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Test of All-Bolted Angle Connections for Catenary Action 
 

Yanglin Gong 

 

Abstract 

 

This paper reports an experimental test of six bolted angle connections 

under a double-span condition or so-called central-column-removal scenario. 

The test was a part of a research program on the robustness of steel connections 

in the context of progressive collapse of building structures. The design of 

the tested angles followed Canadian standards. The test parameters included 

angle thickness and connection configuration. Two huge H-shape steel beams 

were used as permanent test beams. One end of the test beams was simply-

supported (through a hinge) while the other end was connected to the middle 

test column through a test connection. The test column was supported by the 

two test beams to simulate its lower half being removed. A concentrated 

load was increasingly applied to the test column until the angle connections 

failed by rupture. The failure modes included angle rupture and bolt rupture 

in shear or/and in tension. The load versus displacement at the test column 

and the moment distribution of the test beams were measured. Analytical 

results were compared with the test results to explain the observed 

behaviors. It was anticipated a design approach for the robustness of angle 

connections would be developed through this study.  

 

Keywords: Bolt connections, Connection robustness, Progressive collapse, 

Simple connections, Steel connections. 
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Introduction 

 

Bolted angle connections are commonly used in steel construction due 

to their versatility. Under a conventional service scenario, these connections 

are designed under a shear load (and a bending moment, if exists) only, 

while it is recognized that they also possesses certain axial tensile resistance 

(CSA Group, 2014). Recently, considering the scenario of progressive 

collapse of steel structures became mandatory for the construction of some 

important buildings [e.g., the newly built Thunder Bay Consolidated 

Courthouse Building (RJC Engineers, 2016)]. A typical progressive collapse 

scenario for the design of a building is that a column is assumed to be 

removed due to an abnormal loading event such as a blast from terrorist 

attack. In this scenario, the connections around the removed column will be 

subjected to a double-span loading condition (see Figure 1).  

Once a column were removed, the upper floors of the building would 

have to sag, which would introduce an axial force among the beams (i.e., 

left and right beams in Figure 1) connecting the upper columns. Thus, the 

connections at the ends of these beams would be subjected to a set of 

structural demands including axial force, shear force, and bending moment. 

Unless these connections were designed as a stronger-than-beam moment 

connection, they are usually weaker in strength than the connected beams. 

In other words, these connections are usually the weakest link of the load 

path, and their strength will determine the actual strength of the gravity load 

resisting system. For the connections to survive the sagging of the floors due 

to the column removal, they must be able to accommodate the axial 

deformations resulting from the beams being pulled away from columns. In 

a previous study (Gong, 2010), this writer pointed out that the supply of 

ductility is at the core of connection design to resist progressive collapse.  

 

Figure 1. Double-span Condition due to a Column Removal 

  

It is in the foregoing context that this research is to develop a method to 

quantify the strength and ductility capacities of steel angle connections 

under a double-span condition. 

 

 

A column removed herein, simulated by the test column 
in Figure 2.  

Affected connections 
(including all the upper 
floors) 

upper columns  

left beam  right beam  
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Test Setup and Connection Specimens   

 

The double-span setup, simulating the removal of a central column, is 

schematically shown in Figures 2 and 3. The near end (i.e., the end where 

the tested angles were installed) of the two test beams were connected 

together at middle through a column stub. The beams and the middle 

column were made of a same stocky H-shape section W310×202 (nominal 

properties as per CISC 2016: linear mass 202 kg/m, depth d=341 mm, 

flange thickness 31.8 mm, and web thickness 20.1 mm). The members were 

such chosen that they would remain elastic during a loading, and thus can be 

re-used for the testing of all the specimens. The far end of the test beams 

was pin-supported, an equivalence to the inflection point of the actual frame 

beam. The reaction columns supporting the pins were fastened to the rigid 

concrete floor. A pair of struts, which is not shown in Figure 2 but can be 

seen in Figures 3 to 5, made of hollow structural section HSS127×127×8, 

was located at both sides of the test beams. The struts were designed to 

balance catenary action as well as to prevent the middle column from 

moving laterally during a loading process. To isolate angle deformation, it 

was necessary to minimize the bolt hole deformation of the test beams. 

Therefore, the webs of both ends of the beams were locally reinforced by a 

6 mm thick parallel plate on each side (see Figure 4). The entire setup was 

symmetric about the centre-line of the middle column.  

