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Comparison of Interferometry Techniques of Identification of 

Structures of Solid Media 

 

Carlos Orlando Jimenez Gonzalez 

 

Juan Alejandro Vazquez Feijoo 

 

Jose Navarro Antonio  

 

Abstract 

 

This work presents a comparison between cross-correlation, cross-

coherency and deconvolution in order to visualize their interrelations and 

possible performance under different circumstances of usage. Each 

interferometry method possesses its very own advantage. For example, 

although cross-correlation does not eliminate the source signature, it has the 

best performance for noisy signals. When arriving times are of primary 

importance, cross-coherence presents advantages as it is more precise though 

disregards the spectral amplitude. 
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Introduction 

 

Seismic interferometry is a recent strategy used in several disciplines. The 

main purpose of seismic interferometry is to construct a Green’s function 

between two locations from the records of earthquakes, microtremors and 

artificial sources. This powerful technique has been applied using three main 

algorithms: cross-correlation, deconvolution and cross-coherence; these 

methods have both advantages and disadvantages (Snieder et al., 2009). The 

seismic interferometry technique has been used successfully in previous works 

to extract the Green’s function in layered medium using body waves from 

borehole array records. The use of record from borehole arrays in the 

algorithms of seismic interferometry implies 1D wave propagation.  

Many problems in seismology can be explained by representing the Earth 

as a media defined by layers of certain thicknesses and mechanical properties 

(Haskell, 1953). Under certain considerations the seismic response of some 

alluvial valleys can be explained using a one-dimensional approach (Pujol, 

2002), such the case of the valley of Mexico, where the geological 

configuration of subsoil favors the use of simple 1D propagation models 

(Reinoso, 1996). Although, one-dimensional geometry seems far from reality, 

such geometry is often seen in seismological observations by vertical arrays of 

seismographs in the shallow subsurface. One-dimensional geometry is enough 

if an appropriate combination of receivers and earthquakes are selected 

(Nakahara, 2006). 

Here, the equations governing the displacements in a model of a layered 

medium are used to characterize the theoretical response obtained with the 

three algorithms of seismic interferometry, in the frequency and time domain. 

Additionally, the displacement equations are used in the generation of synthetic 

seismograms used to characterize the wavefield between two records. One 

advantage of a 1D model is that it allows us to visualize in simple way the 

relationships between these interferometry techniques and also allows us to 

analyze the accuracy and convenience of the usage of each technique under 

different conditions and for different objectives.  

The first section analyzes the three techniques from a mathematic point of 

view, highlighting their direct physical dependency with cross-correlation. 

Second section makes use of the displacement equations for vertical 

propagation of plane SH-waves in a single layered medium in order to apply 

the three interferometry techniques. The mathematical operations are 

developed in frequency domain and the interferometry responses are calculated 

using the surface displacement as the reference position. In order to obtain a 

better interpretation, the interferometry response is transformed to time domain 

using the Fourier transform. The equations of displacement in the surface and 

the bottom of the layer are used to construct the synthetic seismograms 

according with the convolutional model. The noise influence is evaluated when 

comparing the displacement field obtained for when uncorrelated random noise 

is added or not. In the particular case of cross-coherency the solution is 

obtained using a series expansion of the sign function of a cosine function, 
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allowing the response as an infinite sum of Dirac delta impulses to be 

expressed. 

 

 

Mathematical Expressions for Interferometry Techniques 
 

In this section, a theoretical analysis and comparison between three used 

algorithms for retrieving the Green’s function, is made. The simplest model of 

a layered medium used here consists of a horizontal single layer over a half-

space (Figure 1), the medium is both homogeneous and isotropic. Layers 

extend infinitely in the horizontal direction. In a lossless medium, properties of 

the layer and the half-space are determinate by the SH wave-velocity, i , and 

the mass density, i , where the subscript stands for the layer (i=1) and the 

half-space (i=2). If the attenuation is considered, then the quality factor iQ  is 

introduced. Displacements in the layer and the half-space are defined by  tw1  

and  tw2 . The free surface is in 0y  and the positive direction is 

downwards.  

First of all, let us establish the algorithms used in seismic interferometry. 

The ground motion in a specific location can be described by a seismic source 

and the Green’s function of the medium in such a location. The convolutional 

model establishes the dependency of a displacement at a point of the medium 

as function of the displacement of another point which is a real or virtual 

source. Then, if attenuation, transmission losses, noise and multiples are 

excluded, the seismic trace can be constructed by the 1D convolutional 

model fs  , where  means convolution, f  is the primary reflectivity series 

and s  is the source wavelet.  

