Athens Institute for Education and Research
ATINER

ATINER's Conference Paper Series
CIV2017-2555

Bending Analysis of Castellated Beams

Sahar Elaiwi
PhD Student
Plymouth University
UK

Boksun Kim
Plymouth University
UK

Long-Yuan Li
Plymouth University
UK



ATINER CONFERENCE PAPER SERIES No: CIV2017-2555

An Introduction to
ATINER's Conference Paper Series

Conference papers are research/policy papers written and presented by academics at one
of ATINER’s academic events. ATINER’s association started to publish this conference
paper series in 2012. All published conference papers go through an initial peer review
aiming at disseminating and improving the ideas expressed in each work. Authors
welcome comments.

Dr. Gregory T. Papanikos
President
Athens Institute for Education and Research

This paper should be cited as follows:

Elaiwi, S., Kim, B. and Li, L.-Y. (2018). ""Bending Analysis of Castellated
Beams™, Athens: ATINER'S Conference Paper Series, No: CIV2017-2555.

Athens Institute for Education and Research

8 Valaoritou Street, Kolonaki, 10671 Athens, Greece

Tel: + 30 210 3634210 Fax: + 30 210 3634209 Email: info@atiner.gr URL.:
www.atiner.gr

URL Conference Papers Series: www.atiner.gr/papers.htm

Printed in Athens, Greece by the Athens Institute for Education and Research. All rights
reserved. Reproduction is allowed for non-commercial purposes if the source is fully
acknowledged.

ISSN: 2241-2891

10/10/2018



ATINER CONFERENCE PAPER SERIES No: CIV2017-2555

Bending Analysis of Castellated Beams

Sahar Elaiwi
Boksun Kim
Long-Yuan Li

Abstract

Existing studies have shown that the load-carrying capacity of castellated beams
can be influenced by the shear stresses particularly those around web openings and
under the T-section, which could cause the beam to have different failure modes.
This paper investigates the effect of web openings on the transverse deflection of
castellated beams by using both analytical and numerical methods and evaluates
the shear-induced transverse deflection of castellated beams of different lengths
and flange widths subjected to uniformly distributed transverse load. The purpose
of developing analytical solutions, which adopted the classical principle of
minimum potential energy is for the design and practical use; while the numerical
solutions are developed by using the commercial software ANSYS for the
validation of the analytical solutions.

Keywords: Castellated Beam, Deflection, Energy Method, Finite Element, Shear
Effect.
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Introduction

Engineers and researchers have tried various methods to reduce the material
and construction costs to help optimise the use of the steel structural members. The
castellated beam is one of the steel members which uses less material, but has
comparable performance as the I-beam of the same size (Altifillisch et al., 1957).
An example is shown in Figure 1la. The castellated beam is fabricated from a
standard universal I-beam or H-column by cutting the web on a half hexagonal
line down the centre of the beam. The two halves are moved across by a half unit
of spacing and then re-joined by welding. This process increases the depth of the
beam and thus the bending strength and stiffness of the beam about the major axis
are also enhanced without additional materials being added. This allows
castellated beams to be used in long span applications with light or moderate
loading conditions for supporting floors and roofs. In addition, the fabrication
process creates openings on the web, which can be used to accommodate services.
As a result, the designer does not need to increase the finished floor level. Thus,
despite the increase in the beam depth the overall building height may actually be
reduced.

When compared with a solid web solution where services are provided
beneath the beam, the use of castellated beams could lead to savings in the
cladding costs especially in recent years, the steel cost becomes higher. Owing to
the fact that the steel materials have poor fire resistance, buildings made from steel
structures require to use high quality fireproof materials to protect steel members
from fire, which further increase its cost. Moreover, because of its lightweight the
castellated beam is more convenient in transportation and installation than the
normal I-beam.