 

Figure 2. Side View of the Setup for a Double-span Condition 

 
 

The study consisted of testing 6 connections, as listed in Table 1. The 

specimens were divided into two groups. Group C had connection angles on 

beam web only (see Figures 3 and 4). Each beam had two angles, one on 

each side of the web. The web angles had three bolts per leg (see Figure 4). 

Group D had connection angles on both flanges and web (see Figure 5). 

Each beam had one top flange angle, one bottom flange angle, and one web 

angle. The flange angles had four bolts while the web angle had two bolts. 

Among each group, three different angle thickness, i.e., 7.9 mm, 9.5 mm 

and 13 mm, were included. All the angles had a nominal yield strength of 

300 MPa. 
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Figure 3. Photo of Setup of Specimen C3 before Testing 

 
 

ASTM A325 high-strength bolts of 
7
/8 inch (22.2 mm) diameter were 

used for all the connections. Standard bolt hole of diameter 23.8 mm was 

made by punching. The bolt gauges g1 and g2, as shown in Figure 1, were 65 

mm on both legs. The high-strength bolts were snug tightened in place. The 

tensile strength of a single bolt was 302 kN based on the average of five 

single-bolt test under pure tension. Based on a double-shear test of single-

bolts, the average strength per shear plane was 185 kN with rupture at 

thread and 228 kN with rupture at shank.  

 

Figure 4. Specimen C3 after Testing 

 
 

Table 1. Properties of Angle Connection Specimens 

Specimen 

ID 

Angle 

designation 

Angle length 

(mm) 
Number of 

Bolts  

Angle 

configuration 

C1 L102×102×7.9 Web: 228 3 Web only 

C2 L102×102×9.5 Web: 228 3 Web only 

C3 L102×102×13 Web: 228 3 Web only 

D1 L102×102×7.9 Fl.: 304 

Web: 152 

Fl.: 4 

Web: 2 

Flanges and 

web 

D2 L102×102×9.5 Fl.: 304 

Web: 152 

Fl.: 4 

Web: 2 

Flanges and 

web 

D3 L102×102×13 Fl.: 304 

Web: 152 

Fl.: 4 

Web: 2 

Flanges and 

web 
notes: 1) all bolts have a diameter of 22 mm (7/8 in.) 

           2) bolt pitch and end distance were 76 mm and 38 mm, respectively.   

           3) Fl. = flange 

           4) A designation means (larger leg width)×(smaller leg width)×(nominal thickness) 
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Figure 5. Specimen D2 before and after Testing 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two linear displacement sensors were placed under the middle column 

to measure its vertical displacement u. One load cell was used to measure 

the load P which pushed down the test column from above. For each test 

beam, at a section close to the half span, eight strain gauges were used to 

measure bending strains over the beam depth. The measured strain was used 

to calculate the axial force F and bending moment Mb at that section. A dial 

gauge was used to monitor the horizontal movement of a reaction column.  

 

 

Test Procedure 
 

Material coupons of angles, which were made of CSA/G40.21 300W 

steel (CSA 2013), were tested to determine the average strength of steels 

(see Table 2). The actual dimensions of the angles and beams were 

measured. The measured depth of the test beam was d=344 mm. 

 

Table 2. Material Strength 

Angle designation 
Yield stress, Fy 

(MPa) 
Ultimate stress, Fu 

(MPa) 

Young's 

modulus, E 

(MPa) 

L102×102×7.9 382 528 194300 

L102×102×9.5 375 540 192400 

L102×102×13 406 590 197600 

 

The step-by-step test procedure is described as follows:  

 

1) The beams and the column stub were lifted and temporarily 

supported in place. Angles were then installed in place preliminarily 

by loose bolts. Minor adjustments were then made to ensure that the 

test beams were levelled. All the bolts were then snug-tightened.  

2) The temporary supports for the beams and the column were removed 

to allow the middle column to sag slowly under the self-weight of 

the setup (which was 5.5 kN, including the weights of the column 

and the half of each beam). Data acquisition system recorded column 

vertical displacement and strain gauge readings simultaneously.     
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3) A jack was then used to slowly push down the middle column from 

above while the pushdown force, column vertical displacement and 

strain gauge readings were recorded. During a loading history, 

should the stroke of the jack be reached before connection failure, 

the jack would be unloaded to allow for inserting a block between its 

piston and the load cell and then be reloaded to connection failure.  

