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Bending Analysis of Castellated Beams 
 

Sahar Elaiwi 

Boksun Kim 

Long-Yuan Li 

 

Abstract 

 

Existing studies have shown that the load-carrying capacity of castellated beams 

can be influenced by the shear stresses particularly those around web openings and 

under the T-section, which could cause the beam to have different failure modes. 

This paper investigates the effect of web openings on the transverse deflection of 

castellated beams by using both analytical and numerical methods and evaluates 

the shear-induced transverse deflection of castellated beams of different lengths 

and flange widths subjected to uniformly distributed transverse load. The purpose 

of developing analytical solutions, which adopted the classical principle of 

minimum potential energy is for the design and practical use; while the numerical 

solutions are developed by using the commercial software ANSYS for the 

validation of the analytical solutions.  

 

Keywords: Castellated Beam, Deflection, Energy Method, Finite Element, Shear 

Effect. 
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Introduction 

 

Engineers and researchers have tried various methods to reduce the material 

and construction costs to help optimise the use of the steel structural members. The 

castellated beam is one of the steel members which uses less material, but has 

comparable performance as the I-beam of the same size (Altifillisch et al., 1957). 

An example is shown in Figure 1a. The castellated beam is fabricated from a 

standard universal I-beam or H-column by cutting the web on a half hexagonal 

line down the centre of the beam. The two halves are moved across by a half unit 

of spacing and then re-joined by welding. This process increases the depth of the 

beam and thus the bending strength and stiffness of the beam about the major axis 

are also enhanced without additional materials being added. This allows 

castellated beams to be used in long span applications with light or moderate 

loading conditions for supporting floors and roofs. In addition, the fabrication 

process creates openings on the web, which can be used to accommodate services. 

As a result, the designer does not need to increase the finished floor level. Thus, 

despite the increase in the beam depth the overall building height may actually be 

reduced.  

When compared with a solid web solution where services are provided 

beneath the beam, the use of castellated beams could lead to savings in the 

cladding costs especially in recent years, the steel cost becomes higher. Owing to 

the fact that the steel materials have poor fire resistance, buildings made from steel 

structures require to use high quality fireproof materials to protect steel members 

from fire, which further increase its cost. Moreover, because of its lightweight the 

castellated beam is more convenient in transportation and installation than the 

normal I-beam. 

 

 

Literature Review  

 

For many years, the castellated beam have been used in construction because 

of its advantages when considering both the safety and serviceability while 

considering functional requirements according to the use for which the 

construction is intended. Extensive study has been done by researchers who are 

working in the construction field to identify the behaviour of castellated beams 

when they are loaded with different types of loads. It was found that the castellated 

beam could fail in various different modes depending on the dimensions of the 

beam and the type of loading as well as the boundary conditions of the beams. 

Kerdal and Nethercot (1984) informed the potential failure modes, which possibly 

take place in castellated beams. Also, they explained the reasons for the 

occurrence of these failure modes. For instance, shear force and web weld rupture 

cause a Vierendeel mechanism and web post-buckling. Additionally, they pointed 

out that any other failures whether caused by a flexural mechanism or a lateral-

torsional instability is identical to the equivalent modes for beams without web 

opening. 
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The web openings in the castellated beam, however, may reduce the shear 

resistance of the beam. The saved evidence, that the method of analysis and design 

for the solid beam may not be suitable for the castellated beam (Boyer, 1964; 

Kerdal and Nethercot, 1984; Demirdjian, 1999). Design guidance on the strength 

and stiffness for castellated beams is available in some countries. However, again, 

most of them do not take into account the shear effect. As far as the bending 

strength is concerned, neglecting the shear effect may not cause problems. 

However, for the buckling and the calculation of serviceability, the shear weakness 

due to web openings in castellated beams could affect the performance of the 

beams and thus needs to be carefully considered.  