Literature Review

For many years, the castellated beam have been used in construction because
of its advantages when considering both the safety and serviceability while
considering functional requirements according to the use for which the
construction is intended. Extensive study has been done by researchers who are
working in the construction field to identify the behaviour of castellated beams
when they are loaded with different types of loads. It was found that the castellated
beam could fail in various different modes depending on the dimensions of the
beam and the type of loading as well as the boundary conditions of the beams.
Kerdal and Nethercot (1984) informed the potential failure modes, which possibly
take place in castellated beams. Also, they explained the reasons for the
occurrence of these failure modes. For instance, shear force and web weld rupture
cause a Vierendeel mechanism and web post-buckling. Additionally, they pointed
out that any other failures whether caused by a flexural mechanism or a lateral-
torsional instability is identical to the equivalent modes for beams without web
opening.
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The web openings in the castellated beam, however, may reduce the shear
resistance of the beam. The saved evidence, that the method of analysis and design
for the solid beam may not be suitable for the castellated beam (Boyer, 1964;
Kerdal and Nethercot, 1984; Demirdjian, 1999). Design guidance on the strength
and stiffness for castellated beams is available in some countries. However, again,
most of them do not take into account the shear effect. As far as the bending
strength is concerned, neglecting the shear effect may not cause problems.
However, for the buckling and the calculation of serviceability, the shear weakness
due to web openings in castellated beams could affect the performance of the
beams and thus needs to be carefully considered.

Experimental investigations (Aminian et al., 2012; Maalek, 2004; Yuan et al.,
2014; Yuan et al., 2016; Zaarour and Redwood, 1996) were carried out and finite
elements methods (Hosain et al., 1974; Sherbourne and Van Oostrom, 1972;
Soltani et al., 2012; Sonck et al., 2015; Srimani and Das, 1978; Wang et al., 2014)
were also used to predict the deflection of castellated beams and/or to compare the
predictions with the results from the experiments. The experimental findings
(Zaarour and Redwood, 1996) demonstrated the possibility of the occurrence of
the buckling of the web posts between web openings. The shear deflection of the
straight-sided tapering cantilever of the rectangular cross section (Maalek, 2004)
was calculated by using a theoretical method based on Timoshenko’s beam theory
and virtual work method. Linear genetic programming and integrated search
algorithms (Aminian et al., 2012) showed that the use of the machine learning
system is an active method to validate the failure load of castellated beams. A
numerical computer programme (Sherbourne and Van Oostrom, 1972) was
developed for the analysis of castellated beams considering both elastic and plastic
deformations by using practical lower limit relationships for shear, moment and
axial force interaction of plasticity. An analysis on five experimental groups of
castellated beams (Srimani and Das, 1978) was conducted to determine the
deflection of the beam. It was demonstrated (Hosain et al., 1974) that the finite
elements method is a suitable method for calculating the deflection of symmetrical
section castellated beams. The effect of nonlinearity in material and/or geometry
on the failure model prediction of castellated beams (Soltani et al., 2012) was done
by using MSC/NASTRAN software to find out bending moments and shear load
capacity, which are compared with those published in literature.

Axial compression buckling of castellated columns was investigated (Yuan et
al., 2014), in which an analytical solution for critical load is derived based on
stationary potential energy and considering the effect of the web shear
deformations on the flexural buckling of simply supported castellated column.
Recently, a parametric study on the large deflection analysis of castellated beams
at high temperatures (Wang, et al., 2014) was conducted by using finite element
method to calculate the growth of the end reaction force, the middle span
deflection, and the bending moments at susceptible sections of castellated beams.
More recently, a comprehensive comparison between the deflection results of
cellular and castellated beams obtained from numerical analysis (Sonck et al.,
2015) was presented, which was obtained from different simplified design codes.
The comparison showed that the design codes are not accurate for short span
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beams and conservative for long span beams. The principle of minimum potential
energy was adopted (Yuan et al., 2016) to derive an analytical method to calculate
the deflection of castellated/cellular beams with hexagonal/circular web openings,
subjected to a uniformly distributed transverse load.

The previous research efforts show that there were a few of articles that dealt
with the deflection analysis of castellated beams. Due to the geometric particulars
of the beam, however, it was remarkable to note that most of the theoretical
approximate methods are interested in calculating the deflection of the castellated
beams for long span beams where the shear effect is negligible. However, the
castellated beams/columns are used not only for long span beams/columns but also
for short beams/columns. Owing to the complex of section profile of the
castellated beams, the shear-effect caused by the web opening on the deflection
calculation is not fully understood. There are no accurate calculation methods
available in literature to perform these analyses. Thus it is important to know how
the shear affects the deflection of the beam and on what kind of spans the shear
effect can be ignored. In addition, researchers have adopted the finite elements
method to predict the deflection of castellated beams by using different software
programs such as MSC/NASTRAN, ABAQUS, and ANSYS. However, these
programs need efficiency in use because any error could lead to significant
distortions in results. European building standards do not have formulas for the
calculation of deflections of castellated beams, which include shear deformations.

