literature Survey 

 

The single-unit version of the problem has been well studied and 

solutions were attempted in various ways ([Cramton et al. 2006], 

[Adomavicius and Gupta 2005]). Some imposed severe restrictions on bids so 

that the problem can be solved faster ([Rothkopf et al. 1998], [Muller 2006]). 

Heuristic search algorithms like CASS [Fujishima et al. 1999] and CABOB 

([Sandholm et al. 2001], [Sandholm 2002], [Sandholm and Suri 2003], 

[Sandholm 2006]) have high overhead of computation for solving large 

problem instances. Stochastic search method that aims at finding near-optimal 

solutions has also been tried ([Hoos and Boutilier 2000], [Hoos and Stutzle 

2004], [Singh and Sen 2005]). Iterative versions of single-unit combinatorial 

auctions have been studied in ([Ausubel and Milgrom 2002], [Parkes 1999, 

2006]).  

The multi-unit winner determination problem (MWDP) is NP-hard 

[Garey and Johnson 1979] - even its special case variant where each item can 

have only one unit is known to be NP-hard ([Rothkopf  et al. 1998], [Lehman 

and Sandholm 2006]).  The decision version remains NP-complete even if we 

restrict instances where every bid has a value equal to 1, and every bidder bids 

only on subsets of size at most 3 [Rothkopf et al. 1998]. Consequently, large 

instances of MWDP, are known to be intractable due to combinatorial 

explosion and it has been experienced in the findings of CAMUS [Kevin et al. 

2000b]. 
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In contrast to the methods known for solving single-unit WDP, 

available literature to solve multi-unit MWDP are not many in number. Kevin 

et al. [2000b] suggested CAMUS, a generalization of CASS, for solving 

optimally the MWDP associated with the multi-unit scenario. The algorithm 

has the computational overhead of branch-and-bound search, and in its given 

form, might fail to output optimal solutions [Ghebreamiak et al. 2002]. A 

branch and bound formulation [Gonen and Lehman 2000] and a LP 

formulation [Gonen and Lehman 2002] were proposed but combinatorial 

explosion reduces its utility for solving large instances. Xia and Whinston 

[2005] have suggested a mechanism for transforming the combinatorial double 

auction to an equivalent single-sided auction. A decision support approach has 

been proposed in [Koksalan et al. 2009]. 

 

 

Multi-unit Winner Determination Problem (MWDP)  

 

In the multi unit combinatorial auction, the auctioneer has a set of 

distinguishable items with a specific quantity of units for each of these items. 

The bidders place their bids on the combinations they desire stating exactly the 

number of units of the items they want and the price they are willing to pay for 

it.    

 

 A set of items/goods to auction M = {1, 2, 3,…, m}.  

 An integer q(k) denoting the number of units of good k available on 

auction.  

 A set of bids B = { BB
1B

, BB
2B

, BB
3B

, … , BB
nB

} where a bid BB
j B

= (SB
j 

B
, pB

j B
) where pB

jB
 is the price offer of bid BB

jB
 and SB

j B
=({ qB

j B
(1), qB

j 

B
(2), qB

j B
(3), …, qB

j B
(m) } where qB

j B
(k) = number of units of good k in 

bid BB
j B

. If BB
j B

requires no units of a particular good k then qB
j B

(k) = 0. 

Each bid BB
jB

 is associated with a unique bidder i. A bidder may make 

several bids and eventually win zero or more bundle of items. 

 

The multi-unit winner determination problem (MWDP) is to label each bid 

BBjB as either winning ( jx = 1) or losing ( jx = 0) so as to maximize the 

auctioneer’s revenue under the constraint that for any item k, the sum of units 

of k over all the winning bids does not exceed q(k). Mathematically, 

Max


n

j
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Unlike the single unit case, here we can have bids of identical composition 

placed in the auction with a possibility of more than one of them getting 
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allocated or winning as long as they together are not asking for more units than 

what the auctioneer has.  

We now present LSMU(β), our multi partitioned local search approach.  

 

 

Multi-partitioned Local Search Algorithm LSMU(β) for MWDP 
 

The LSMU(β) is a parameterized algorithm that uses multi-partitioned search 

concept. Here β denotes the number of partitions of a feasible solution. The 

details of the algorithm are described below. 

 

Multi-partitioned local search 

 In this proposed approach a single MWDP instance is split randomly into 

multiple additive smaller MWDP instances. Each of these smaller instances is 

optimally solved faster using depth-first branch and bound (DFBB) method. 