Experimental investigations (Aminian et al., 2012; Maalek, 2004; Yuan et al., 

2014; Yuan et al., 2016; Zaarour and Redwood, 1996) were carried out and finite 

elements methods (Hosain et al., 1974; Sherbourne and Van Oostrom, 1972; 

Soltani et al., 2012; Sonck et al., 2015; Srimani and Das, 1978; Wang et al., 2014) 

were also used to predict the deflection of castellated beams and/or to compare the 

predictions with the results from the experiments. The experimental findings 

(Zaarour and Redwood, 1996) demonstrated the possibility of the occurrence of 

the buckling of the web posts between web openings. The shear deflection of the 

straight-sided tapering cantilever of the rectangular cross section (Maalek, 2004) 

was calculated by using a theoretical method based on Timoshenko’s beam theory 

and virtual work method. Linear genetic programming and integrated search 

algorithms (Aminian et al., 2012) showed that the use of the machine learning 

system is an active method to validate the failure load of castellated beams. A 

numerical computer programme (Sherbourne and Van Oostrom, 1972) was 

developed for the analysis of castellated beams considering both elastic and plastic 

deformations by using practical lower limit relationships for shear, moment and 

axial force interaction of plasticity. An analysis on five experimental groups of 

castellated beams (Srimani and Das, 1978) was conducted to determine the 

deflection of the beam. It was demonstrated (Hosain et al., 1974) that the finite 

elements method is a suitable method for calculating the deflection of symmetrical 

section castellated beams. The effect of nonlinearity in material and/or geometry 

on the failure model prediction of castellated beams (Soltani et al., 2012) was done 

by using MSC/NASTRAN software to find out bending moments and shear load 

capacity, which are compared with those published in literature.  

Axial compression buckling of castellated columns was investigated (Yuan et 

al., 2014), in which an analytical solution for critical load is derived based on 

stationary potential energy and considering the effect of the web shear 

deformations on the flexural buckling of simply supported castellated column. 

Recently, a parametric study on the large deflection analysis of castellated beams 

at high temperatures (Wang, et al., 2014) was conducted by using finite element 

method to calculate the growth of the end reaction force, the middle span 

deflection, and the bending moments at susceptible sections of castellated beams. 

More recently, a comprehensive comparison between the deflection results of 

cellular and castellated beams obtained from numerical analysis (Sonck et al., 

2015) was presented, which was obtained from different simplified design codes. 

The comparison showed that the design codes are not accurate for short span 
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beams and conservative for long span beams. The principle of minimum potential 

energy was adopted (Yuan et al., 2016) to derive an analytical method to calculate 

the deflection of castellated/cellular beams with hexagonal/circular web openings, 

subjected to a uniformly distributed transverse load.  

The previous research efforts show that there were a few of articles that dealt 

with the deflection analysis of castellated beams. Due to the geometric particulars 

of the beam, however, it was remarkable to note that most of the theoretical 

approximate methods are interested in calculating the deflection of the castellated 

beams for long span beams where the shear effect is negligible. However, the 

castellated beams/columns are used not only for long span beams/columns but also 

for short beams/columns. Owing to the complex of section profile of the 

castellated beams, the shear-effect caused by the web opening on the deflection 

calculation is not fully understood. There are no accurate calculation methods 

available in literature to perform these analyses. Thus it is important to know how 

the shear affects the deflection of the beam and on what kind of spans the shear 

effect can be ignored. In addition, researchers have adopted the finite elements 

method to predict the deflection of castellated beams by using different software 

programs such as MSC/NASTRAN, ABAQUS, and ANSYS. However, these 

programs need efficiency in use because any error could lead to significant 

distortions in results. European building standards do not have formulas for the 

calculation of deflections of castellated beams, which include shear deformations. 

This paper presents the analytical method to calculate the elastic deflection of 

castellated beams. The deflection equation is to be developed based on the 

principle of minimum potential energy. In order to improve the accuracy and 

efficiency of this method, shear rigidity factor is determined by using suitable 

numerical techniques. The analytical results were validated by using the numerical 

results obtained from the finite element analysis using ANSYS software.  

 

 

Analytical Philosophy of Deflection Analysis of Castellated Beams 

 

An approximate method of deflection analysis of castellated beams under a 

uniformly distributed transverse load is presented herein. The method is derived 

based on the principle of minimum potential energy of the structural system. 

