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Abstract 

 

An efficient pole-residue method for computing dynamic responses of multi-

degree-of-freedom (MDOF) systems has been proposed in a recent article [1]. The 

pole-reside method is operated in the Laplace domain (complex plane), but it 

should not be confused with the traditional Laplace transform method. While the 

traditional Laplace transform method has always been limited to simple systems 

and analytical excitations, the pole-residue method can apply to complicated 

MDOF systems and highly irregular excitations, such as earthquake loading. 

Through a numerical example of a 240-DOF building model subjected to 

simulated earthquake loadings, this paper investigates the advantages of the pole-

residue method over classical frequency and time domain methods. The 

comparison is two-fold: (1) the accuracy of the calculated response, and (2) the 

computational efficiency. It is found that the pole-residue method can get more 

accurate response, and is more efficient in computational time as well, than the 

time and frequency domain methods. 

 

Keywords: Computational method, Dynamic analysis, Irregular loading, Pole-

residue. 

 

Acknowledgments: The work was financially supported by the National Natural 

Science Foundation of China (Grant Nos. 51490675) and the 111 Project B14028. 

 

 

 



ATINER CONFERENCE PAPER SERIES No: CIV2018-2528 

 

4 

Introduction 

 

Traditional dynamic analysis methods for complicated structures have been 

exclusively carried out in the time and/or frequency domain. While time domain 

methods are often applicable to both linear and nonlinear structural systems, the 

required computation time, especially for a high DOF structure, has always been a 

concern. On the other hand, the frequency-domain method is computationally 

more efficient, but one main limitation of the traditional frequency-domain 

method is that it computes only the steady-state response. Also, frequency domain 

methods are under the assumption of periodic loading, and thus suffer the 

frequency resolution issues and leakage problems. Another classical method is the 

Laplace transform (LT) method which has seldom, if not never, been conducted 

for complicated structures or loading. This was due to the fact that the Laplace 

transform of the input from the time domain to the Laplace domain, as well as the 

inverse Laplace transform (ILT) of the output from the Laplace domain to the time 

domain, has often been limited to simple analytical forms. Only until recently, an 

efficient pole-residue method, operated in the complex plane, for computing 

dynamic responses of multi-degree-of-freedom (MDOF) systems has been 

developed. Although the pole-reside method is operated in the Laplace domain 

(complex plane), it should not be confused with the traditional Laplace transform 

method. The pole-residue method — which is applicable to complicated MDOF 

systems and arbitrary input functions — includes three steps: (1) preparing the 

poles and residues of inputs by using the Prony-SS method [3] and those of 

system transfer functions by a conventional modal analysis, (2) conducting 

algebraic computation to obtain the poles and residues of the response function 

based on those of inputs and system transfer functions, and (3) providing the 

solution of the given problem in the time domain from the poles and residues of 

the response. 

This paper intends to compare the performance of the pole-residue method 

with that of time and frequency domain methods. The comparison includes: (1) 

accuracy of the calculated dynamic response, and (2) computational cost. A 

numerical example of using a 240-DOF building model to irregular earthquake 

loading is considered. 

 

 

Preliminaries 

  

This section reviews background material that is of importance to this paper, 

including: complex exponential signal decomposition and equation of motion. 

Throughout the article, the functions depending on time t  are donated by 

lowercase letters and their Laplace transforms on s  by the same letters with a 

tilde, and their Fourier transforms on   by the same letters in capital.  
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Complex Exponential Signal Decomposition 

 

An irregular signal ( )y t can be decomposed into a finite number of 

exponential components 

 

1

( ) exp( )
L

l l

l

y t t 


   (1) 

 

When a signal has been sampled at equally spaced intervals, Prony’s method 

has often been used to perform the decomposition of the signal into Eq. (1) [4]. 

An improvement of Prony’s method is the Prony-SS method which is based on a 

state-space model for the decomposed signal [3]. In the Prony-SS method, a high-

order difference equation used in Prony’s method is replaced by a state-space 

model so that the ill-conditioned problem of solving the roots of a high-order 

polynomial required in Prony’s method can be avoided. 