4) A testing was terminated when further loading became impossible 

due to a complete rupture of the connection or the tilting of the 

middle column.  

 

 

Test Results 

 

The failure of a specimen was characterized by the rupture of a 

component or several components. Table 3 provides a brief description of 

the failure mode for each specimen. Except specimen C1, all the tests were 

terminated right after the occurrence of the first rupture. It was observed that 

the first rupture of a specimen was always asymmetric with respect to the 

centreline of the middle column in spite of the symmetry of the setup. This 

phenomenon was attributed to the imperfection of symmetry due to 

fabrication and installation imperfections. Once the first rupture occurred, 

the middle column would tilt in the plan of the beam web and further 

loading became impossible.    

The curves of the push down load P versus vertical deflection u at the 

middle column are given in Figure 8. This curve represents the overall 

behaviour of a connection such as load-carrying capacity and rotation 

capacity. The angle of rotation of the test beam with respect to the middle 

column (or the slope of the test beam) was calculated as θ=tan
-1

(u/Lb), 

where Lb is the distance from the center of hinge to the face the middle 

column (Lb=1988 mm).  

 

Table 3. Failure Modes Observed from the Test 

Specimen 

ID 

Failure mode 

C1 Complete rupture of one web angle at Left Beam, followed by the 

complete rupture of another angle at Left Beam. The section of 

rupture was at the heel of beam leg (Figure 6). 

C2 Complete rupture of one web angle at Right Beam. The section of 

rupture was at the heel of beam leg (Figure 6). 

C3 Partial rupture of one angle at Right Beam, followed by the 

complete rupture of another angle at Right Beam. Both sections of 

rupture were at the net section of column leg (Figure 4). 

D1 Complete rupture of the bottom flange angle at Right Beam. The 

section of rupture was at the heel of beam leg. 

D2 Complete rupture of bottom flange angle at Left Beam. The section 

of rupture was at the heel of beam leg (Figure 5).  

D3 Shear rupture of bolts at the bottom flange angle of Right Beam 

(Figure 7). 
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Figure 6. Specimens C1 and C2: Angle Rupture Failure 

 
 

Figure 8 indicates that a specimen of group C had a much greater 

column deflection at its first rupture than the corresponding specimen of 

group D.  The P-u curves of group C have an evident "hardening effect" (i.e, 

the slope of the curve increases) when approaching the first rupture, 

revealing that a significant catenary action existed. On the contrary, the 

catenary action appears relatively insignificant for the specimens of group D. 

Figure 9 shows the free-body diagrams of the middle column and the 

left beam. The actions applied to one connection are denoted as N (axial 

load, whose direction is in parallel with the longitudinal axis of the beam), V 

(shear load, which is equal to the half of the push down load P) and M 

(moment). Actions N and M were obtained using the measured normal 

strains of a beam at a section. Note that the test setup was statically 

indeterminate, and N and M could not be obtained directly from equilibrium 

equations only. 

 

Figure 7. Specimen D3: Shear Rupture of Bolts  
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Figure 8. Curves of Load P vs. Displacement u 

 
 

Figure 9. Actions on a Connection 

 

 

The internal axial force F and bending moment Mb at the gauge section 

of a test beam are obtained using the recorded strain gauge reading. The 

procedure is as follows: 

1) Check the normality of gauge strain readings. The gauge section was Lg 

distance (1193 mm) away from hinge support (see Figure 2). Note that eight 

gauges were used over the depth of the section. 

2) Calculate the averaged strains at the top and bottom fibers at the gauge 

section. Note that this step required a linear regression analysis since the 

strain gauge readings were not perfectly linearly distributed over the depth 

of the section. Assume ε1=the averaged strain at the bottom fiber and ε2=the 

averaged strain at the top fiber.  

3) A normal stress is calculated as y
I

M

A

F b  for an elastic beam, where 

A=cross-sectional area, I=moment of inertia, and y=the distance from the 

centroidal axis of the section to a fiber. Thus, the internal forces at the gauge 

section were obtained as 
d

EIM b
21  

 , and 
2

12  
 EAF , where d is 

actual section depth, 344 mm. A positive F value indicates that the axial 

force was tensile, and a positive M value indicates that the moment induces 

tensile strain at the bottom of the beam.   
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Since the axial force remained unchanged along the length of a test 

beam, the axial load applied to one connection is obtained as N=F. 