Because of the presence of web openings, the cross-section of the castellated beam 

is now decomposed into three parts to calculate the deflection and bending stress, 

two of which represent the top and bottom T-sections, one of which represents the 

mid-part of the web. The analysis model is illustrated in Figure 1a, in which the 

flange width and thickness are bf and tf, the web depth and thickness are hw and tw, 

and the half depth of hexagons is a. The half of the distance between the centroids 

of the two T-sections is e. In this study, the cross-section of the castellated beam is 

assumed to be doubly symmetrical. Under the action of a uniformly distributed 

transverse load, the beam section will have axial and transverse displacement as 

shown in Figure 1b, where x is the longitudinal coordinate of the beam, z is the 

cross-sectional coordinate of the beam, (u1, w) and (u2, w) are the axial 

displacements and the transverse displacements of the centroids of the upper and 
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lower T-sections. All points on the section are assumed to have the same 

transverse displacement because of the beam assumption used in the present 

approach (Yuan et al., 2014). The corresponding axial strains 1x in the upper T-

section and 2x in the lower T-section are linearly distributed and can be 

determined by using the strain-displacement relation as follows: 

 

In the upper T-section：  

휀1𝑥�𝑥, 𝑧 =
𝑑𝑢1
𝑑𝑥

− (𝑧 + 𝑒)
𝑑2𝑤

𝑑𝑥2
                                                                    (1) 

In the lower T-section：  

휀2𝑥�𝑥, 𝑧 =
𝑑𝑢2
𝑑𝑥

− (𝑧 − 𝑒)
𝑑2𝑤

𝑑𝑥2
                                                                  (2) 

 

The shear strain γxz in the middle part between the two T-sections can also be 

determined using the shear strain-displacement relation as follows: 

 

For the middle part between the two T-sections:  

𝛾𝑥𝑧 �𝑥, 𝑧 =
𝑑𝑢

𝑑𝑧
+

𝑑𝑤

𝑑𝑥
= −

𝑢1 − 𝑢2
2𝑎

+
𝑒

𝑎

𝑑𝑤

𝑑𝑥
                                                 (3) 

𝑒 =
𝑏𝑓𝑡𝑓 �

ℎ𝑤+𝑡𝑓
2

 +𝑡𝑤  
ℎ𝑤

2
− 𝑎  

ℎ𝑤 + 2𝑎
4

 

𝑏𝑓𝑡𝑓+𝑡𝑤  
ℎ𝑤

2 − 𝑎 
                                           (4) 

 

Because the upper and lower T-sections behave according to Bernoulli's 

theory, the strain energy of the upper T-section U1 and the lower T-section U2 

caused by a transverse load can be expressed as follows: 

𝑈1 =
𝐸𝑏𝑓

2
� � 휀1𝑥

2 𝑑𝑧𝑑𝑥

−
ℎ𝑤
2

−(𝑡𝑓+
ℎ𝑤
2
)

+

𝑙

0

𝐸𝑡𝑤
2

� � 휀1𝑥
2 𝑑𝑧𝑑𝑥

−𝑎

−(
ℎ𝑤
2
)

𝑙

0

=
1

2
� 𝐸𝐴𝑡𝑒𝑒 �

𝑑𝑢1
𝑑𝑥

 
2

+ 𝐸𝐼𝑡𝑒𝑒  
𝑑2𝑤

𝑑𝑥2
 

2

 

𝑙

0

𝑑𝑥 

                (5) 
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𝑈2 =
𝐸𝑡𝑤
2

� � 휀2𝑥
2 𝑑𝑧𝑑𝑥

(
ℎ𝑤
2
)

𝑎

+

𝑙

0

𝐸𝑏𝑓

2
� � 휀2𝑥

2 𝑑𝑧𝑑𝑥

(𝑡𝑓+
ℎ𝑤
2
)

ℎ𝑤
2

𝑙

0

=
1

2
� 𝐸𝐴𝑡𝑒𝑒 �

𝑑𝑢2
𝑑𝑥

 
2

+ 𝐸𝐼𝑡𝑒𝑒  
𝑑2𝑤

𝑑𝑥2
 

2

 