Because exp( )t  and
s




form a Laplace transform pair, The Laplace 

transform of Eq. (1) yields the following pole-residue form, or the partial fraction 

form: 

 

  (2) 

 

with poles l  and the corresponding residues l . When the real part of the 

complex variable s is set to be zero, that is, substitute s by i in Eq. (2), it yields 

the corresponding Fourier transform function:   

 

  (3) 

 

which is essentially the frequency domain representation of ( )y t . 

 

Equation of Motion 

 

The mathematical model of an N-DOF system is often written in the 

following second-order matrix differential equation form [5]: 

 

  (4) 

 

where , , N NR M C K are the mass, damping and stiffness matrices, respectively; 

, and  1( ) Nt R x  are the acceleration, velocity and displacement vector, 

respectively, and 
1( ) Nt R f  is the excitation vector.  
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If the system is initially at rest, that is, and (0) 0x , Eq. (4) in the 

Laplace domain can be denoted by: 

 

  (5) 

 

where is the transfer matrix of the system. Denote the ( , )j k entry of 

by , which is defined as the transfer function of an N-DOF system at the 

response coordinate j due to the excitation at coordinate k . When , ,M C K  are 

symmetric, can be written in its pole-residue form [1]: 

 

  (6) 

 

where n are the system poles which are jk -independent and always appear in 

complex conjugate pairs, and the corresponding residues
,jk n , which are related to 

the n th mode shape n : 

, ,

,

k n j n

jk n

na

 
    (7) 

 

in which ,k n and j,n are the k th and j th components of n , and T

n n na A  . 

n

n

n n




 

 
  
 

 and A
 

  
 

C M

M 0
 are the eigenvector and coefficient matrix of the 

state-space model. 

When s is substituted with i in Eq. (6), it yields the corresponding frequency 

response function (FRF): 
2

,

1

( )
N

jk n

jk

n n

H
i




 




   (8) 

 

 

Pole-Residue Method and Improved Frequency-Domain Method 

 

This section provides essential formulas for the pole-residue method and the 

improved frequency-domain method which is a specific extension of the pole-

residue method. For simplicity, the following presentation will focus on the 

single-input single-output (SISO) response calculation, knowing that the same 

principle and approach can be applied to multi-input multi-output (MIMO) 

response calculation cases as well. 
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Pole-Residue Method  

 

In the time domain, the computation for the displacement response ( )jkx t at 

coordinate j to the loading ( )kf t at coordinate k is: 

 

0

( ) ( ) ( )

t

jk jk kx t h t f d      (9) 

 

where ( )jkh t is the unit impulse response function associated with 

coordinates j and k . The counterpart of Eq. (9) in Laplace domain is written as:  

 

  (10) 

 

Let and be expressed in their pole-residue forms as 

 

  (11) 

 

and 

 

  (12) 

 

respectively. After substituting Eq. (11) and Eq. (12) into Eq. (10), one shows 

 

  (13) 

 

Note that the poles m of the response consist of L excitation 

poles l and 2N  system poles n . Let the first L poles of be the excitaiton 

poles l , namely, m m  for 1,...,m L , and the last 2N poles of be the 

system poles n , namely, m L m   for 1,...,2m N . The residue m associated 

with each m can be computed by 

 

  (14) 

 

It follows that the residues of the first L response poles (i.e., at the excitation 

poles) are 

 



ATINER CONFERENCE PAPER SERIES No: CIV2018-2528 

 

8 

  (15) 

and the residues of the last 2N response poles (i.e., at the system poles) are 

 

  (16) 

 

Eq. (15) and Eq. (16) show that all residues of can be computed from 

simple operations of the poles and residues of the excitation and the system 

transfer function . 

Once the output poles m and output residues m are computed, the time 

signal ( )jkx t in its pole-residue form can be obtained easily by taking inverse 

Laplace transform of Eq. (13): 

 
2

1

( ) exp( )
N L

jk m m

m

x t t 




    (17) 

 

Improved Frequency-Domain Method  

 

The so-called improved frequency-domain method [2] is to compute the 

response which includes both the steady-state response and the transient response 

of MDOF linear systems to arbitrary periodic loading. Indeed, the improved 

frequency-domain method is a specific extension of the pole-residue method with 

the assumption of periodic excitations.  