This paper presents the analytical method to calculate the elastic deflection of
castellated beams. The deflection equation is to be developed based on the
principle of minimum potential energy. In order to improve the accuracy and
efficiency of this method, shear rigidity factor is determined by using suitable
numerical techniques. The analytical results were validated by using the numerical
results obtained from the finite element analysis using ANSY'S software.

Analytical Philosophy of Deflection Analysis of Castellated Beams

An approximate method of deflection analysis of castellated beams under a
uniformly distributed transverse load is presented herein. The method is derived
based on the principle of minimum potential energy of the structural system.
Because of the presence of web openings, the cross-section of the castellated beam
IS now decomposed into three parts to calculate the deflection and bending stress,
two of which represent the top and bottom T-sections, one of which represents the
mid-part of the web. The analysis model is illustrated in Figure 1a, in which the
flange width and thickness are byand t;, the web depth and thickness are h,, and t,,
and the half depth of hexagons is a. The half of the distance between the centroids
of the two T-sections is e. In this study, the cross-section of the castellated beam is
assumed to be doubly symmetrical. Under the action of a uniformly distributed
transverse load, the beam section will have axial and transverse displacement as
shown in Figure 1b, where x is the longitudinal coordinate of the beam, z is the
cross-sectional coordinate of the beam, (u;, w) and (up;, w) are the axial
displacements and the transverse displacements of the centroids of the upper and
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lower T-sections. All points on the section are assumed to have the same
transverse displacement because of the beam assumption used in the present
approach (Yuan et al., 2014). The corresponding axial strains &y in the upper T-
section and gy in the lower T-section are linearly distributed and can be
determined by using the strain-displacement relation as follows:

In the upper T-section: _(%4_“),;_:2 <_a

2

du1
= — 1
&1,(x, 2) Tx (z+¢e) T2 @)
In the lower T-section: Q<7< (E n tf)
5 2
du d“w
&5, (x,2) _d_xz_ (z—e) )

The shear strain y,, in the middle part between the two T-sections can also be
determined using the shear strain-displacement relation as follows:

For the middle part between the two T-sections: _5 < 7 < 4

du dw  w —u; edw
— - 3
Ver (%,2) = az T dx 2a a dx ®)
bftf( Wz )“ (3 - ) ()
e= (4)

betr+t, (hTW — a)

Because the upper and lower T-sections behave according to Bernoulli's
theory, the strain energy of the upper T-section U; and the lower T-section U,
caused by a transverse Ioad can be expressed as follows:

Ebf
f f e? dzdx +—f f e? dzdx
(—)

—(tf-l-—)
dug\? 2w\’
B () +Flee (22 |

()
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, Gy | ()
U, = wa j e5 . dzdx +—f j &5, dzdx
0
o (6)
1 d?w\’
E.f EAtee _ + EItee W dx
0

where E is the Young's modulus of the two T-sections, G is the shear modulus,
A and le are the area and the second moment of area of the T- section, which
are determined in their own coordinate systems as follows:

hy
A, - _
tee—bftf + ty ( 2 a) (7)
byt Ryt > ¢, (h 3
I w+f_ _w(_w_ )
tee="12 +bff< 2 e) AV
h,, h, + 2a z
”W(?‘“)( 2 _e) ®)

The mid-part of the web of the castellated beam, which is illustrated in Figure
1a, is assumed to behave according to Timoshenko’s theory (Yuan et al.,
2014). Therefore, its strain energy due to the bending and shear can be
expressed as follows:

1
— 2
Ub—ZZKbA ©)

where A is the relative displacement of the upper and lower T-sections due to a
pair of shear forces and can be expressed as (A = 2ayy,). While K, is the
combined stiffness of the mid part of the web caused by the bending and shear,
and is determined in terms of Timoshenko beam theory as follows,

1_ 3L L
K, 2GA, 12EI, (10)

where A,=\3at,, is the equivalent cross-sectional area of the mid part of the
web, 1,= (V3a)’t,/12 is the second moment of area, and I, = 2a is the length of
the Timoshenko beam; herein representing the web post length. Note that, the
Young's modulus of the two T-sections is E=2(1+v)G and the Poisson’s ratio is
taken as v =0.3, the value of the combined stiffness of the mid part of the web
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caused by the bending and shear can be determined as fallow:

_ V3Gt,
b=

(11)

Thus, the shear strain energy of the web, Uy, due to the shear strain yy, can

be calculated as follows:
l

\/_Gt a? Gtya
U =S atya Zyxz - jyzzdx= e [ i ax

7 (12)

\/§ 0 0

Let the shear rigidity factor ks, = 0.25. Substituting Egs. (3) into (12) gives
the total shear strain energy of the mid-part of the web:
!