𝑙

0

𝑑𝑥 

                   (6) 

 

where E is the Young's modulus of the two T-sections, G is the shear modulus, 

Atee and Itee are the area and the second moment of area of the T- section, which 

are determined in their own coordinate systems as follows: 

𝐴𝑡𝑒𝑒=𝑏𝑓𝑡𝑓 + 𝑡𝑤 �
ℎ𝑤

2
− 𝑎  

                                                                   (7) 

𝐼𝑡𝑒𝑒=
𝑏𝑓𝑡𝑓

3

12
+ 𝑏𝑓𝑡𝑓  

ℎ𝑤+𝑡𝑓

2
− 𝑒 

2

+
𝑡𝑤
12

�
ℎ𝑤

2
− 𝑎 

3

+ 𝑡𝑤 �
ℎ𝑤

2
− 𝑎 �

ℎ𝑤 + 2𝑎

4
− 𝑒 

2

 
                       (8) 

The mid-part of the web of the castellated beam, which is illustrated in Figure 

1a, is assumed to behave according to Timoshenko’s theory (Yuan et al., 

2014). Therefore, its strain energy due to the bending and shear can be 

expressed as follows: 

𝑈𝑏 =
1

2
�𝐾𝑏 ∆2 

                                                                       (9) 

where ∆ is the relative displacement of the upper and lower T-sections due to a 

pair of shear forces and can be expressed as (∆ = 2aγxz). While Kb is the 

combined stiffness of the mid part of the web caused by the bending and shear, 

and is determined in terms of Timoshenko beam theory as follows, 

1

𝐾𝑏
=

3𝑙𝑏
2𝐺𝐴𝑏

+
𝑙𝑏
3

12𝐸𝐼𝑏
 

                                                                        (10)  

 

where Ab=√3atw is the equivalent cross-sectional area of the mid part of the 

web, Ib= (√3a)3tw/12 is the second moment of area, and lb = 2a is the length of 

the Timoshenko beam; herein representing the web post length. Note that, the 

Young's modulus of the two T-sections is E=2(1+ν)G and the Poisson’s ratio is 

taken as v =0.3, the value of the combined stiffness of the mid part of the web 
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caused by the bending and shear can be determined as fallow: 

𝐾𝑏 =
�3𝐺𝑡𝑤
4

                                                                                           (11) 

 

Thus, the shear strain energy of the web, Ush, due to the shear strain γxy can 

be calculated as follows:  

𝑈𝑠ℎ =
�3

2
𝐺𝑡𝑤𝑎2 �𝛾𝑥𝑧

2

𝑛

𝑘=1

≈
�3𝐺𝑡𝑤𝑎2

2 ×
6𝑎

�3

�𝛾𝑥𝑧
2 𝑑𝑥 =

𝑙

0

𝐺𝑡𝑤𝑎

4
�𝛾𝑥𝑧

2 𝑑𝑥

𝑙

0

    (12) 

 

Let the shear rigidity factor ksh = 0.25. Substituting Eqs. (3) into (12) gives 

the total shear strain energy of the mid-part of the web: 

𝑈𝑠ℎ =
𝐺𝑡𝑤𝑒2𝑘𝑠ℎ

𝑎
��

𝑑𝑤

𝑑𝑥
−

𝑢𝛽

𝑒
 
2

𝑙

0

𝑑𝑥                                                (13) 

Figure 1. (a) Notations used in Castellated Beams (b) Displacements and (c) 

Internal Forces 

 
 

Note that, in the calculation of shear strain energy of Eq. (12) one uses the 

concept of smear model, in which the shear strain energy was calculated first for 

web without holes. Then by assuming the ratio of the shear strain energies of the 

webs with and without holes is proportional to the volume ratio of the webs with 
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and without holes, the shear strain energy of the web with holes was evaluated, in 

which ksh = 0.25 was obtained (Kim et al., 2016). However, by using a two-

dimensional linear finite element analysis (Yuan et al., 2016) the value of the 

combined stiffness of the mid part of the web of the castellated beam caused by 

the bending and shear, was found to be  

𝐾𝑏 = 0.78 ×
�3𝐺𝑡𝑤
4

                                                                     (14) 