A periodic loading ( )kp t at coordinate k can always be written as a complex 

Fourier series: 

 

( ) exp( )k m m

m

p t C i t




    (18) 

 

where the complex Fourier coefficients mC and the predetermined 

frequencies m are treating as the residues and poles of the periodic loading ( )kp t . 

Referring to Eqs. (2) and (3), one has the corresponding frequency and Laplace 

domain representation of ( )kp t as 

 

( ) m
k

m m

C
P

i i









 

   (19) 

 

and 

  (20) 
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respectively. Referring to Eq. (13) and using Eq. (20) for , one writes 

 

  (21) 

 

Because the common denominator in Eq. (21) is the product of 

( )ns  and ( )ms i   for all n  and m  terms, mathematically Eq. (21) can be 

rewritten in a partial fraction form 

 

  (22) 

 

where 

 

  (23) 

 

and 

  (24) 

 

in which the functions and have been given in Eq.(20) and Eq.(12), 

respectively. 

Once nV and mU are computed, taking the inverse Laplace transform of Eq. 

(22) leads to 

 
2

1

( ) exp( ) exp( )
N

jk n n m m

n m

x t V t U i t


 

      (25) 

Note that the first term on the right hand side of Eq. (25) is the transient 

response, and the second term is the steady-state response. 

 

 

Numerical Studies 

 

The numerical example considered in this study is a 5-story building to 

simulated earthquake loading. The commercial finite element package ANSYS is 

utilized to build the structural model (see Figure 1). Throughout the numerical 

studies, the unit system is MKS (Meter-Kilogram-Second) system. 

 

Building Model 

 

The 5-story building model consists of 5 shell element members (ANSYS’ 

SHELL181 element) for the floors and 40 beam element (ANSYS’ BEAM188 

element) members for 20 columns and 20 horizontal beams. The cross sections for 
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all columns and beams are 0.6×0.6 and 0.25×0.25, respectively, and the thickness 

of all floors is 0.1. The height for all five stories is 5.4, and the dimension of the 

floors is 6×6. Elastic material is considered for all elements, with the Young’s 

modules 10 23 10 /E N m  , Poison ratio 0.2  , and mass 

density 32500 /kg m  . The structural damping model follows the Rayleigh 

damping 30.1 6 10  C M K , where Mand K are the mass and stiffness matrix, 

respectively. For the boundary conditions at the ground, the structure is assumed 

to be completely fixed. After carrying out the eigen analysis to get the modal 

frequencies and mode shapes, listed in Table 1 are the modal parameters for the 

first five modes. 

 

Figure 1. Sketch of the Finite Element Model for a 5-Story Building: (left) Model, 

and (right) Node Numbers 

 
 

Table 1. Parameters of First Five Significant Modes 
System poles Modal frequency (Hz) Modal damping 

-0.3534±10.0498i 1.6005 3.51 % 

-0.3637±10.2193i 1.6275 3.56 % 

-1.0502±18.2291i 2.9061 5.75 % 

-2.7017±29.6075i 4.7318 9.09 % 

-2.7803±30.0396i 4.8014 9.22 % 

 

Simulated Earthquake Loading 

 

In order to have the “ground truth” for evaluating the performance of various 

solution methods, a simulated earthquake signal is utilized. The simulated ground 

motion signal in the x -direction (see Figure 1) is made of 6 damped components: 
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  (26) 

and the values for
nA , n , n and n are given in Table 2. The simulated ground 

motion signal, with a sampling interval 0.02s and total duration 25s, is generated 

and plotted in Figure 2. 

 

Table 2. Parameters of the Simulated Earthquake Acceleration Signal 

nA  n  n  n  

0.0584 

0.0768 

0.0756 

0.0394 

0.0422 

0.0296 

0.4926 

5.2181 

0.1707 

0.0864 

0.0445 

0.0402 

0 

0 

30.3489 

20.3262 

24.7959 

25.4471 

π 

0 

0.8490 

0.8644 

-0.9881 

-0.1629 

 

Figure 2. Simulated Earthquake Acceleration Signal 

 
 

Response Calculation 

 

Due to the ground motion in the x -direction, all nodes of the building in the 

same direction are subjected to an effective earthquake loading [5]. The specific 

output coordinate is chosen at node 1 in the x -direction (see Figure 1, at the top 

floor). The simulated signal is a discrete signal with the time interval of 0.02s. The 

decomposition of the simulated signal by using the Prony-SS method was found 

to regain the same values of nA , n , n and n , as shown in Table 2. 