Furthermore, assuming that the moment at the hinge support was zero, the 

linear distribution of moment along the length of a beam gives the moment 

applied to a connection as  gbb LLMM  . 

 

Figure 10. Group C Specimens: Curves of Axial Load N vs. Displacement u  

 
 

The curves of averaged axial load N versus column deflection u were 

provided in Figures 10 and 11 for the specimens of group C and group D, 

respectively. For group C connections, we can see that the axial force of the 

test beams was very small at the early stage of a loading process (i.e., u<60 

mm). Then, the connections experienced an accelerated increase of tensile 

axial force. At the first rupture, the axial force N was several times as large 

as shear force V (also see Table 4).  For group D connections, we notice that 

the axial force was negative at arch action stage, which accompanied by 

some support slide (the maximum slide was 4.5 mm for D2 specimen 

according to a dial gauge). The arch action was replaced by Catenary action 

when deflection u exceeded about 180 mm for specimen D3. However, 

specimens D1 and D2 had the first rupture with little catenary action.  
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Figure 11. Group D Specimens: Curves of Axial Load N vs. Displacement u  

 
 

Figure 12. Curves of Connection Moment M vs. Displacement u 

 
 

Figure 12 gives the curves of averaged beam moment M versus 

deflection u for each specimen. As expected, the specimens of group C had 

a relatively small connection moment due to having web angles only. In 

contrast, the specimens of group D had large moment due to having flange 

angles. Table 4 summarizes the connection actions at the first rupture.   

 

Table 4. Connection Actions at the First Rupture 

Specimen 

ID 

Rupture 

location 

u 

(mm) 

Slope θ 

(rad.) 

P 

(kN) 

N 

(kN) 

M 

(kN-m) 

V 

(kN) 

C1 heel 247 0.124 74.5 274 24 37 

C2 heel 315 0.158 168 465 16 84 

C3 boltline 324 0.163 270 745 14 135 

D1 heel 150 0.075 92 -52 77 46 

D2 heel 194 0.098 163 -48 150 81 

D3 bolts 250 0.126 301 +60 260 154 
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Analysis Model for the Test Setup 

 

A mathematical model, as shown in Figure 13, is proposed to simulate 

the test setup. The test beam is replaced by an elastic beam element, and the 

middle column is treated as a rigid body. The hinge support is modeled as a 

roller which allows the support to undergo horizontal movement or slide δ 

beyond its initial position. At the near end, the depth of the beam is modeled 

as a rigid arm attached to the beam. The angle connection is then modeled 

as a set of parallel springs between the rigid arm and the face of the middle 

column.  

For group C specimens, the web angles are modeled by using three 

springs (called web spring hereafter) corresponding to the three bolts along 

the length of the angles. The first web spring is located at 76 mm below the 

beam centroidal axis (i.e., y1=76 mm in Figure 13), and the second spring is 

located at the beam centre (i.e., y2=0), while the third spring is located 76 

mm above the beam centre (i.e., y3=76 mm). The properties of these 

springs will be determined based on a tributary width of 76 mm and two 

angles (one angle on each side of the web). 

 

Figure 13. Mathematical Model for Test Setup 

 
 

For group D specimens, the bottom flange angle is modeled as one 

spring (y1=172 mm), and its properties will be determined based on a 

tributary width of 304 mm (i.e., corresponding to its 4 bolts). The web angle 

is modeled by two springs (y2=0 and y3=76 mm) with its properties 

determined based on one angle and 76 mm tributary width. The top flange 

spring, having the same properties as the bottom flange spring, is located at 

y4=172 mm. 

These component-based springs are assumed to deform in one direction 

only (i.e., x-direction in Figure 13). For this study, shear springs in vertical 

direction is unnecessary since connection shear deformation is negligible. 

The axial deformation of the i
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 spring is obtained as: 
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where: θ is beam slope, positive clockwise; yi is spring location, positive 

when below centroidal axis of beam section; M is the moment at the face of 

column, positive for sagging moment; A=25700 mm
2
 is the cross-sectional 

area of the test beam; I=520×10
6
 mm

4
 is the moment inertia of the beam; 

E=200 GPa is the Young's modulus of the beam; and δ is the horizontal 

slide of support. In Equation 1, the first term is the elongation caused by the 

sagging of the middle column (i.e., the difference of length between 

hypotenuse and side). The second term is the elongation of beam under 

tensile force N. The third term is the deformation caused by the rigid arm's 

rotating with the near end. Within the third term, (MLb/3EI) is the rotation 

due to beam bending. The fourth term, δ, support slide, is assumed to occur 

as a translational deformation imposed to all springs.     