 

which is smaller than that above-derived from the smear model. This leads to 

the shear rigidity factor ksh = 0.78x0.25. The reason for this is probably due to 

the smear model used for the calculation of the shear strain energy for the mid-

part of the web in Eq. (12).                                                                                

However, it should be mentioned that the factor of 0.78 in Eq. (14) was 

obtained for only one specific section of a castellated beam. It is not known 

whether this factor can also be applied to other dimensions of the beams. A 

finite element analysis model for determining the shear rigidity factor ksh is 

therefore developed herein (see Figure 2c), in which the length and depth of the 

unit are (4a/√3) and (2a+a/2), respectively. In the unit the relative displacement 

∆ can be calculated numerically when a unit load F is applied (see Figure 2c). 

Hence, the combined rigidity Kb=1/∆ is obtained. Note that in the unit model 

all displacements and rotation of the bottom line are assumed to be zero, 

whereas the line where the unit load is applied is assumed to have zero vertical 

displacement. The calibration of the shear rigidity for beams of different 

section sizes shows that the use of the expression below gives the best results 

and therefore Eq. (15) is used in the present analytical solutions.  

 

𝐾𝑠ℎ =  0.76−
𝑏𝑓

𝑙
 ×

1

4
                                          (15) 

 

where l is the length of the beam. Thus the total potential energy of the 

castellated beam UT is expressed as follows, 

𝑈𝑇 = 𝑈1 + 𝑈2 + 𝑈𝑠ℎ                                                                       (16) 

 

For the simplicity of presentation, the following two new functions are 

introduced: 

2

21 uu
u


                                                                                             (17) 

2

21 uu
u




                                                                                            (18) 
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By using Eqs. (17) and (18), the total potential energy of the castellated 

beam subjected to a uniformly distributed transverse load can be expressed as 

follows: 

∏ = 𝐸𝐴𝑡𝑒𝑒 � 
𝑑𝑢𝛽

𝑑𝑥
 

2

𝑑𝑥

𝑙

0

+𝐸𝐼𝑡𝑒𝑒 � 
𝑑2𝑤

𝑑𝑥2
 

2

𝑑𝑥

𝑙

0

+
𝐺𝑡𝑤𝑒2𝑘𝑠ℎ

𝑎
��

𝑑𝑤

𝑑𝑥
−

𝑢𝛽

𝑒
 
2

𝑑𝑥 − 𝑊

𝑙

0

 

                                (19) 

 

where W is the potential of the uniformly distributed load qmax due to the 

transverse displacement, which can be expressed as follows:  

W = 𝑞𝑚𝑎𝑥 �𝑤

𝑙

0

𝑑𝑥                                                                            (20) 

 

where qmax is the uniformly distributed load, which can be expressed in terms 

of design stress σy, as follows: 

𝑞𝑚𝑎𝑥 = 16
𝜎𝑦𝐼𝑟𝑒𝑑𝑢𝑐𝑒𝑑

𝑙2(ℎ𝑤 + 2𝑡𝑓)
                                                                             (21) 

𝐼𝑟𝑒𝑑𝑢𝑐𝑒𝑑 =

𝑏𝑓�ℎ𝑤 + 2𝑡𝑓 
3

12
−

𝑡𝑤𝑎3

12
−

�ℎ𝑤 3�𝑏𝑓 − 𝑡𝑤 

12
                          (22) 

 

Figure 2. Shear Strain Energy Calculation Model: (a) Unit Considered, (b) 

Shear Deformation Calculation Model and (c) Finite Element Model of 4a/√3 

Length Unit and (2a+a/2) Depth, Loaded by a Unite Force F  
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Deflection of Simply Supported Castellated Beam with Uniformly Distributed 

Transverse Loading 

 

For a simply supported castellated beam uα(x), uβ(x) and w(x) can be assumed 

as follows: 

𝑢𝛼(𝑥) = � 𝐴𝑚 cos
𝑚𝜋𝑥

𝑙
𝑚=1,2,..