In this study, the time domain solution for the displacement has been 

computed by using the Matlab function lsim [6]. The responses calculated by the 

traditional frequency-domain method, improved frequency-domain method, and 
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pole-residue method are compared with that of the time-domain solution which 

serves as the benchmark solution. 

Figure 3(a) compares the responses calculated by the traditional frequency-

domain method and the time-domain method; their discrepancy is displayed in 

Figure 3(b) which shows that there is a large discrepancy at the early part of the 

calculated responses. Since the traditional frequency-domain method only 

considers the steady-state response, the discrepancy is mainly coming from the 

transient response. A Fourier analysis of the response discrepancy signal, plotted 

in Figure 3(b), is shown in Figure 4 which indicates that the peak of the Fourier 

spectrum is near 1.60 Hz , matching well with the first modal frequency of the 

system. 

 

Figure 3. Calculated Displacements by the Traditional Frequency-Domain and 

Time-Domain Methods (a) Displacement Comparison, and (b) Discrepancy 

 
 

Figure 4. Fourier Analysis of the Response Discrepancy between Traditional 

Frequency-Domain and Time-Domain Method  
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Compared in Figure 5(a) are the responses calculated by the improved 

frequency-domain method and the time-domain method. There is a very small 

discrepancy between them, as shown in Figure 5(b). Next, the comparison 

between the pole-residue method and the time-domain method is shown in Figure 

6 which indicates that only small response discrepancy occurs. 

 

Figure 5. Calculated Displacements by the Improved Frequency-Domain and 

Time-Domain Methods (a) Displacement Comparison, and (b) Discrepancy 

 
 

Figure 6. Calculated Displacements by the Pole-Residue and Time-Domain 

Methods (a) Displacement Comparison, and (b) Discrepancy 

 
 

Although the discrepancies of the calculated displacements among the pole-

residue, improved frequency-domain and time-domain methods are small, it is 
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still of interest to find out the causes of the discrepancies. The main cause is likely 

due to the distinct assumptions of the excitation signal among the three methods. 

All three methods share the same discrete excitation signal with 0.02t  , but 

they have different interpolation schemes between discrete points. While the time-

domain method often assumes a piecewise linear excitation and the frequency-

domain method interpolates values between discrete points by the Fourier 

coefficients based on a periodic excitation assumption, the pole-residue method 

interpolates values between discrete points by the “principal components” due to 

the implementation of the Prony-SS method for the signal decomposition. To 

illustrate the difference numerically, the reconstructed signals with a smaller time 

interval 0.002t   are plotted in Figure 7(a) based on the interpolation schemes 

of three methods, and Figure 7(b) is a zoomed-in segment from 0.2 to 0.24 where 

all three curves pass through the original discrete points at 0.2t  , 0.22 and 0.24, 

but are distinct in between. As the ground truth of the input signal is known, one 

concludes that the pole-residue method would properly interpolate the input 

signal. Because the three methods have been based on three distinct input 

functions, the calculated responses from the three methods would be different too. 

Clearly, the pole-residue method would give the most accurate result. 

 

Figure 7. Reconstructed Ground Acceleration for the Pole-Residue, Improved 

Frequency-Domain and Time-Domain Methods (a) 0 25t   (b) 0.2 0.24t   

 
 

Computational Efficiency 

 

The computational time required for various methods is investigated for a 

total simulation time of 25s, where the number of time steps N are varying from 

1,250 to 160,000 by changing the time interval t . Table 3 lists the computational 

time in seconds by carrying out the pole-residue, traditional frequency-domain, 

improved frequency-domain and time-domain methods, respectively, in a laptop 

computer. As expected, the computational time for all methods increases with the 
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increasing number of time steps N. According to the present numerical case, it 

takes much more computational time for the time-domain method than other 

methods. From Table 3, the most time efficient method is always the pole-residue 

method for all different N, with the exception of N=1,250 where the traditional 

frequency-domain method needs slightly less time than the pole-residue method.  

