Athens Institute for Education and Research ATINER

ATINER's Conference Paper Series CHE2014-1187

Rare Earth Complex Catalysts
Transforming CO₂ into Cyclic
Carbonate under Mild Conditions

Wen-Zhen Wang Professor Xi'an Shiyou University China

Dan Zhao Xi'an Shiyou University China

Lei-Jie Yang Xi'an Shiyou University China

Xin-Gang Jia Xi'an Shiyou University China

ATINER CONFERENCE PAPER SERIES No: CHE2014-1187

An Introduction to ATINER's Conference Paper Series

ATINER started to publish this conference papers series in 2012. It includes only the papers submitted for publication after they were presented at one of the conferences organized by our Institute every year. The papers published in the series have not been refereed and are published as they were submitted by the author. The series serves two purposes. First, we want to disseminate the information as fast as possible. Second, by doing so, the authors can receive comments useful to revise their papers before they are considered for publication in one of ATINER's books, following our standard procedures of a blind review.

Dr. Gregory T. Papanikos President Athens Institute for Education and Research

This paper should be cited as follows:

Wang, W.Z., Zhao, D., Yang, L.J. and Jia, X.G., (2014) "Rare Earth Complex Catalysts Transforming CO₂ into Cyclic Carbonate under Mild Conditions", Athens: ATINER'S Conference Paper Series, No: CHE2014-1187.

Athens Institute for Education and Research

8 Valaoritou Street, Kolonaki, 10671 Athens, Greece

Tel: +30 210 3634210 Fax: +30 210 3634209 Email: info@atiner.gr

URL: www.atiner.gr

URL Conference Papers Series: www.atiner.gr/papers.htm

Printed in Athens, Greece by the Athens Institute for Education and Research. All rights reserved. Reproduction is allowed for non-commercial purposes if the source is fully acknowledged.

ISSN: 2241-2891

1/09/2014

Rare Earth Complex Catalysts Transforming CO₂ into Cyclic Carbonate under Mild Conditions

Wen-Zhen Wang Professor Xi'an Shiyou University China

Dan Zhao Xi'an Shiyou University China

Lei-Jie Yang Xi'an Shiyou University China

Xin-Gang Jia Xi'an Shiyou University China

Abstract

In this study, a highly efficient catalyst system was designed and fabricated based on the synthesis of cyclic carbonates from CO₂ and propylene oxide. The reaction of carbon dioxide with propylene oxide to generate PC catalyzed by N-heterocyclic ligands (Bipy, Hdpa, Hdpza, Napy) and rare earth metal salt system was investigated, and the influence of the ligand structure for catalytic performance, analyzed. Different reaction conditions including temperature, pressure and reducing metal were studied to optimize reaction conditions.

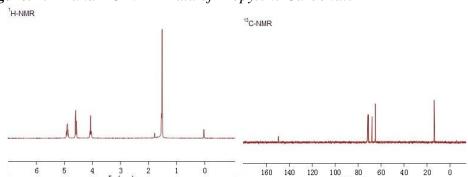
Keywords: carbon dioxide transformation; rare earth complex catalyst; cyclic carbonate; mild conditions; green chemistry

Acknowledgments: Our gratitude would be extended to the Nature Science Foundation of Shaanxi Province (No: 2012JM2011), PR China, by which the study had been financially supported.

Introduction

The development of environmentally friendly processes based on carbon dioxide, one of the key greenhouse effect gases, has attracted considerable attention in recent years. [1] Carbon dioxide is recognized to be highly naturally abundant, inexpensive, recyclable, and a nontoxic carbon source of various organic reactions. [2] The chemical fixation of carbon dioxide into valuable chemicals is generally regarded as an excellent solution both from environmental protection and resource utilization standpoints. Propylene carbonate (PC) is not only a low toxicity and high boiling point solvent, but also an important organic product that has been widely used in the fields of organic synthesis, gas separation, electrochemistry *etc*. [3] Although the synthesis of PC from carbon dioxide and propylene oxide has been applied in industrial scales, the process demands considerably high temperature and pressure (180-206 °C, 7-8 MPa). Therefore, great efforts are still being made to develop novel and efficient catalyst system to catalyze cycloaddition reaction of carbon dioxide under mild reaction conditions. [4]