 

                                            (23) 

𝑢𝛽(𝑥) = � 𝐵𝑚 cos
𝑚𝜋𝑥

𝑙
𝑚=1,2,..

 

                                                               (24) 

𝑤(𝑥) = � 𝐶𝑚 sin
𝑚𝜋𝑥

𝑙
𝑚=1,2,..

 

                                                                   (25) 

 

where Am, Bm and Cm are the constants to be determined. It is obvious that the 

displacement functions assumed in Eqs. (23)-(25) satisfy the simply support 

boundary conditions, that are 
0

2

2


dx

wd
w

 and 
0

dx

du

dx

du 

 at x = 0 and x = l, 

and m = 1,2,… is the integral number. Substituting Eqs. (23), (24) and (25) into 

(19) and (20) and according to the principle of minimum potential energy, it 

yields, 

𝛿�𝑈𝑇 + 𝑈𝑠ℎ − 𝑊 = 0 

                                                                          (26) 

 

The variation of Eq. (26) with respect to Am, Bm and Cm results in following 

three algebraic equations:  

𝐸𝐴𝑡𝑒𝑒  
𝑚𝜋𝑥

𝑙
 
2

𝐴𝑚 = 0 

                                                                   (27) 

�𝐸𝐴𝑡𝑒𝑒  
𝑚𝜋

𝑙
 
2

+
𝐺𝑡𝑤𝑘𝑠ℎ

𝑎
 𝐵𝑚 − �

𝐺𝑡𝑤𝑒𝑘𝑠ℎ

𝑎
 
𝑚𝜋

𝑙
  𝐶𝑚 = 0 

                  (28) 

�𝐸𝐼𝑡𝑒𝑒  
𝑚𝜋

𝑙
 
4

+
𝐺𝑡𝑤𝑒2𝑘𝑠ℎ

𝑎
 
𝑚𝜋

𝑙
 
2

 𝐶𝑚 − �
𝐺𝑡𝑤𝑒𝑘𝑠ℎ

𝑎
 
𝑚𝜋

𝑙
  𝐵𝑚

=
 1 − �−1 𝑚  𝑞𝑚𝑎𝑥

𝑚𝜋
 

         (29) 

Mathematically Eqs. (27) -(29) lead to: 

𝐴𝑚 = 0 

                                                                                              (30) 



ATINER CONFERENCE PAPER SERIES No: CIV2017-2555 

 

13 

𝐵𝑚 =
�
𝐺𝑡𝑤𝑒𝑘𝑠ℎ

𝑎  
𝑚𝜋
𝑙

  

�𝐸𝐴𝑡𝑒𝑒  
𝑚𝜋
𝑙

 
2

+
𝐺𝑡𝑤𝑘𝑠ℎ

𝑎  
𝐶𝑚                                                    (31) 

𝐶𝑚 =
1− (−1)𝑚

�𝑚𝜋 5
𝑞𝑙4

𝐸𝐼𝑡𝑒𝑒 +
𝑒2𝐸𝐴𝑡𝑒𝑒

1 +
𝐸𝐴𝑡𝑒𝑒 𝑎�𝑚𝜋 2

𝐺𝑘𝑠ℎ𝑡𝑤 𝑙2

 
                                           (32) 

 

Therefore, the deflection of the castellated beam can be expressed as 

follows: 

𝑤(𝑥) =
𝑞𝑙4

𝐸�𝐼𝑡𝑒𝑒 + 𝑒2𝐴𝑡𝑒𝑒  
�

2

�𝑚𝜋 5
�1 +

𝑒2𝐴𝑡𝑒𝑒

𝐼𝑡𝑒𝑒 + 𝑒2𝐴𝑡𝑒𝑒
𝑚=1,2,..