An additive decomposition ensures the resulting revenue would be the sum of 

the revenues obtained by solving the subproblems. The task of finding additive 

sub-problems becomes nontrivial because the splitting has to be such that the 

solutions obtained after solving each sub-problem can be directly combined 

and yet the availability constraint is not violated that is, no more than available 

number of units of each item gets sold by the auctioneer. The challenge of the 

approach therefore, lies in an effective mechanism to deal with the additive 

decomposition problem. Repeated trials of decomposition and the solutions of 

smaller sub-problems are made, and the overall best solution is chosen.  

The parameter β is a positive integer that controls the granularity of partitions. 

It makes use of an initial feasible solution to the given MWDP, LSMU (β) 

partitions the problem into β compartments stochastically and solves each of 

these compartments by search techniques. When β = 1, LSMU(1) outputs 

optimal solutions. As β increases from 1 to higher values the cost of 

computation decreases while the quality of solution deteriorates. What makes 

LSMU(β) exciting and worth exploring is the nature of these reductions in 

computational time and solution quality that suggest suitable values of β for 

which very near optimal (say, one within a deviation of only 1% or less from 

the optimal revenue) solutions can be obtained with significant reduction (say, 

95% or more) of computational time of obtaining the optimal solution.  

 

Algorithm LSMU(β) 

 

 This section presents the algorithm for solving MWDP.  We present a sketch 

of the algorithm below. 

Algorithm LSMU(β) 

Begin 

Pre-process bids, reorder goods and allocate bids to bins to improve search; 

Find the initial feasible solution containing η bids; this is the present solution; 

Repeat  

 Randomly divide the η bids in the present solution into β baskets; 
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 For each of the β baskets 

  Remove bids in the basket from the present solution; 

  Form a subproblem based on the bids removed; 

  Optimally solve the sub-problem; 

Use the solution to find a new feasible (neighbourhood) solution by adding the 

bid values of the other (β – 1) baskets; 

If  improvement then update the present solution;  

 End For 

Until T consecutive non-improving iterations; 

End; 

 

We now explain some of the steps below.  

 During preprocessing, in LSMU(β) the singleton bids are processed using 

dynamic programming as is suggested in [Kevin, 2000b]. A singleton bid 

is a bundle consisting of a single item though there can be multiple units of 

it. After preprocessing, the singleton bids are removed from the problem 

and replaced by singleton vectors. A singleton vector for any item is the 

best possible collection of singleton bids for a given number of units of 

that item to be allocated. This helps to allocate a chunk of units of an item 

together.  

 The goods are ordered following a heuristic to ensure there is more 

branching at the initial stages and less at the later stages of search. For 

each good k, orderk is computed as 1/(numbidsk x avgunitk) , where 

numbidsk is the number of bids that requests good k and avgunitk is the 

average number of goods requested by these bids. The good with the 

lowest order is designated as the lowest ordered good.  

 Bins of bids are formed to speed up the process of selecting feasible bids. 

[Fujishima, 1999]. Given any ordering of goods, there is one bin for each 

good and each bid belongs to the bin corresponding to its lowest numbered 

good.  The bids inside a bin are ordered in non-increasing order of bid 

price per unit item.   

 The initial feasible solution is found by including feasible bids from the set 

of bids arranged in non-increasing order of bid price per unit item until no 

further bid can be allocated. 

 Randomly divide the bids in the present solution into β baskets each 

preferably containing [η/β] bids.   

 Every basket in the present solution creates a sub-problem. In forming a 

sub-problem corresponding to a basket, the bids in the basket are removed 

from the present solution. The associated units of items pertaining to these 

bids thus become free or unallocated and are ready to be auctioned by the 

set of bids that does not belong to all the other baskets. This form a 

separate winner determination sub-problem of a smaller size.   

 The smaller sub-problem is optimally solved using DFBB search 

algorithm. At any node of the search tree, a feasible bid corresponding to 

lowest numbered unallocated item is chosen from the corresponding bin 

and added to the path. An upper bound is used in LSMU(β) to prune paths 
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based on revenue estimates.  At any node during search, for every 

unallocated item, the highest ordered (in non-increasing order of bid price 

per unit item) feasible bid containing this item is selected and its 

contribution is added to obtain an upper bound. 