The catalysts of this transformation include heterogeneous catalysts and homogeneous catalysts.^[5] The inherent problems, however, are their low activity, high pressure, high temperature conditions and co-solvents as well. ^[6] Generally, salen complexes are moisture sensitive, while low-valent metal complexes, oxygen sensitive. ^[7] Metal porphyrin and phthalocyanine complexes agglomerate with each other and need to be used in large quantities. They also require co-solvents to achieve excellent activity. ^[8]


Up to now, reports on rare earth complex catalysts on the cycloaddition of carbon dioxide to propylene oxide for the synthesis of PC remain extremely scarce, and the catalytic function of heterocyclic amine ligand complexes for this series has been rarely explored. ^[9] Considering that rare earth metal ions have high charges, high coordination numbers and incompact room compared with common transition metal ions, it is our interest to investigate the novel and efficient rare earth metal catalyst system for synthesizing PC under relatively mild reaction conditions. ^[10]

This study designed and fabricated a highly efficient catalyst system based on the synthesis of cyclic carbonates from CO_2 and propylene oxide. It had investigated the reaction of carbon dioxide with propylene oxide to generate PC with ligands (Bipy, Hdpa, Hdpza, Napy) and rare earth metal salt. Meanwhile, it also analyzed the influence of the ligand structure on catalytic performance. What's more, different reaction conditions were seriously inspected.

Results and Discussion

IR spectra of the PC showed strong absorption bands at 1,793 and 1,052-1,183 cm⁻¹, as well as characteristics of stretching vibration of C=O bond and C-O-C bond of the carbonate group, respectively. Fig. 1 demonstrated the ¹H

and ¹³C-NMR spectra of the reaction product after purification, which is consistent with PC as a sole main product.

Figure. 1. ¹H and ¹³C-NMR Data of Propylene Carbonate

Propylene carbonate: yellow liquid, 1 H-NMR (400 MHz, CDCl₃, TMS) δ : 1.497 (d, J = 6.4 Hz, 3H, CH₃), 4.046 (t, J = 7.6 Hz, 1H, CH), 4.576 (t, J = 8.0 Hz, 1H), 4.837-4.921 (m, 1H, CH); 13 C-NMR (400 MHz, CDCl₃, TMS) δ : 13.740, 64.997, 67.900, 149.392 (C=O)

In a general process, the synthetic reaction of PC from carbon dioxide and propylene oxide were examined at 100 °C, 1.5 MPa with the catalyst containing different rare earth metal salts and N-heterocyclic ligands. Table 1 summarized the performance of different types of catalysts in the PC synthesis from propylene oxide and CO₂.

The effects of different rare earth chlorides on the catalytic activity were also investigated via three kinds of metals, namely $\mathrm{Er^{3^+}}$, $\mathrm{Nd^{3^+}}$ and $\mathrm{Gd^{3^+}}$. The sequence of the effect with the same ligand is: $\mathrm{Er^{3^+}} > \mathrm{Nd^{3^+}} > \mathrm{Gd^{3^+}}$ (Table 1, entries 1-3, 4-6 and 7-9). The catalytic activity is inversely proportional to their ionic radii: with the smallest radius and the highest charge density among the three metals, $\mathrm{Er^{3^+}}$ showed the best yield. This is consistent with the idea that the $\mathrm{Er^{3^+}}$ is a harder and stronger Lewis acid than $\mathrm{Nd^{3^+}}$ and $\mathrm{Gd^{3^+}}$ are, which allows a stronger metal-ligand interaction.

Three different ligands, Napy, Hdpza and Bipy (Napy = 1, 8-naphthyridine, Hdpza = di(2-pyrazyl)amine, Bipy = 2,2'-bipyridine) were examined to learn the effects of ligands on the catalytic activity. First of all, the amine group of the ligands plays minor role and was unnecessary for the catalytic activity, as indicated by the similar results of Hdpa and Bipy (Table 1, entries 7 and 14). Second, the heterocyclic rings in ligands were vital for their function as a catalyst. When ligand Hdpa was changed to Hdpza, the yields increased significantly, rising from 80% to 95% (Table 1, entries 6 and 17). With regard to different N-donor heterocyclic ligands, the anions of the rare earth metal salts affected the catalytic reaction differently. For Bipy ligand, the catalytic activity of acetate salt was the best choice (Table 1, entries 1, 10 and 11); For Hdpa ligands, the nitrate catalyst worked best (Table 1, entries 14-16); For Hdpza ligand, the catalytic activity of chlorides was the best (Table 1, entries 4, 12 and 13). This indicated the importance of the cooperative effect

ATINER CONFERENCE PAPER SERIES No: CHE2014-1187

related to anions, and halide ion is more conducive to catalyze the process of nucleophilic attack, which also improved its catalytic efficiency.