×
𝐸𝐴𝑡𝑒𝑒𝑎�𝑚𝜋 2

𝐺𝑘𝑠ℎ𝑡𝑤 𝑙2
 1 −

𝐸𝐼𝑡𝑒𝑒𝑎�𝑚𝜋 2

𝐺𝑘𝑠ℎ𝑡𝑤 𝑙2𝑒2
  sin

𝑚𝜋𝑥

𝑙
 

       (33) 

 

The maximum deflection of the simply supported beam is at the mid of the 

beam, that is x=l/2 and thus it can be expressed as follows: 

 

𝑤|𝑥=𝑙/2 =
𝑞𝑙4

𝐸�𝐼𝑡𝑒𝑒 + 𝑒2𝐴𝑡𝑒𝑒  
 �

2

𝜋5
�−1 𝑘+1

�2𝑘 − 1 5
+

𝑒2𝐴𝑡𝑒𝑒

𝐼𝑡𝑒𝑒 + 𝑒2𝐴𝑡𝑒𝑒
×

𝐸𝐴𝑡𝑒𝑒 𝑎

𝐺𝑘𝑠ℎ𝑡𝑤 𝑙2
𝑘=1,2,..

×  �
2

𝜋2
�−1 𝑘+1

�2𝑘 − 1 3
−

𝐸𝐼𝑡𝑒𝑒 𝑎

𝐺𝑘𝑠ℎ𝑡𝑤 𝑙2𝑒2
𝑘=1,2,..

�
2

𝜋

�−1 𝑘+1

�2𝑘 − 1 
𝑘=1,2,..

   

    (34) 

 

Note that, mathematically, the following equations hold, 

 

�
2

𝜋5
�−1 𝑘+1

�2𝑘 − 1 5
𝑘=1,2,..

=
5

2 × 384
 

                                                              (35) 
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�
2

𝜋3
�−1 𝑘+1

�2𝑘 − 1 3
𝑘=1,2,..

=
1

16
                                                               (36) 

�
2

𝜋

�−1 𝑘+1

�2𝑘 − 1 
𝑘=1,2,..

=
1

2
                                                               (37) 

 

Using Eqs. (35), (36) and (37), the maximum deflection of the beam can 

be simplified as follows: 

𝑤|𝑥=𝑙/2 =
5𝑞𝑙4

384𝐸�2𝐼𝑡𝑒𝑒 + 2𝑒2𝐴𝑡𝑒𝑒  
+

𝑞𝑙2𝑎

16𝐺𝑘𝑠ℎ𝑡𝑤
× �

𝑒𝐴𝑡𝑒𝑒

𝐼𝑡𝑒𝑒 + 𝑒2𝐴𝑡𝑒𝑒
 
2

× �1 −
2𝐸𝐼𝑡𝑒𝑒 𝑎

𝐺𝑘𝑠ℎ𝑡𝑤 𝑙2𝑒2
  

     (38) 

 

It is clear from Eq. (38) that, the first part of Eq. (38) represents the 

deflection generated by the bending load, which is deemed as that given by 

Bernoulli-Euler beam, while the second part of Eq. (38) provides the deflection 

generated by the shear force. Moreover, Eq. (38) shows that the shear-induced 

deflection is proportional to the cross-section area of the two T-sections but 

inversely proportional to the beam length. This explains why the shear effect 

could be ignored for long span beams. 

If the calculation does not consider the shear effect of web openings, Eq. 

(38) reduces to the following bending deflection equation. 

 

𝑤|𝑥=𝑙/2 =
5𝑞𝑙4

384𝐸𝐼𝑟𝑒𝑑𝑢𝑐𝑒𝑑
                                                               (39) 

 

 

Numerical Study 

 

In order to validate the abovementioned analytical solution numerical analysis 

using the finite element method is also carried out. The numerical computation 

uses the ANSYS Programming Design Language (APDL). The FEA modelling of 

the castellated beams is carried out by using 3D linear Quadratic 4-Node thin shell 

elements (SHELL181). This element presents four nodes with six DOF per node, 

i.e., translations and rotations on the X, Y, and Z axis, respectively. Half-length of 

the castellated beams is used because of the symmetry in geometry. The lateral 

and transverse deflections and rotation are restrained (uy=0, uz=0 and θx=0) at the 

simply supported end, while the symmetrical boundary condition is applied at the 

other end by constraining the axial displacement and rotations around the two axes 

within the cross-section (ux=0, θy=0 and θz=0). The material properties of the 

castellated beam are assumed to be linear elastic material with Young’s modulus E 

= 210 GPa and Poisson’s ratio v =0.3.  
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A line load effect is used to model applied uniformly distribution load, where 

the load is assumed acting on the junction of the flange and the web. The 

equivalent nodal load is calculated by multiply the distribution load with beam’s 

half-length and then divided by the number of the nodes on the junction line of the 

flange and the web. 