 

Figure 14. Equilibrium of Left Beam 

 
 

The theoretical axial force at the connection is obtained as                                                       

 iTN , where Ti is the axial force of the i
th

 spring. Namely, N is the 

resultant of the spring forces. The moment at the connection is obtained as 

ii yTM  by summing the moment of all the springs about the centroidal 

axis of the beam section. From the equilibrium of the test beam (Figure 14), 

shear load at the connection is found as:  

 

                                                  bLuNMV                                        (2) 

 

where u is the deflection of the centroid at the near end of the beam. The 

pushdown load P is then obtained as P=2V. 

 

 

Component-Based Spring Model  

 

In the previous section, a connection is modeled by several parallel 

uniaxial springs. The mechanical properties of the springs, i.e., the relationship 

between deformation Δ and force T must be known for the analysis of the test 

setup. Figure 15 illustrates a typical force versus deformation curve for a 

bolted-angle connection. Note that force T is applied to the beam-framing leg, 

and  is the deformation of beam web with respect to their initial unloaded 

position (see the inset in Figure 15). 
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In a companion study (Gong, 2014), the writer proposed a trilinear spring 

model when under tension load only, and this model is adopted herein. Gong’s 

model included an empirical equation to estimate the tensile deformation 

capacity Δu of the angle spring. It was assumed that the angle failed by a 

rupture when it unfolded under tension. For the angle to reach full plastic 

deformation, it is generally required that its bolts do not fail before angle 

ruptures. The ultimate displacement capacity is tgu 14.11 , and the 

ultimate strength is 

                           

                                  18.0 lFdbtnT uuhu                                       (3) 

 

Figure 15. Force-displacement Relationship for an Angle Spring 

 

where: n is the number of bolts per spring; dh is bolt hole diameter; Fu is 

angle tensile strength; and l1=g1t/2. The plastic strength Tp is found 

approximately as 

 

                             
 
  bddal

Fbt
nT

FF

y
p

2

42

1

2


                                         (4) 

 

where: n is the number of bolts per spring; b is tributary width per spring 

(76 mm); Fy is the yield strength of angle; dF is the diameter of washer (44 

mm for this test program); a=1.1t, and t is angle thickness. The initial 

stiffness K0, the first yield strength Ty and tangential stiffness Kt are 

calculated as 
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3
1
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


                                                     (7) 

where: 123btI  ; g1 and g2 are bolt gauges (see Figure 2). Then, Δy=Ty/K0 

and Δp=Δy+(Tp–Ty)/Kt. The stiffness    pupuu TTK  .  

 

It is also necessary to establish the force-displacement relationship 

under compression. An equation incorporating bolt slip is proposed as 

follows:  
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where:  is spring deformation (the absolute value is used herein because it 

is negative when found by Equation 1); bs is bolt slip, included in the 

spring model;   0 bs must be warranted during calculation; Kic is the 

initial compressive stiffness; Kp is the strain-hardening stiffness, which was 

taken as 5% of Kic in this study; By is the compressive yielding strength; λ is 

an integer for curve fitting, which is taken as 2 for this study; and Bu is an 

upper bound governed by shear failure of bolt. A negative sign on the left 

side of the equation is required because compression force is negative. 

Equation 8 has been used by many researchers to model the moment-

rotation behaviors of semi-rigid connections. Table 5 shows the parameters 

of angle spring models in tension. 

 

Table 5. Parameters of Angle Spring Models in Tension 

Angle 

spring 

 

ȹy 

(mm) 
ȹp 

(mm) 
ȹu 

(mm) 
Ty 

(kN) 
Tp 

(kN) 
Tu 

(kN) 
K0 

(kN/

mm) 

Kt 

(kN/

mm) 

Ku 

(kN/

mm) 

C1 WS 0.45 3.3 32.7 15.4 45.8 186 34.2 10.8 4.8 

C2 WS  0.37 2.9 29.8 22.0 69.4 212 59.4 18.6 5.2 

C3 WS 0.30 2.8 25.8 42.6 156 276 142 44.6 5.2 

D1 WS  0.45 3.3 32.7 7.7 22.9 93 17.1 5.4 2.4 

D2 WS  0.37 2.9 29.8 11.0 34.7 106 29.7 9.3 2.6 

D3 WS  0.30 2.8 25.8 21.3 77.9 138 70.9 22.3 2.6 

D1 FS 0.45 3.3 32.7 30.8 91.6 372 68.4 21.6 9.6 

D2 FS 0.37 2.9 29.8 44.0 139 424 119 37.2 10.4 

D3 FS 0.30 2.8 25.8 85.2 312 552 284 89.2 10.4 
Notes: 1) WS=Web Spring; FS=Flange Spring.  