The reason for the pole-residue method becoming more efficient than the 

traditional frequency-domain method when N increases to 2,500 is explained as 

follows. The complexity of the solution algorithm for the pole-residue method is 

in the order of N on constructing the output signal from the response poles and 

residues, while that of the Fourier-based method is in the order of 2logN N when 

the efficient fast Fourier transform (FFT) algorithm is employed. The complexity 

of the solution algorithm for the pole-residue method is also proportional to the 

number of response poles, denoted by rN . When 2log N outnumbers rN , then it is 

likely that the traditional frequency-domain method becomes less efficient than 

the pole-residue method. 

 

Table 3. Computational Time Required by the Pole-Residue ( )pT , Traditional 

Frequency-Domain ( )tfT , Improved Frequency-Domain ( )ifT and Time-

Domain ( )tT Methods versus the Number of Time Steps N 

N  
pT

 
tfT

 
ifT

 
tT
 

1,250 0.50 0.46 1.10 6.71 

2,500 0.72 0.83 1.78 8.78 

5,000 1.14 1.53 3.05 13.24 

10,000 1.76 2.90 5.48 22.21 

20,000 2.95 5.73 10.19 40.24 

40,000 5.24 11.42 19.07 75.98 

80,000 9.85 22.81 37.54 147.88 

160,000 20.09 44.48 73.17 291.21 

 

 

Conclusions 

 

This study demonstrated the superiority of the pole-residue method over 

traditional time and frequency domain methods. It pointed out that the so-called 

improved frequency-domain method has been a specific extension of the pole-

residue method with the assumption of periodic excitations. This study also 

explained the discrepancies of the calculated displacements among the pole-

residue, improved frequency-domain and time-domain method; the discrepancies 

were mainly stemmed from different interpolation schemes between discrete 

points of the sampled excitation signal. The interpolation schemes included: (1) 

the time-domain method assumed a piecewise linear excitation, (2) the frequency-

domain method employed the Fourier coefficients related to periodic excitation 

assumption, and (3) the pole-residue method was based on “principal 

components” due to the implementation of the Prony-SS method for the signal 
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decomposition. Theoretically, the pole-residue method would provide the most 

accurate result for the calculated displacements. According to the chosen 

numerical example, it was also found that the pole-residue method was more 

efficient in computational time than the time and frequency domain methods. 

 

 

References 

 
[1] Hu, S. L. J., Liu, F., Gao, B., and Li, H. 2016. Pole-residue method for numerical dynamic 

analysis. Journal of Engineering Mechanics, 142(8), 04016045. DOI= https://doi.org/10. 

1061/(ASCE)EM.1943-7889.0001089. 

[2] Hu, S. L. J., and Gao, B. 2017. Computing Transient Response of Dynamic Systems in the 

Frequency Domain. Journal of Engineering Mechanics, 144(2), 04017167. DOI= 

https://doi.org/10.1061/(ASCE)EM.1943-7889.0001398. 

[3] Hu, S. L. J., Yang, W. L., and Li, H. J. 2013. Signal decomposition and reconstruction 

using complex exponential models. Mechanical Systems and Signal Processing, 40(2), 

421-438.  DOI= https://doi.org/10.1016/j.ymssp.2013.06.037. 

[4] De Prony, B. G. R. 1795. Essai éxperimental et analytique: sur les lois de la dilatabilité de 

fluides élastique et sur celles de la force expansive de la vapeur de l’alkool, a différentes 

temperatures [Experimental and analytical experiment: on the laws of the dilatability of 

elastic fluids and on those of the expansive force of the vapor of the alcohol, at different 

temperatures]. Journal de l’école polytechnique, 1(22), 24-76. 

[5] Craig, R. R., and Kurdila, A. J. 2006. Fundamentals of structural dynamics. John Wiley & 

Sons. 

[6] The MathWorks. 2004. Control System Toolbox Users’ Guide. The MathWorks Inc., 

Natick, MA, USA. 

 

https://doi.org/10.1061/(ASCE)EM.1943-7889.0001398
https://doi.org/10.1016/j.ymssp.2013.06.037