 The allocation generated by solving the sub-problem is added to the bids 

from the remaining baskets giving a complete feasible solution and the 

revenue is computed. This gives a neighbourhood solution.  Since the 

baskets may have bids containing one or more common items, the order in 

which search is conducted on the baskets will influence the resulting 

revenue for that iteration. That’s the reason we evaluate the quality of the 

solution after considering every basket.  

 

An Example 

The example illustrates the performance of LSMU(β). For simplicity, we 

assume β=2. Consider an instance of three items = {1, 2, 3} to be auctioned 

with three available units of each item. The set of the bids in the format 

{(item, units): price} obtained after renumbering, preprocessing and their 

allocation into bins is given in Table 3.1. The first row shows the given set of 

bids before preprocessing. During preprocessing, the singleton vectors and 

corresponding bids for every item is created. For item 1, the singleton vectors 

are created as {(1,1):$20}, {(1,2):$30}, {(1,3):$45} and {(1,4):$55}, and the 

singleton bids are removed.  

The initial feasible solution is the set of bids = {(1,1), (2,2):$70}, 

{(1,1):$20}P
○P

, {(2,1),(3,2):$60}, {(3,1):$30} with revenue = $180. After 

bifurcating (since β=2) the bids in the initial solution into baskets their contents 

become as follows: 

 

Table 1: Bids and Bins of the Example instance 

It
em

s 

Set of bids = {(1,1):$20}, {(1,1):$10}, {(1,2):$25}, {(1,1), 

(2,2):$70}, {(2,2):$60}, {(2,2), (3,1):$75}, {(2,1),(3,2):$60}, 

{(3,1):$30} 

After treating singletons with dynamic programming: 

{(1,1):$20}P
○P

, {(1,2):$30}P
○P

, {(1,3):$45}P
○P

, {(1,4):$55}P
○P

, 

{(1,1), (2,2):$70}, {(2,2):$60}, {(2,2), (3,1):$75}, 

{(2,1),(3,2):$60}, {(3,1):$30} 
P○P

 indicates singleton vectors. 

1 {(1,1), (2,2):$70}, {(1,1):$20}P
○P

, {(1,2):$30}P
○P

, {(1,3):$45}P
○P

 

2 {(2,2):$60}, {(2,2), (3,1):$75}, {(2,1),(3,2):$60} 

3 {(3,1):$30} 

Basket 1 : {(1,1), (2,2):$70}, {(1,1):$20} 

Basket 2 : {(2,1),(3,2):$60}, {(3,1):$30} 

Bids in basket 1 are removed keeping basket 2 intact. The pairs of (items, 

units) freed are (1, 2) and (2, 2). However including the one unit of item 1 

which remain unallocated after the initial complete allocation, the items and 

units subjected to search are (1,3) and (2,2). The corresponding participative 

bids are {(1,1):$20}, {(1,2):$30}, {(1,3):$45}, {(1,4):$55}, {(1,1), (2,2):$70}. 
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DFBB search on these lead to the optimum solution revenue of $105, the bids 

being {(1,3):$45}, {(2,2):$60}. This solution added to basket 2 gives the 

complete neighborhood solution as {(1,3):$45}, {(2,2):$60}, {(2,1),(3,2):$60}, 

{(3,1):$30} with revenue 195, an improvement over the present solution and 

hence this becomes the present solution. Now the bids in basket 2 are removed. 

The items and units now subjected to search are (2,1) and (3,3). The 

corresponding participative bids are {(1,1):$20}, {(1,2):$30}, {(1,4):$55}, 

{(1,1), (2,2):$70}, {(2,2),(3,1):$75}, {(2,1),(3,2):$60}, {(3,1):$30}. The only 

feasible solution for search in this basket is the presently existing set of bids in 

it so that there is no improvement. Hence after iteration 1, there was an 

improvement and the solution becomes {(1,3):$45}, {(2,2):$60}, 

{(2,1),(3,2):$60}, {(3,1):$30} with revenue 195. This process is continued until 

a specified number of non improving iterations.  

 

Role of β in LSMU(β) 

 

As β  increases, the sub-problem that needs to be solved for finding a 

neighborhood solution reduces in size and  the algorithm runs faster. The 

disadvantage is that since the multiple sub-problems need to be additive, the 

DFBB gets performed on the sub-problem while adhering to the constraint that 

the units in a complete allocation do not exceed that available for auction. 