           2) WS of group D is based on 1 bolt with a tributary width of 76 mm and 1 angle. 

           3) WS of group C is based on 1 bolt with a tributary width of 76 mm and 2 angles. 

           4) FS of group D is based on 4 bolts with a total width of 304 mm and 1 angle.  

 

Bolt slip has a considerable impact on compressive force. Typically, 

bolt slip is taken as one-half of the difference between the bolt diameter and 

the bolt hole diameter (which was 0.8 mm for this test). Since this slippage 
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occurs between beam web and bolt plus between bolt and angle, the 

maximum slippage between a beam web and an angle is thus taken as 1.6 

mm. 

The initial compressive stiffness Kic must account for bearing 

deformation of bolt holes. For example, it was observed that the top flange 

angle of specimen D2 experienced a permanent bearing deformation about 

0.4 mm. Rex and Easterling (2003) proposed the following equation for hole 

bearing stiffness: 

                                   

                                           

8.0

4.25
120 








 b

ybr

d
tFK                                       (9) 

 

where: db is bolt diameter in the unit of mm; t is the thickness of bearing 

plate; and Fy is yield strength of bearing plate. The initial stiffness can then 

be obtained through the following equation 

 

                                           

bcbr

ic

KK

K
11

1



                                              (10) 

 

where Kbc is the compressive stiffness of steel plate between the bolt hole 

and the face of column (this steel plate was 53 mm long from the edge of 

hole to the face of column due to 65 mm bolt gauge). For the tributary width 

of one bolt, 76 mm, and assuming a 45 degree spread angle of compressive 

stresses, we can obtain an equivalent compressive column of a width of 50 

mm. Thus, the column stiffness Kbc for one-bolt spring is obtained as 

Kbc=EA/L=E(50)t/53=0.94Et. Table 6 provides the model parameters for 

one-bolt spring when under compression. The compressive yielding strength 

By is calculated as By=50tFy, which is smaller than bearing strength 

Bn=3.0tFudb per the Canadian steel code (CSA Group, 2014). 

 

Table 6. Parameters of Compressive Spring for One Bolt 

Angle Kbr 

(kN/mm) 
Kbc 

(kN/mm) 
Kic 

(kN/mm) 
By 

(kN) 
Bu 

 (kN) 

L102×102×7.9 325 1485 267 151 228 

L102×102×9.5 383 1723 313 174 228 

L102×102×13 555 2387 450 258 228 
Notes: 1) the thickness of L102×102×13 is t=12.7 mm 

            2) Shear strength of single bolt was 228 kN when shear plan intercept shank. 

            3) For FS of group D, the parameters should be multiplied by 4 due to four bolts. 

 

 

Analysis Results               
 

The analytical loading history of each specimen is calculated in this 

section, and the theoretical results will be compared with the test results. The 

procedure of the theoretical analysis is as follows: 
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1) give a value for beam slop θ in the unit of radians. The deflection at the 

middle column is u=θLb, where Lb=1988 mm. 

2) calculate i for each spring from Equation 1, assuming initial values for 

N, M, δ and bs. 

3) obtain each spring force based on its T (or C) versus Δ curve. Note that 

tensile spring force is positive, and compressive spring force is negative. 

Note that it is necessary to check if any spring has failed, i.e., a tension 

spring will break if ui  , and a compression spring will break if 

|C|>Bu. Once a spring were found to break, its spring force would be set 

to zero.  

4) calculate connection force resultants:  iTN  and ii yTM  , where 

T=C for negative deformation. 

5) Check the convergence of N and M. If yes, go to step 6. Otherwise,  

adjust support slide δ and bolt slip bs, then substitute the N and M from 

Step 4 , new δ and Δbs into Equation 1 to obtain new i, and go back to 

step 3. 

6) obtain shear force V through Equation 2. The pushdown load at the 

middle column is obtained as P=2V. 