In the following development, it is assumed that the earthquake source is 

far away from the record stations, therefore it is safe to assume that the 

incoming wavefield is a vertical plane wave (Figure 1a). Only one degree of 

freedom is assumed. For the model presented in Figure 1 the spectra of the 

wavefield recorded by the receiver on the surface at the location ( 00  yy ) is 

given by,  

      ,: 00 yyGSW S , (1) 

in this equation  S  is the called source signature, i.e., source spectrum, for 

the seismic source located at the point Sy  (Figure 1a) and may include effects 

such as scattering; the function  ,: 0yyG S  is the primary reflectivity from 

the source to the free surface.  
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The receiver in the location by  denotes a receiver located at any by  in the 

borehole. The recorded wavefield in this position is produced because of the 

source located in Sy . Therefore, this wavefield can be predicted by,  

      ,: bSb yyGSW  , (2) 

where   is the angular frequency and  ,: bS yyG  is the Green’s function 

from the source position Sy  to by . As a reminder of this work, for simplicity, 

the argument is obviated, i.e.      ,: bSb yyGG   and  ,: 00 yyGG S , 

capital letters indicate the Fourier transform of the function.  

 

Figure 1. Geometry of the Single Stratified Layer, Black Triangles Represent 

the Surface Receiver and the Borehole Receiver 

 

 

Cross-Correlation 

The most simple seismic interferometry technique is cross-correlation 

(Wapenaar et al., 2010). A correlation in the frequency domain means a simple 

multiplication, then,  

  0

2

00, GGSWWC bbb , (3) 

the symbol  denotes the complex conjugate. The cross-correlation between 

two receivers can also be expressed as a function of the Green’s function 

between them, 

0,

2

0, bb GSC  , (4) 

where 0,bG is the plane wave Green’s function between by  and 0y  . Comparing 

equations (3) and (4) it is clear that 
2

S can be considered the power spectra of 
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a virtual source signature located at y0. Allowing an abuse of nomenclature, for 

simplicity any real or virtual source is going to be denoted by S.  

The main limitation of convolution as can be seen from (4) is that does not 

allow the isolation of Green’s function. 

 

Deconvolution 

A very simple way to extract from the convolution the Green´s function is 

to suppose that both signals in equation (4) can be separated, then one may 

have 

2

0,

0,

S

C
G

b

b  , (5) 

equation (3) on equation (5) gives, 
2

00, SWWG bb

 . Expanding the 

convolution operation in the numerator and by the algebraic manipulation one 

obtains, 






00

0

2

0,

2

WW

WW

S

GS
bb

, (6) 

and the Green’s function is finally isolated, equation (6) can be expressed as 

(Vasconcelos & Snieder, 2008) 

0,

00

0
0, b

b
b G

WW

WW
D 





, (7) 

Equation (7) provides a second technique for retrieving the Green´s 

function, which is called deconvolution. This operation eliminates the power 

spectrum of the source (signature). This is an advantage in passive 

interferometry (using background noise or earthquake data) because the 

imprint waveform is different for each time data.  

 

Cross-Coherency 

On the other hand, some of practical applications are related to the Green´s 

function angle phase, e.g. arriving times. Therefore, the amplitudes are 

neglected. Amplitudes from a signal close to the natural frequencies of the 

media are difficult to see, therefore this amplitudes may be meaningless. For 

this case, there is another way to deal with equation (3). 
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Let us divide equation (4) by the magnitudes of the signals in both points, 

0

0

0

0,

2

WW

WW

WW

GS

b

b

b

b


 , (8) 

developing the left hand side of the equation, one obtains 






SSGSSG

GS

WW

WW

bb

b

b

b

0,0,

0,

2

0

0 . (9) 

the denominator can be reordered and then separated in two square roots, that 

can be expressed in terms of the magnitudes, 

0,

0,

00,

2

0,

2

b

b

b

b

G

G

GGS

GS



, (10) 

the signal obtained is the Green’s function 0,bG  between these points scaled to 

the unity, again the power spectrum of the source signature disappears. This 

algebraic treatment gives the equation for the third interferometry method 

called cross-coherency ji,  

0

0
0,

WW

WW

b

b
b



 . (11) 

The use of the cross-coherency in seismic interferometry can be found, for 

example, in Prieto et al., (2009) and Nakata & Snieder (2011) and 

demonstrates that cross-coherency which is proportional to the Green’s 

function. Equation (10) indicates that cross-coherency extracts the spectrum of 

the normalized Green’s function. If an actual linear relationship between both 

signals   exists it results in a complex vector with constant unitary magnitude. 