More the number of partitions, fewer would be the units free for search, higher 

will be the probability of having non-participative bids and more would be the 

compromising of solution quality.  The strength of LSMU(β) lies in finding a 

suitable value of β  that exhibits its superior performance. 

 

 

Experimental Setup 
 

A large number of experiments were conducted to explore the efficacy of 

LSMU(β)  in terms of computational time and quality of solution and also to 

find an appropriate choice of  β. Since available literature [Kevin, 2000b] deals 

with problem instances mostly drawn from uniform and decay distributions, we 

have experimented with both distributions for better insight.   

a) Uniform Distribution: The test suite was generated using the uniform 

distribution. Given the values of number of good and number of bids, for each 

problem instance, number of units available for every item, items present in 

every bid and their number of units, and cost of every bid were generated using 

uniform distribution:  

b) Decay distribution: This distribution is similar to the one given by Kevin et 

al [Kevin, 2000b] which generates bids with fewer items irrespective of the 

total number of items and that they are computationally harder to solve 

compared to drawing goods from a uniform distribution. The number of units 

for each good in a bid is also fewer. The uniform distribution is used for 

generating the number of units available for every item, the identity of items in 

a bid and the cost of every bid. The decay distribution with parameter λ = 5 is 
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used for generating the number of items in a bid and the number of units for the 

items in the bid.  

Size of Problem Instances: To evaluate the empirical performance of LSMU 

(β), the number of partitions β was varied from 1 to 6, and their effect on 

percentage cpu time saved and percentage revenue obtained vis-à-vis LSMU(1) 

were observed; the solution obtained by LSMU(1) using DFBB is bound to be 

optimal. The problem size is denoted using the nomenclature u(items,bids) and 

d(items,bids) for the uniform and decay distributions respectively and given in 

Table 2. The maximum price (cost) for any bid is set at 2000. The parameter T 

for the number of successive iterations without any improvement was kept at 

100.  

We also study the effect of partitioning on a few very large problem sizes. The 

large problem instances were isolated from Table 5.1 based on the time 

LSMU(1) takes to solve them. We select 10 instances that take largest CPU 

time. The time is definitively more than 5 hours and preferably much larger. 

These instances have been identified in table 6.1 reported in Section 6.2. 

 

Table 2. Experimental test data specifications 

Problem 
Number 

 of goods 

Number  

of Bids 
Maxunit 

Number  

of test runs 

u(20,500) 20 500 8 50 

u(20,600) 20 600 8 50 

u(20,700) 20 700 8 50 

u(20,800) 20 800 8 50 

u(20,900) 20 900 8 25 

u(40,500) 40 500 8 50 

u(40,600) 40 600 8 50 

u(40,700) 40 700 8 25 

u(60,400) 60 400 8 25 

d(10,100)  10 100 5 20 

d(10,125) 10 125 5 20 

d(10,150) 10 150 5 10 

d(15,100) 15 100 5 20 

d(15,125) 15 125 5 20 

d(20,100) 20 100 3 20 

d(20,125) 20 125 3 20 

d(25,100) 25 100 3 20 

d(25,125) 25 125 3 20 

Maxunit = Maximum number of Units available for any good with the auctioneer. 

 

 

Empirical Results 

 

In this section we report our experimental findings under different subsections.  
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Effect on Revenue proximity to optimal 

The proximity of revenue obtained to the optimal decreases in general as 

partitioning increases. However, in absolute terms the drop in revenue is not 

much. The revenue is always more than 98% irrespective of the partition sizes 

up to 6. For 4 partitions, the revenue obtained is always closer to 99.5 %. 

Effect on Revenue
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Effect on Time
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Figure 6. Effect on CPU time 

 

Effect on saving in CPU time 

 The average percentage savings in time with partitions for the uniform 

distribution is shown in Figure 5. The average percentage savings in time 

shows a non-decreasing trend originating at partition 1 with 0% savings in time 

going up to maximum of 99.74%.  The average percentage savings in time is 

always above 87% at    

and after partition 3 for all problem sizes and more than 90% for most of them. 

The interesting feature about these plots is that the percent savings for 

relatively larger problems namely u(40,500), u(40,600), u(40,700) and 

u(60,400) outflank the relatively smaller problems of 20 item size. Partition 

size of 3 and 4 appear very promising.  

For the decay distribution, depicted in Figure 6 and Figure 7, the trends are 

similar to the uniform distribution.    For most of the problem sets, the average  
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percentage savings in time is more than 90% from partition 3 onwards.  