Gt ezksh dW Uﬁ

U, = — - — dx (13)

0
Figure 1. (a) Notations used in Castellated Beams (b) Displacements and (c)

Internal Forces
(a)

b; L=nx 6an3
frf ( j \\\\ a3 Jan3 -
;L = N I\ TN N
l 1 l \\
4 L A\
P"f a3 =2a/ It a/N 3 \ ‘—45/\34—‘
Qa3
6aN3 6an3
Q2 (Q+dQ)/2
[T - Nuppfli&I EEETREEY L}_ruppefmm\r)fz
/ \ . }/\_‘du#dr
. i .
\ / f / X Q2 (Q+d Q)12
? | Niow :Nf 2 ‘ l_]:Ilower:(]\I—i_de‘#2
=i 1, ! a/N3 L—Laf’\ 3 a3
Fa
®) ()

Note that, in the calculation of shear strain energy of Eq. (12) one uses the

concept of smear model, in which the shear strain energy was calculated first for
web without holes. Then by assuming the ratio of the shear strain energies of the
webs with and without holes is proportional to the volume ratio of the webs with
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and without holes, the shear strain energy of the web with holes was evaluated, in
which kg, = 0.25 was obtained (Kim et al., 2016). However, by using a two-
dimensional linear finite element analysis (Yuan et al., 2016) the value of the
combined stiffness of the mid part of the web of the castellated beam caused by
the bending and shear, was found to be

V3G6t,, (14)
4

K, = 0.78 X

which is smaller than that above-derived from the smear model. This leads to
the shear rigidity factor ks, = 0.78x0.25. The reason for this is probably due to
the smear model used for the calculation of the shear strain energy for the mid-
part of the web in Eq. (12).

However, it should be mentioned that the factor of 0.78 in Eq. (14) was
obtained for only one specific section of a castellated beam. It is not known
whether this factor can also be applied to other dimensions of the beams. A
finite element analysis model for determining the shear rigidity factor kg, is
therefore developed herein (see Figure 2c¢), in which the length and depth of the
unit are (4a/N3) and (2a+a/2), respectively. In the unit the relative displacement
A can be calculated numerically when a unit load F is applied (see Figure 2c).
Hence, the combined rigidity Ky,=1/A is obtained. Note that in the unit model
all displacements and rotation of the bottom line are assumed to be zero,
whereas the line where the unit load is applied is assumed to have zero vertical
displacement. The calibration of the shear rigidity for beams of different
section sizes shows that the use of the expression below gives the best results
and therefore Eq. (15) is used in the present analytical solutions.

b 1
K, = <O.76 - %) X7 (15)

where | is the length of the beam. Thus the total potential energy of the
castellated beam U+ is expressed as follows,

UT = Ul + UZ + Ush (16)

For the simplicity of presentation, the following two new functions are
introduced:

U1+U2
=172 17
a 5 (17)
Uy —Up
Ug=—2—2
2 (18)

10
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By using Egs. (17) and (18), the total potential energy of the castellated
beam subjected to a uniformly distributed transverse load can be expressed as
follows:

l l
dug\ d?w\’
1_[ = EAtee f - dx +Elt€€ f W dx
0 | 0 (19)

Gt ezksh dW ul; d W
_—_ x_

0

where W is the potential of the uniformly distributed load (max due to the

transverse displacement, which can be expressed as follows:
l

W = @ax fw dx (20)

where gmax IS the uniformly distributed load, which can be expressed in terms

of design stress oy, as follows:

Gylreduced
Gmay = 16 52—l 21
3
, . br(hy + 2tf) tyd® (hy)3(by — ty) (22)
reduced = 12 12 12