Table 1. Synthesis	of Propylene	Carbonate	Catalyzed b	y Metal /	Ligand/Zn/
$TBAB^a$					

Entry	Catalyst	Yield ^b
1	NdCl ₃ / Napy/TBAB/Zn	86
2	GdCl ₃ / Napy/TBAB/Zn	85
3	ErCl ₃ / Napy/TBAB/Zn	90
4	NdCl ₃ / Hdpza /TBAB/Zn	84
5	GdCl ₃ / Hdpza /TBAB/Zn	76
6	ErCl ₃ / Hdpza /TBAB/Zn	95
7	NdCl ₃ / Bipy /TBAB/Zn	73
8	GdCl ₃ / Bipy /TBAB/Zn	71
9	ErCl ₃ / Bipy /TBAB/Zn	80
10	Nd(NO ₃) ₃ / Bipy /TBAB/Zn	75
11	Nd(acac ₃) ₃ / Bipy /TBAB/Zn	80
12	Nd(NO ₃) ₃ / Hdpza /TBAB/Zn	76
13	Nd(acac ₃) ₃ / Hdpza /TBAB/Zn	76
14	NdCl ₃ / Hdpa /TBAB/Zn	77
15	Nd(NO ₃) ₃ / Hdpa /TBAB/Zn	83
16	Nd(acac ₃) ₃ / Hdpa /TBAB/Zn	84
17	ErCl ₃ / Hdpa /TBAB/Zn	80

[a] Reaction Condition: Complexes Catalyst 0.15 mmol, TBAB 0.6 mmol, Zn Powder 3 mmol, 1.5 MPa at 100°C for 1 h. [b] Isolated Yield.

Catalytic reaction tests demonstrated that the incorporation of ErCl₃ and Hdpza could significantly enhance the catalytic reactivity of the TBAB (ⁿBu₄NBr, tetra-*n*-butyl ammonium bromide) towards cycloaddition reaction of CO₂ and propylene oxide that produced cyclic carbonates under mild conditions without any co-solvent. After that, the study mainly focused on the investigation of different reaction conditions, which included temperature (Table 2), pressure (Table 3), and reducing metals (Table 4).

Table 2. Synthesis of Propylene Carbonate Catalyzed by ErCl₃/ Hdpza /TBAB/Zn in Different Temperatures^a

Temperature / ℃	60	80	100	120
Yield / %	84	83	95	83

[a] Reaction Condition: Metal Catalyst 0.5 mmol, Ligand 1.5 mmol, Zn Powder 10 mmol, TBAB 2 mmol at 1.5 MPa for 1 h.

Test results showed that the catalytic efficiency was not sensitive to temperature. When the reaction temperature increased from 60°C to 80°C, yield almost remained unchanged. However, when the temperature rose to 100°C, the highest product yield was obtained with its yielding rate being 95%. When the temperature further increased, the yield decreased to 83% (Table 2). Thus, it could be concluded that the optimum reaction temperature of the reaction

was 100℃.

Table 3. Synthesis of Propylene Carbonate Catalyzed by ErCl₃/ Hdpza/TBAB/Zn in Different Pressure ^a

Pressure / Mpa	0.9	1.2	1.5
Yield / %	84	83	95

Pressure exerts significant influence on the catalytic activity. Judged from the above catalytic performance, it could be seen that higher pressure was advantageous to the reaction. When the reaction pressure was 0.9 Mpa, the product yield was 73%; with the increase of the reaction pressure, the yield improved, and the highest value of 95% emerged at 1.5 Mpa.

Table 4. Synthesis of Propylene Carbonate Catalyzed by ErCl₃/ Hdpza /TBAB/M in Different Reducing Metals ^a

Reducing metals (M)	Zn	Al	Fe
Yield / %	95	79	78

[a] Reaction Condition: Metal Catalyst 0.5 mmol, Ligand 1.5 mmol, Metal 10 mmol, TBAB 2 mmol (1.5MPa) at $100\,^{\circ}$ C for 1 h.

Great influence by the reducing metal in the catalyst system was observed, and certain sort of reducing metal can effectively improve the catalytic activity of the catalyst. When zinc powder was employed as the metal co-catalyst, the product yield reached 95%, while choosing iron or aluminum to be the metal co-catalyst, the yield decreased to 78% and 79%, respectively. This order differs from the standard electrode potential values of the three metal ions in aqueous solution: Al > Zn > Fe. Since our experiments were carried out in non-aqueous system, it was quite understandable that it led to different sequence.