Looking at the results of revenue efficacy and percentage savings in time, it 

appears that a partition of 3 to 4 is justified for solving these problem sizes.  

 

Fig 8: Improvements over initial solution 
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Improvements over Initial Solution  

The LSMU (β) algorithm when β >1 continues to attempt improvisation of the 

revenue till a specified number of non improving iterations have occurred. For 

the present tests we fixed these iterations at 100. As observed revenue efficacy 

of the results look very impressive. With increase in partitioning, the total 

number of improvements also increases. This is expected as with increase in 

partitions, each partition is of a  smaller size and so     

 

the scope for perturbation of bids and consequently on revenue is less. For the 

uniform distribution (Figure 8) the effect is varied across different problem 

sizes.                

Also the rate of increase appears to be higher for smaller problems than the 

larger ones. 

Fig 9: Improvements over initial solution 
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For the decay distribution (Figure 9) the trend is the same that of increase in 

improvements with partitions though there is a marked variation with problem 

sizes. However unlike the uniform distribution for a number of problem sizes 

specially the relatively smaller ones like d(10,100), d(10,125) and d(10,150), 

for a number of partitions, the average improvements is less than 1. The 

corresponding revenue quality results are very close to 100%. The 

improvements with problems of the decay distribution are relatively lesser than 

with uniform distribution. Unlike the uniform distribution, the higher 

improvements are observed with the relatively larger problem sizes of 

d(20,100), d(25,100) and d(25,125). Also for these problems, on an average 

improvement at partition 1 is 1 unlike the smaller ones where it is around 0.5. 

The trends show that the main rise in average improvements happens from 

partition 1 to partition 2 after which the slope is relatively flatter. 

 

Large data instances 

 

Table 3 identifies the large data instances analyzed for our results. The CPU 

time LSMU(1) takes to solve these instances varies from 19,400 – 2,00,400 

secs. Results for the large instances show that even for instances which take a 

huge amount of CPU time to solve, LSMU(β) solves them extremely fast by 

increasing the partitions without any significant deterioration in percentage 

revenue obtained. The savings in time increases drastically with partitioning. 

The effect can be gauged from the very first and the most difficult of the 

problem i.e 15 from the u(40,700) problem set. The optimal for this took 

200414.8 secs to solve. However with subsequent partitions, the timings 

reduced to 804 secs at partition 2, 167.5 secs at partition 3 to finally just 11.5 

secs at partition 6. This contrasted with the percentage revenue obtained, shows 

that for the partitions 2, 3 and 6, the revenue obtained is optimal and at 

partitions 5 and 6, it is as high as 99.3 %. The results for the remaining large 

problems are similar and tabulated in Table 6.2. In six out of these 10 

instances, the revenue was optimal upto partition 4 and in three instances it was 

optimal in all the partitions. These results suggest that it might be advantageous 

to use multi partitions to solve very large problems which otherwise might take 

some hours of CPU time without bothering much about loss of revenue. In the 

process it also throws up certain observations and questions on the possible 

choice of β for solving large instances.  
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Table 3. Large Instances from Table 6.1  

Problem Set  Problem Instance  CPU time by LSMU(1) in secs  

u(40,700)  15  200414.8  

u(20,900)  6  54734.74  

u(40,600)  48  43614.13  

u(40,700)  2  36022.24  

u(40,600)  12  33049.6  

u(40,600)  34  32415.05  

u(40,700)  9  29136.29  

u(40,600)  20  22028.71  

u(40,600)  3  21076.74  

u(40,700)  17  19482.66  

 