 

The foregoing procedure can be carried out easily on a spreadsheet. To 

obtain a complete loading history, the procedure needs to be repeated for 

various beam slope values.  

For group C specimens, no support slide is allowed during analysis (i.e., 

δ=0) in line with test results. In the meantime, if any spring were to be 

found to have negative deformation (i.e., in compression), it would be 

assumed to undergo bolt slip first, up to 1.6 mm. In other words, a web 

spring is assumed to have zero compressive force as long as its compressive 

deformation is less than 1.6 mm. This assumption is effectively equivalent 

to ignoring the compressive force of web springs, a practice also adopted by 

other researchers such as Yang and Tan (2013). Figure 16 compares the 

numerical analysis results of specimen C2 with its test results. It can be seen 

that the numerical P-u curve agrees with the test curve very well for loading 

history u>100 mm. The predicted connection forces N and M have large 

discrepancy when displacement u is less than 150 mm, but become in line 

with test results in the latter half of the loading history. This phenomenon 

also suggests that the prediction of load P is somewhat insensitive to the 

accuracy of compressive spring model.   

Figure 17 shows the deformation history of the three web springs. It can be 

seen that the 3
rd

 spring (i.e., the top spring) experienced some compressive 

deformation when u was less than 150 mm (the maximum compressive 

deformation was -1.5 mm, which is smaller than bolt slip 1.6 mm). The first 

spring experienced rupture at u=274 mm since its deformation exceeded its 

capacity 29.8 mm. Note that the theoretical analysis predicts an earlier rupture 

than the test results. 

Figure 18 compares the analysis results of specimen D2 with its test 

results. Since the lateral stiffness of the support is unknown, in order to 

obtain a unique solution, it is necessary to preset an axial force N before 

starting calculation. To this end, the axial force is chosen equal to the test 
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result. Then, bolt slip, support slide and other information can be 

determined using the foregoing procedure. Again, the numerical P-u curve 

agrees with the test curve very well for most of the loading history. The 

model consistently overestimates internal moment M slightly throughout the 

loading history.  

 

Figure 16. Specimen C2: Comparison of Test Results with Theoretical Analysis 

 
 

Figure 17. Specimen C2: Deformation History of Web Springs 

 
 

As expected, the top angle spring of specimen D2 was in compression 

throughout the entire loading history. Figure 19 shows the history of bolt 

slip for the top angle spring in addition to the history of support slide.  Note 

that the maximum support slide from the analysis is 5.1 mm, which is very 

close to test result 4.5 mm.   

Specimen D2 was actually in the stage of arch action when failed. It 

failed because the bottom flange angle reached its deformation capacity. 

The slide of the support also limited the magnitude of the arch action. As 

such, the primary action was still the bending of the double-span beams.  
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Figure 18. Specimen D2: Comparison of Test Results with Theoretical Analysis 

 
Figure 19. Specimen D2: Bolt Slip and Support Slide History 

 
 

 

Summaries and Conclusions 

 

This study tested six bolted-angle connections under a column removal 

condition. Among them, three specimens (i.e, group C) were having web 

angles only, while another three (i.e., group D) were having strong top and 

seated angles and a weak web angle.  The observed failure modes included 

rupture of angles and shear of bolts. All angles failed in a ductile manner, 

though the deflection capacities of the middle column were significantly 

different between group C and group D specimens. The test results affirm 

that the current Canadian practice can prevent failure modes such as bolt 

pull-through and bolt edge tear out. 

A mechanical spring model for angles was described in details. 

Especially, the property of deformation versus force in compression phase 

was proposed in this study. The spring model could incorporate a bolt 

slippage if necessary. The spring model was then applied to the 

mathematical model of the test setup for column removal scenario. The 

analysis results for specimens C2 and D2 were provided, and it was found 

that the theoretical results generally agreed very well with the test results.  

The overall ductility of group C specimens was much greater than that 

of group D specimens, which is attributed to the fact that the connection 

angles of group C were located closer to the centre of the test beam. The 

farther away an angle from the centre of rotation, the greater the deformation 
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demand is. For the top and bottom flange angles of group D, the centre of 

rotation was at the vicinity of the top angle, and the bottom angle had the 

maximum deformation demand, and thus failed first.    

The proposed angle spring model and test setup model can be used to 

obtain the strength and ductility capacities of bolted-angle connections for 

design purpose. Future work will be devoted to develop a design method for 

the robustness of bolt-angles.   
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