Experimental

The catalytic reactions of CO₂ with PO were performed in a 100 mL titanium autoclave equipped with a magnetic stirrer. In a typical run, the catalyst was charged into the dry reactor, followed by adding a desired amount of purified PO. Then, the reactor was pressurized to 1.5 MPa with carbon dioxide and heated to the desired temperature (100 °C) with stirring. After 1 h of reaction, the autoclave was cooled down to room temperature, and the CO₂ pressure was released by opening the outlet valve. The solid residue was separated from the reaction mixture by filtration. The product PC was obtained through distillation of the filtrate under reduced pressure. Qualitative analysis of the liquid products was performed on IR spectrum. HNMR and ¹³C NMR spectra were obtained on a Varian INOVA400 MHz spectrometer with TMS as an internal standard. For quantitative determination, the products were

analyzed on an Agilent 6890 Plus GC with flame ionization detection. The PC yield was obtained by internal standard method (biphenyl as the internal standard substance).

Conclusions

In summary, an efficient catalyst system containing rare earth metal complex for the cycloaddition reaction of CO₂ with propylene oxide were successfully developed in the study. Using RE (III) chlorides as metal source and Hdpza as a N-donor ligand, the reaction went fairly quickly under mild conditions. The cooperative effect among the RE(III) complex, reduction agent and TBAB was attributed to the excellent activity and high selectivity. The catalytic reaction tests demonstrated that incorporation of ErCl₃ and Hdpza could significantly enhance the catalytic reactivity of the TBAB (ⁿBu₄NBr, tetra-*n*-butyl ammonium bromide) towards cycloaddition reaction of CO₂ and propylene oxide that produce cyclic carbonate under mild conditions without any co-solvent.

References

- [1] http://link.springer.com/article/10.1023/A%3A1015396318254
 Fujita, S.-i.; Bhanage, B. M.; Ikushima, Y.; Shirai, M.; Torii, K.; Arai, M.. Catal. Lett. 2002, 79, 95.
- [2] http://pubs.acs.org/doi/abs/10.1021/cr068357u
 Sakakura, T.; Choi, J. C.; Yasuda, H. *Chem. Rev.* 2007, 107, 2365.
- [3] http://link.springer.com/article/10.1007/s11144-009-0016-2 Yu, G.-L.; Chen, X.-R.; Chen, C.-L. React. Kinet. Catal. Lett. 2009, 97, 69.
- [4] http://link.springer.com/article/10.1007/s10562-011-0753-5
 Han, L.-N.; Park, M. S.; Choi, S. J.; Kim, Y. J.; Lee, S.-M.; Park, D. W. Catal. Lett. 2012, 142, 259.
- [5] http://www.sciencedirect.com/science/article/pii/S0926860X09004864
 Dai, W.-L.; Luo, S.-Z.; Yin, S.-F.; Au, C.-T. *Appl. Catal. A.* 2009, *366*, 2.
- [6] http://link.springer.com/article/10.1007/s10562-010-0346-8
 Dai, W.-L.; Chen, L.; Yin, S.-F.; Li, W.-H.; Zhang, Y.-Y.; Luo, S.-L.; Au, C.-T. Catal. Lett. 2010, 137, 74.
- [7] http://pubs.acs.org/doi/abs/10.1021/cr050973n
 Baleiza, C.; Garcia, H. Chem. Rev. 2006, 106, 3987.
- [8] http://link.springer.com/article/10.1007/s10562-010-0325-0
 Ghosh, A.; Ramidi, P.; Pulla, S.; Sullivan, S. Z.; Collom, S. L.; Gartia, Y.; Munshi, P.; Biris, A. S.; Noll, B. C.; Berry, B. C. Catal. Lett. 2010, 137, 1.
- [9] http://onlinelibrary.wiley.com/doi/10.1002/jccs.201300081/abstract
 Wen-Zhen Wang; Yang Wu; Yan-Shan Duan; Jun-Tao Zhang.; Peng-Hui Yang; Bing-Hua Ni; Ya Wu. *Journal of the Chinese Chemical Society*. 2013, 60, 1463.
- [10] http://link.springer.com/article/10.1007/s11243-006-0047-8 Lin, H.-K.; Luo, Y.-H. *Transit. Metal. Chem.* 2006, 31, 690.