 

 

Discussion 

 

Figure 3 shows a comparison of the maximum deflations between analytical 

solutions using different shear rigidity factors including one with zero shear factor 

and FEA numerical solution for four castellated beams of different flange widths. 

It can be seen from the figure that, the analytical solution using the proposed shear 

factor is closest to the numerical solution, whereas the analytical solutions using 

other shear factors is not as good as the present one. This demonstrates that the 

shear factor is also affected by the ratio of the flange width to the beam length. 

Also, it can be seen from the figure that, the longer the beam, the closer the 

analytical solution to the numerical solution; and the wider the flanges, the closer 

the analytical solution to the numerical solution. Figure 4 shows the relative error 

of each analytical solution when it is compared with the finite element solution. 

From the figure it is evident that the error of the analytical solutions using the 

present shear rigidity factor does not exceed 6.0% for all of discussed four sections 

in all the beam length range (>3 meter). In contrast, the analytical solution 

ignoring the shear effect, or considering the shear effect by using smear model or 

by using the length-independent shear rigidity factor will have large error, 

particularly when the beam is short. 

 

 

Conclusions 

 

This study has reported the theoretical and numerical solutions for calculating 

the deflection of hexagonal castellated beams with simply supported boundary 

condition, subjected to a uniformly distributed transverse load. The analysis is 

based on the total potential energy method, by taking into account the influence of 

web shear deformations. The main novelty of the present analytical solution for 

the calculation of deflection is it considers the shear effect of web openings more 

accurately. Both the analytical and numerical solutions are employed for a wide 

spectrum of geometric dimensions of I-shaped castellated beams in order to 

evaluate the analytical results. 

From the present study, the main conclusions can be summarized as follows: 

 

1. The present analytical results are in excellent agreement with those 

obtained from the finite element analysis, which demonstrates the 

appropriateness of proposed approach. 

2. Shear effect on the deflection of castellated beams is very important, 

particularly for short and medium length beams with narrow or wide 
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section. Ignoring the shear effect could lead to an under-estimation of the 

deflection.  

3. Divergence between analytical and numerical solutions does not exceed 

6.0% even for short span castellated beam with narrow or wide section. 

4. The effect of web shear on the deflection reduces when castellated beam 

length increases. 

5. Despite that the numerical solution based on FEA has been widely used in 

the analysis of castellated beams; it is usually time-consuming and limited 

to specific geometrical dimensions. Thus, a simplified calculation solution 

that is able to deliver reasonable results but requires less computational 

effort would be helpful for both researchers and designers. 

 

Figure 3. Maximum Deflections of Simply Supported Castellated Beams with 

Uniformly Distributed Load Obtained using Analytical Solution with Different 

Shear Rigidity Factors (Eqs. (38) and (39)) and FEA Numerical Solution for Four 

Castellated Beams of Different Flange Widths (a) bf=100mm (b) bf=150mm (c) 

bf=200mm and (d) bf=250mm (hw=300mm, tf=10mm, tw=8mm and a=100mm) 
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Figure 4. Divergence of Maximum Deflections of Simply Supported Castellated 

Beams with Uniformly Distributed Load Obtained using Analytical Solution with 

Different Shear Rigidity Factors (Eqs. (38) and (39)) and FEA Numerical Solution 

for Four Castellated Beams of Different Flange Widths (a) bf=100mm (b) 

bf=150mm (c) bf=200mm and (d) bf=250mm (hw=300mm, tf=10mm, tw=8mm and 

a=100mm) 
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