Therefore cross-coherency only maintains the phase angle of the Green’s 

function. Some authors consider equation (11) as a normalization of the cross 

spectrum referring it as complex coherency (Prieto et al., 2009).  

According to definition of the   xxx sgn  the cross-coherency can also 

be obtained by 

 0,0, sgn bb D , (12) 
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Interferometry Response of a Single Stratified Layer Model 

 

Here, a model of a single layered medium is used to characterize the 

response in the time domain of the traces obtained by the interferometry 

techniques. A model of this kind has been used to model some basic behavior 

in some structures (Somerville et al., 1991) and in some structures like 

buildings (Nakata & Snieder, 2013). Considering that   01 ,0 WW   and 

  HWHW ,1  are the displacement spectra in the free surface 0y , and in 

the top of the half-space Hy  , respectively (see Figure 1b). H is the 

thickness of the single layer,   yWyW ,1  is the displacement spectrum at any 

point inside the layer ( Hy 0 ). In addition, the model has a linear response 

and no losses are considered. The mechanical properties of the layer and the 

half space are 1 , 1 and 2 , 2 , respectively. The subscripts 1 and 2 stand for 

the layer and the half space. Perfect welded is the boundary condition between 

the soft layer and the half space (continuity of displacements and tractions), 

and at 0y  the free-stress condition. The incident wave in the lower medium 

is a plane SH-wave that propagates along the y-axis of the type 










1


y
ti

e .  

The geometry considered here is a special case of the proof by Wapenaar 

et al., (2004) for application on seismic interferometry. For convenience, the 

displacement in the surface is considered the source signature and it is 

governed by, 





















11

0
0

sincos

2 2








 H
i

H

eA
SW

Hik

, (13) 

where 0A  is the incident amplitude, commonly considered like 10 A , 

1i , 2211    is the impedance contrast between the layer and the 

half-space. 

The of power spectrum of S  is 



















1

22

1

2

2

02

sincos

4








 HH

A
S , (14) 

that is equal to the square of the amplification factor in the free-surface (for a 

single strata layer of thickness H ). The spectral displacement in Hy  is, 











1

cos


H
SWH , (15) 
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By the use of equation (3) the cross-correlation is, 

















11

2

2

0,







 HiHi

H ee
S

C . (16) 

The deconvolution (equation (7)) for displacement at any position Hy   is, 

















11

2

1
0,







 yiyi

y eeD , (17) 

in particular when Hy   is, 

11

2

1

2

1

00

0
0,







 HiHi

H
H ee

WW

WW
D



 , (18) 

In all of these equations attenuation and dispersion are discharged. The 

two waves produced are symmetrical and the energy is equally distributed. 

Similar results are obtained elsewhere, e. g. Trampert et al. (1993) and  Snieder 

& Şafak (2006) in buildings.  

Applying the inverse Fourier on equation (18) the impulse response 

at Hy  is obtained (when the unitary impulse is applied at 0y ),  

  



























11

0,
2

1







H
t

H
ttDH

. (19) 

The impulse response is composed by an upgoing wave traveling from the 

bottom receiver to the surface receiver collapsing in 0t  and an down-going 

wave traveling from the surface to the half-space (Snieder & Şafak 2006), 

Transforming equation (16) into the time domain one obtains,  

     




































112

,,0






H

t
H

t
tS

dtHww , (20) 

where  tS  is the autocorrelation of the source signal  ts  , i.e., 

     tststS  . For any position Hy   one has 

     




































112

,,0






y

t
y

t
tS

dtHww , (21) 

The two terms in equation (18) can be interpreted as the upward and 

downward wave travelling between the two receivers. The term 
2

S  in 
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equation (14) is equivalent to the square of the well-known amplification factor 

of a single layered medium, consequently, the maximum amplification factor is 

equal to 2/4  .  

The value of 
2

S  introduces resonant frequencies known as scattered 

waves. This happens when   2/12/ 1  nH  ; where Nn . This fact 

implies that the correlation exhibits these additional reflexions not observed in 

deconvolution. .  