Table 4 Empirical Results for Large Instances 

Problem Set, 

Instance,  

Optimal time in secs  

 Partitions  

  1  2  3  4  5  6  

u(40,700), 15, 

% of 

optimal  100.0  100.0  100.0  100.0 99.3  99.3  

200414.8 secs  % saving 

in time  
0.00  99.60  99.92  99.99  99.99  99.99  

u(20,900),6,  

% of 

optimal  
100.0  100.0  100.0  100.0  98.26  98.58  

54734.74 secs  % saving 
in time  0.00  95.51  99.81  99.94  99.93  99.99  

u(40,600),48, 

% of 

optimal  100.0  100.0  100.0  100.0  100.0  100.0  

43614.13 secs  % saving 

in time  0.00  98.82  99.75  99.96  99.95  99.98  

u(40,700),2,  

% of 

optimal  100.0  100.0  100.0  100.0  100.0  100.0  

36022.24 secs  % saving 

in time  0.00  95.08  99.61  99.81  99.93  99.94  

u(40,600),12,  

% of 

optimal  100.0  100.0  97.09  97.09  97.09  97.09  

33049.6 secs  % saving 

in time  0.00  98.26  99.90  99.96  99.98  99.98  

u(40,600),34,  

% of 

optimal  
100.0  100.0  99.27  99.35  99.27  100.0  

32415.05 secs  % saving 

in time  
0.00  97.53  99.93  99.94  99.98  99.98  

u(40,700),9,  

% of 
optimal  100.0  100.0  100.0  100.0  95.75  100.0  
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29136.29 secs  % saving 

in time  0.00  97.86  99.73  99.88  99.95  99.91  

u(40,600),20,  

% of 

optimal  100.0  100.0  94.89  94.89  100.0  99.81  

22028.71 secs  % saving 

in time  
0.00  98.72  99.90  99.96  99.96  99.97  

u(40,600),3,  

% of 

optimal  
100.0  100.0  99.95  99.95  99.95  99.95  

21076.74 secs  % saving 
in time  0.00  97.47  99.80  99.91  99.95  99.95  

u(40,700),17,  

% of 
optimal  100.0  100.0  100.0  100.0  100.0  100.0  

19482.66 secs  % saving 

in time  0.00  98.25  99.81  99.93  99.94  99.97  

 

Choice of β in LSMU(β) 

  The two useful observations from our experiments are: 

(a) As the partitions are increased, the computation time reduces drastically but 

quality of solution does not degrade at that rate – the degradation rate is far 

slower, a seemingly counter-intuitive result. This allows room for LSMU(β) in 

finding acceptable solution within affordable time.  

(b) In general, it appears difficult to suggest a possible choice of β. The longer 

LSMU(1) takes to solve an instance, higher is the expected value of β for 

solving the instance within reasonable CPU time. One possible way to choose 

the β is to start from a large value of β determined by the number of bids in the 

initial solution, and gradually decrease its value to get a solution with near 

optimal solution quality.  

(c) Interestingly, the experimental results indicate 3 or 4 partition would be 

ideal even for instances taking longer time with LSMU(1) - significant 

computational savings can be had at little compromise on the quality of 

solution. For uniform distribution, the average proximity of results to optimal 

is more than 99.5% and the percentage savings in time varies from 87% to 99% 

for partition 3 and 92% to 99% for partition 4. For the decay distribution, the 

average proximity of results to optimal is more than 96.5% and the average 

percentage saving in CPU time varied from 83% to 99.7% for partition 3 and 

87% to as high as 99.8% for partition 4. This finding suggests that based on the 

number of bids in the initial solution, one can possibly start with the value of β 

set to either 3 or 4. If running time goes beyond a certain acceptable limit, one 

can start from a higher value and subsequently reduce β as described in (b).  

 

 

Conclusion 
 

Multi-unit winner determination problem in combinatorial auction is a 

notoriously hard optimization problem with direct practical application to 

electronic commerce.. In this paper we have proposed a parameterized 
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stochastic local search algorithm LSMU(β) to solve the problem. The number 

of partitions, β, can be used to compromise between solution quality and time 

of computation. The most useful and interesting finding is that the choice of β 

is not open-ended and the experiments indicate a value equal to either 3 or 4. 

At this choice of β, in comparison to finding optimal solutions, the saving in 

computation of LSMU(β) is significant whereas the degradation of the quality 

of solution is insignificant. These findings make LSMU(β) a promising 

algorithm for solving large MWDP instances which would be difficult to solve 

otherwise.  

This research throws up a few interesting questions which can be a scope of 

further research.  

 What is the effect of initial solution on the final solution in such local 

search algorithms?  

 The algorithm LSMU(β) determine the neighborhood for search in a 

random fashion by removal of a predetermined number of bids. Is there 

a much more intelligent way of selection, which would improve upon 

the results?  

 Can the learning acquired over multiple partitioning be used to get a 

better quality solution or a very near to optimal solution? The bids 

which are common in the solution for different partitions appear to have 

a higher chance of being in the optimal solution. These bids may be 

kept fixed and the remaining bids may be searched optimally using 

DFBB. With this strategy there seems to be a possibility of striking 

optimal frequently and that too very fast. 
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