Figure 2. Shear Strain Energy Calculation Model: (a) Unit Considered, (b)
Shear Deformation Calculation Model and (c) Finite Element Model of 4a/N3
Length Unit and (2a+a/2) Depth, Loaded by a Unite Force F

[ 6a/N3 ,,_{ , 3ai3 ,
F
g
*
2..fr§
v
A
F
(b) (c)

11
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Deflection of Simply Supported Castellated Beam with Uniformly Distributed
Transverse Loading

For a simply supported castellated beam u,(x), us(x) and w(x) can be assumed
as follows:

mmx
U, (x) = Z Ap cosT
m=1,2,. (23)
mnx
ug(x) = B, cosT
m=12,. (24)
mmx
w(x) = C,, Sin i
m=1,2,

(25)

where An, By and Cp, are the constants to be determined. It is obvious that the

displacement functions assumed in Eqgs. (23)-(25) satisfy the simply support
We d’w _ du,, :di:

boundary conditions, that are dx* and dx  dx atx =0and x = I,

and m = 1,2,... is the integral number. Substituting Egs. (23), (24) and (25) into

(19) and (20) and according to the principle of minimum potential energy, it

yields,

SUpr+ Uy —W)=0
(26)

The variation of Eq. (26) with respect to Ay, By and Cp, results in following
three algebraic equations:

2

Fhe (F7=) An =0

(27)
mm\2 Gt, kg, Gt,ekg, mm ]
EApe (— B, — |——2(—)|c¢, =
[tee(l)-l- a]m[ a (Z)Cmo (28)
mm* Gt,e’ky, ;mm> Gt,eky, mn
et (7) + 22 () e - [B2 (T
_ [1 - (_1)m]Qmax
mm (29)
Mathematically Egs. (27) -(29) lead to:
A, =0
(30)

12
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Gt,ekg, (mn
[ a (T)] -
N mm\2 Gtk m 31
[EAtee (7)) +—5
PR el G Vi ql*
™ (mm)® e2E A, (32)
Eliee + 1+ EA,., a(mm)?
Gkt 12

Therefore, the deflection of the castellated beam can be expressed as
follows:

* 2 e2A
w(x) = q [ tee

E(Itee + €% A¢ee) ey (mm)> Liee + €% A1,
" (33)

EA,.. a(mm)? El.a(mm)?\] = mnx
Gkopt, 2 Gkt 2e2 |51

The maximum deflection of the simply supported beam is at the mid of the
beam, that is x=1/2 and thus it can be expressed as follows:

_ ql4 Z 2 (- 1)k+1 ezAtee x EAyea
Wly=y2 = E(lpe + €24,,0) n5 (2k — 1)5 Itee +e2A,,  Gkgt, 12

X( Z 2 (_1)k+1 Elea Z 2 (_1)k+1>l
=2 — 1\3 ) — T
e @2k =107 Gkstyle k:1,2,"”(2k 1)

(34)
Note that, mathematically, the following equations hold,
z 2 (—1)k+ I
k=1,z,..”5 (2k —1)5 ~ 2 x 384 (35)

13
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2 (_1)k+1 B 1

w3 (2k—1)3 16 (36)
k=1,2,.

2 (_1)k+1 _ 1

t(k—1) 2 (37)
k=1,2,.

Using Egs. (35), (36) and (37), the maximum deflection of the beam can
be simplified as follows:
B 5ql* N ql’a ><< eAyee )
Whe=t/2 = 384E (2U,pp + 26%A100)  16Gkgnt, — \pe + €2 A1,

x(l— 2El..a )
Gkshtwlzez

2

(38)

It is clear from Eq. (38) that, the first part of Eq. (38) represents the
deflection generated by the bending load, which is deemed as that given by
Bernoulli-Euler beam, while the second part of Eq. (38) provides the deflection
generated by the shear force. Moreover, Eq. (38) shows that the shear-induced
deflection is proportional to the cross-section area of the two T-sections but
inversely proportional to the beam length. This explains why the shear effect
could be ignored for long span beams.

If the calculation does not consider the shear effect of web openings, Eq.
(38) reduces to the following bending deflection equation.