The modulus of the transfer function of a single layered medium is 

expressed by, 

1

1

0 cos















H

W

W

H

. (22) 

On the other hand, the cross-coherency (equation (11)) yields, 

 
1

1

0, cos
2

1
11































 






H

ee

HiHi

H . (23) 

Equation (23) is interpreted as the Green’s function over its module. In 

fact, this equation is a sign function of the deconvolution (equations (7) and 

(18)) and provides a function that resembles a square wave. This function can 

be expressed in an expanded form as follows, 

        














 






1 1

1

10,

12
cos

12

14
cossgn

n

n

H

Hn

n
Hk






 , (24) 

applying the inverse Fourier Transform on the expression (24) results in, 

 
     
























 








 







1 11

1

0,

1212

12

12

n

n

H

Hn
t

Hn
t

n
t








 , (25) 

where n  is the number of times that the energy is reflected.  

The result obtained by cross-coherency gives the same phases in the two 

first spikes than those obtained by cross-correlation or deconvolution. 

Additional spikes in equation (26) portray the phases of the multiples produced 

by the standing wave in the soft layer. However, it must be observed that even 

if the displacements are described at any other point, i.e., Hy   , multiples 

still appear; this is an important unphysical effect. Cross-coherence produces 

multiples at any point where the data is taken. Then, these additional impulses 

are attributed to an unphysical boundary created by the cross-coherency 

operation. 
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Equations (16), (17) and (23) demonstrate the relationship between the 

three interferometry techniques for retrieving the impulse response from a 

single stratified layer. From the analysis of the mentioned expressions the 

following asseverations are proved: 1) cross-correlation gives the Green’s 

function convolved with the source signature. 2) Deconvolution extracts the 

Green’s function as it takes away the source signature. 3) Cross-coherency is a 

normalized version of deconvolution. As cross-coherency is a normalized 

process, the useful data comes mainly from the phase angle. For many 

purposes the magnitude is meaningless or difficult to obtain with practical 

accuracy, so cross-coherency may provide a good alternative. Nevertheless, 

cross-coherency presents other problems; it produces harmonics as a reflection 

on a virtual frontier at any point the data is taken hindering the interpretation. 

Another big issue with the interferometry techniques is the influence that 

the noise has on them. In order to illustrate the noise effect on the techniques of 

seismic interferometry in the case analyzed above, it is presented as a 

numerical example. For this purpose, equations (13) and (15) are used to 

generate synthetics seismograms in two positions as is illustrated in Figure 1b. 

Synthetic seismograms are made using the convolutional model for the cases: 

of noise-free and adding uncorrelated noise. Equations (13) and (15) are 

convolved with a Ricker wavelet to obtain the displacement spectra and 

transformed to the time domain by the inverse fast Fourier transform (IFFT). In 

the simulation a Ricker wavelet of 5 Hz is used, the layer’s mechanical 

properties are 7.01  km/s 7.01  , when attenuation is considered, and in 

the half-space 2.12   km/s, 2.12  and 5002 Q . 

On the left side of Figure 2 the traces without attenuation are shown, the a-

causal (up going waves) and causal pulses (down going waves) are symmetric; 

on the right side of Figure 2 the results are plotted including non-correlated 

random noise in the convolutional model and attenuation is induced by the 

wavenumber   in the displacements, is evident that the symmetry of amplitudes 

is lost. Symmetry is recover using the real part of the interferometry traces, 

where effects like attenuation is discarding and helps to identify the arrival 

times. In the presence of uncorrelated noise the cleanest waveforms are 

obtained with cross-correlation. The multiples obtained in the cross-

correlograms have the same phases that the cross-coherency in the bottom of 

the layer. It’s evident that the usefulness of cross-correlation is related to the 

fact of obtaining a less distorted signal. 
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Figure 2. Interferometry Traces from Synthetic Seismograms. Deconvolution, 

Cross-Correlation and Cross-Coherency of the Displacement in the Bottom of 

the Soft Layer as a Function of the Displacement Recorded in the Free Surface. 

On the Left without Attenuation, on the Upper Right Side with Attenuation and 

Uncorrelated Additive Noise. In the Bottom Right Side with Additive Noise but 

is only Transform the Real Part of the Spectrum 

 
 

 

Conclusions  

 

This work provides a point of comparison of the good and bad 

characteristics of each interferometry technique according to the usage of the 

information. This is a good means to evaluate the best interferometry technique 

for the specific purpose. Cross-correlation is the best for noisy signals; 

however the source signature is still immersed into the data. Deconvolution 

isolates the Green’s function but has problems dealing with uncorrelated noise 

in signals. When arriving times are of primary importance, then cross-

coherence is a good alternative, as only the phase is accurately obtained 

however this technique is not good for noisy signals and produces spurious 

components on the site data. 
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