B 5ql*
W|x=l/2 B 384E1reduced (39)

Numerical Study

In order to validate the abovementioned analytical solution numerical analysis
using the finite element method is also carried out. The numerical computation
uses the ANSY'S Programming Design Language (APDL). The FEA modelling of
the castellated beams is carried out by using 3D linear Quadratic 4-Node thin shell
elements (SHELL181). This element presents four nodes with six DOF per node,
I.e., translations and rotations on the X, Y, and Z axis, respectively. Half-length of
the castellated beams is used because of the symmetry in geometry. The lateral
and transverse deflections and rotation are restrained (u,=0, u,=0 and 6,=0) at the
simply supported end, while the symmetrical boundary condition is applied at the
other end by constraining the axial displacement and rotations around the two axes
within the cross-section (ux=0, 6,=0 and 6,=0). The material properties of the
castellated beam are assumed to be linear elastic material with Young’s modulus E
=210 GPa and Poisson’s ratio v =0.3.

14
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A line load effect is used to model applied uniformly distribution load, where
the load is assumed acting on the junction of the flange and the web. The
equivalent nodal load is calculated by multiply the distribution load with beam’s
half-length and then divided by the number of the nodes on the junction line of the
flange and the web.

Discussion

Figure 3 shows a comparison of the maximum deflations between analytical
solutions using different shear rigidity factors including one with zero shear factor
and FEA numerical solution for four castellated beams of different flange widths.
It can be seen from the figure that, the analytical solution using the proposed shear
factor is closest to the numerical solution, whereas the analytical solutions using
other shear factors is not as good as the present one. This demonstrates that the
shear factor is also affected by the ratio of the flange width to the beam length.
Also, it can be seen from the figure that, the longer the beam, the closer the
analytical solution to the numerical solution; and the wider the flanges, the closer
the analytical solution to the numerical solution. Figure 4 shows the relative error
of each analytical solution when it is compared with the finite element solution.
From the figure it is evident that the error of the analytical solutions using the
present shear rigidity factor does not exceed 6.0% for all of discussed four sections
in all the beam length range (>3 meter). In contrast, the analytical solution
ignoring the shear effect, or considering the shear effect by using smear model or
by using the length-independent shear rigidity factor will have large error,
particularly when the beam is short.

Conclusions

This study has reported the theoretical and numerical solutions for calculating
the deflection of hexagonal castellated beams with simply supported boundary
condition, subjected to a uniformly distributed transverse load. The analysis is
based on the total potential energy method, by taking into account the influence of
web shear deformations. The main novelty of the present analytical solution for
the calculation of deflection is it considers the shear effect of web openings more
accurately. Both the analytical and numerical solutions are employed for a wide
spectrum of geometric dimensions of I-shaped castellated beams in order to
evaluate the analytical results.

From the present study, the main conclusions can be summarized as follows:

1. The present analytical results are in excellent agreement with those
obtained from the finite element analysis, which demonstrates the
appropriateness of proposed approach.

2. Shear effect on the deflection of castellated beams is very important,
particularly for short and medium length beams with narrow or wide

15
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section. Ignoring the shear effect could lead to an under-estimation of the
deflection.

3. Divergence between analytical and numerical solutions does not exceed
6.0% even for short span castellated beam with narrow or wide section.

4. The effect of web shear on the deflection reduces when castellated beam
length increases.

5. Despite that the numerical solution based on FEA has been widely used in
the analysis of castellated beams; it is usually time-consuming and limited
to specific geometrical dimensions. Thus, a simplified calculation solution
that is able to deliver reasonable results but requires less computational
effort would be helpful for both researchers and designers.

Figure 3. Maximum Deflections of Simply Supported Castellated Beams with
Uniformly Distributed Load Obtained using Analytical Solution with Different
Shear Rigidity Factors (Egs. (38) and (39)) and FEA Numerical Solution for Four
Castellated Beams of Different Flange Widths (a) bf=100mm (b) bf=150mm (c)
bf=200mm and (d) bf=250mm (h,=300mm, t=10mm, t,=8mm and a=100mm)

16
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Figure 4. Divergence of Maximum Deflections of Simply Supported Castellated
Beams with Uniformly Distributed Load Obtained using Analytical Solution with
Different Shear Rigidity Factors (Egs. (38) and (39)) and FEA Numerical Solution
for Four Castellated Beams of Different Flange Widths (a) bf=100mm (b)
bf=150mm (c) bf=200mm and (d) bf=250mm (h,,=300mm, t;=10mm, t,=8mm and

a=100mm)
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